• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2013 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2013 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Modern stromatolite microbial diversity in Yellowstone National Park, Wyoming in the context of microbial alpha and beta diversity along Yellowstone geothermal outfalls.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    PepeRanney_mines_0052E_10114.pdf
    Size:
    7.416Mb
    Format:
    PDF
    Description:
    Modern stromatolite microbial ...
    Download
    Author
    Pepe-Ranney, Charles
    Advisor
    Spear, John R.
    Date issued
    2013
    Keywords
    Stromatolites -- Yellowstone National Park
    Microbial diversity -- Yellowstone National Park
    Hot springs -- Yellowstone National Park
    Microorganisms
    Microbiology
    Cyanobacteria
    Geochemistry
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/77786
    Abstract
    To better understand the diversity of mechanisms for stromatolite morphogenesis as well as the diversity of microorganisms and microbial metabolisms associated with stromatolites it is imperative to describe the biological attributes of the full diversity of "living" stromatolite-like geobiological structures worldwide. It is of additional interest to describe geographically and geochemically comparable ecosystems but lacking stromatolites to stromatolite-forming environments to unravel the geochemical and microbiological aspects of stromatolite morphogenesis. Here we present a living stromatolite system in a Yellowstone National Park (YNP) hot spring that exhibits features in contrast to many popularly studied modern stromatolite analogs. Most notably, the YNP stromatolites are more finely laminated than living marine stromatolites and may be a more suitable textural analog to finely laminated stromatolites found in the rock record. The YNP stromatolites are composed of silica-encrusted cyanobacterial mats. The predominant lithofacies of the YNP stromatolite is comprised of silica-encrusted filaments and is distinctly laminated. The laminated quality of the main lithofacies is due to an alternating-possibly on a diurnal cycle-growth orientation of filamentous cyanobacteria. Two cyanobacterial mat types grow on the stromatolite surfaces and are preserved as two distinct lithofacies. One mat is present when the stromatolites are submerged or at the water-atmosphere interface and the other when stromatolites protrude from the hot spring. The lithofacies created by the encrustation of submerged mats constitutes the bulk of the stromatolites, is comprised of silica-encrusted filaments, and is distinctly laminated. To better understand the cyanobacterial membership and community structure differences between the mats, we collected mat samples from each type. Molecular methods revealed that submerged mat cyanobacteria were predominantly one novel phylotype while the exposed mats were predominantly heterocystous phylotypes (Chlorogloeopsis HTF and Fischerella). The cyanobacterium dominating the submerged mat type does not belong in any of the subphylum groups of cyanobacteria recognized by the Ribosomal Database Project and has also been found in association with travertine stromatolites in a Southwest Japan hot spring. Cyanobacterial membership profiles indicate that the heterocystous phylotypes are 'rare biosphere' members of the submerged mats. The heterocystous phylotypes likely emerge when the water level of the hot spring drops. Environmental pressures tied to water level such as sulfide exposure and possibly oxygen tension may inhibit the heterocystous types in submerged mats. In contrast to living marine examples where the interplay of pCO2 and [Ca2+] is the main influence on microbial lithification, the lithifcation in the YNP system is driven by a rapid decrease in silica solubility between high-temperature subsurface water emitted from the hot spring vent and lower-temperature surface water. The continuously favorable conditions for rapid lithification in the hot spring system coupled to a cyanobacterial diurnal growth cycle that manifests itself as fine laminations in the stromatolite lithofacies leads to a growth rate for the YNP stromatolite on the order of centimeters of deposition in several months. The YNP system displays a perhaps overlooked mechanism for stromatolite morphogenesis and is compelling both for the presence of a seemingly unstudied cyanobacterium as well as a finely-laminated modern stromatolite analog of which there are few other examples.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2013 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.