• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2015 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2015 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Rock typing in tight gas sands: a case study in Lance and Mesaverde formations from Jonah field

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Aliyev_mines_0052N_10780.pdf
    Size:
    8.494Mb
    Format:
    PDF
    Download
    Author
    Aliyev, Elshan
    Advisor
    Prasad, Manika
    Date issued
    2015
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/20145
    Abstract
    The Jonah field is one of the biggest tight gas sand fields in the Green River basin. Production profiles from its deeper sections show high liquid hydrocarbons close to the Pinedale anticline, especially in Mesaverde and Lance formations. To assess the potential of condensate production, new approaches for rock classi_cation are needed that will allow us to differentiate between discontinuous sandstone layers and the interbedded siltstones. Currently, the only cut off used is for gamma ray: rocks below 75 API are designated as sandstones. Although, significant porosity and permeability variations occur within the sandstone zones, the only criterium used to differentiate between reservoir and non-reservoir rocks is porosity: sandstones with porosity > 6% are considered reservoir quality rocks. Porosity is considered main controlling factor on permeability. A 6% porosity cut off in sandstones was used in net-pay calculations. However, hydraulic rock typing demonstrates permeability is dependent on main pore throat radius, rather than porosity. This study presents rock typing for tight sandstones and siltstones with an understanding of petrophysical properties such as pore structure, porosity, permeability, and cementation. I studied 14 samples from the Mesaverde and Lance Formations with lithologies varying from clean sandstone to mudstone. X-ray diffraction (XRD) mineralogy and mercury injection capillary pressure (MICP) were measured for all samples. NMR transverse relaxation times (T2) at 2 MHz were also measured for 10 water saturated samples. Nitrogen adsorption tests were performed on 8 samples. Ultrasonic velocities from 10 samples were measured at different confining pressure conditions. Thin section petrography was used to analyze the cementation and pseudomatrix clay effects on pore and pore throat size. MICP data are used to subdivide rocks into three groups based on pore throat size distribution: reservoir sandstones, non-reservoir sandstone and siltstone/mudstone. Dominant pore throat size for reservoir and non-reservoir sandstones are 400 and 100 nm, respectively. In order to apply pore throat size rock typing to downhole measurements, NMR pore size classification is used to identify formations. Pore size from NMR demonstrated equivalent behavior to pore throat size from MICP. The logarithmic mean values of T2 transverse relaxation times for reservoir, non-reservoir sandstone and siltstone/mudstone are 22.2 ms, 3.4 ms and 0.29 ms, respectively. Clear separation of reservoir sandstone, non-reservoir sandstone and siltstone is seen based on compressibility behavior from compressional velocity during initial pressure loading. Reservoir sandstone demonstrates the highest compressibility. In addition, siltstone and mudstone were separated based on log differential pore volume distribution from N2 adsorption data. Based on pore size distribution data, four main rock types are identified in Lance and Mesaverde formations in Jonah field. Rock typing based on gamma ray and porosity logs can be considered as rock classification of end members. To capture transitional behavior in between end members, pore size distribution is needed in logging application. Since NMR T2 distribution show similar spectra to MICP throat size distribution, the rock typing technique can be applied using NMR log data. Separation of mudstone from siltstone can be used for identification of shale end points in log data. Porosity and resistivity of shale end points are inputs in water saturation calculations.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2015 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.