• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2021 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2021 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Extraction, transport, and transformation of poly- and perfluoroalkyl substances in soils impacted by aqueous film-forming foam

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Nickerson_mines_0052E_12222.pdf
    Size:
    4.901Mb
    Format:
    PDF
    Download
    Thumbnail
    Name:
    supplemental.zip
    Size:
    1.411Mb
    Format:
    Unknown
    Download
    Author
    Nickerson, Anastasia
    Advisor
    Higgins, Christopher P.
    Date issued
    2021
    Keywords
    PFAS
    transformation
    AFFF
    transport
    soil
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/176521
    Abstract
    Poly- and perfluorinated alkyl substances (PFASs) are a class of recalcitrant environmental contaminants used in a variety of industries and consumer products. Use of aqueous film-forming foams (AFFF) at military bases and airports is one significant source of PFAS contamination to groundwater and communities. AFFF formulations are composed of diverse PFAS classes, including anionic, zwitterionic, and cationic structures. Many of the polyfluorinated substances have been shown to transform to the perfluorinated substances in the environment. Despite years of research concerning the mostly perfluorinated anionic substances, the fate and transport of the zwitterionic and cationic PFASs remain largely unknown.The objective of this dissertation was to develop a better understanding of the transport and transformation of PFASs at AFFF-impacted sites, with a particular focus on zwitterionic and cationic compounds. The first research objective was to develop a soil extraction method to enhance the recovery of all PFASs. The second research objective was to conduct a comprehensive site characterization via high spatial resolution sampling of soil and groundwater samples with estimated concentrations of all detected PFASs. The final research objective was to simulate biosparging of an AFFF-impacted soil in column experiments to understand changes in PFAS transformation and release from source zone materials altered by remediation. The results indicated that a combination of strongly basic followed by strongly acidic extraction conditions were needed to achieve sufficient recovery of all PFASs from soils. The site characterization showed that the majority of the polyfluorinated mass remained near the source zone despite decades since release, and the majority of these compounds were zwitterionic or cationic. The third research effort showed that biotransformation of polyfluorinated precursors occurred in both O2-sparged and N2-sparged soil columns, and higher concentrations of certain zwitterionic PFASs eluted from O2-sparged columns shortly after start of sparging. The findings from this dissertation will allow for a more comprehensive view of the PFASs in the subsurface and how they move and change with time. These efforts will benefit remedial plans and site investigations at AFFF-impacted sites.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2021 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.