• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2018 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2018 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Modeling and analysis of diagnostic fracture injection tests (DFITs)

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Bakar_mines_0052N_11465.pdf
    Size:
    1.574Mb
    Format:
    PDF
    Download
    Author
    Bakar, Recep
    Advisor
    Ozkan, E.
    Date issued
    2018
    Keywords
    DFIT
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/172228
    Abstract
    Diagnostic fracture injection tests (DFIT) are used as an indirect method to determine closure pressure and formation effective permeability in unconventional reservoirs as a first step in formation evaluation. The information obtained from DFIT is particularly useful because it is obtained before any production for a given well is available. In DFIT, a small fracture is created by injecting few barrels of completion fluid until formation breaks down and a fracture is initiated and propagates a short distance into the reservoir. Then, injection is stopped and the pressure decline (or falloff) is monitored. From this pressure decline, the effective permeability of the formation is estimated by Nolte’s G-function, log-log plot, or square root of time analysis. In this research, the viability of the common DFIT analysis techniques was investigated for unconventional reservoirs with and without micro-fractures by using a numerical hydraulic fracturing simulator, CFRAC. The results of numerical simulations were investigated to assess the impact of permeability, residual fracture aperture, and complex fracture networks on conventional DFIT interpretations. For the example considered in this work, the commonly used G-function analysis yielded estimates of permeability over an order of magnitude higher than the simulated matrix permeability. Error in the G-function estimates of permeability were higher for higher matrix permeability and in the existence of a fracture network. On the other hand, straight-line analysis of ∆p versus G-time yielded much closer (in the same order of magnitude) estimates of permeability.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2018 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.