Loading...
Neutronic and thermal hydraulic analysis of the geological survey TRIGA reactor
Shugart, Nicolas Evan
Shugart, Nicolas Evan
Citations
Altmetric:
Advisor
Editor
Date
Date Issued
2013
Date Submitted
Collections
Research Projects
Organizational Units
Journal Issue
Embargo Expires
Abstract
The United States Geological Survey TRIGA Reactor (GSTR) is a 1 MW reactor located in Lakewood, Colorado. In support of the GSTR's relicensing efforts, this project developed and validated a Monte Carlo N-Particle Version 5 (MCNP5) model of the GSTR reactor. The model provided estimates of the excess reactivity, power distribution and the fuel temperature, water temperature, void, and power reactivity coefficients for the current and limiting core. The MCNP5 model predicts a limiting core excess reactivity of $6.48 with a peak rod power of 22.2 kW. The fuel and void reactivity coefficients for the limiting core are strongly negative, and the core water reactivity coefficient is slightly positive, consistent with other TRIGA analyses. The average fuel temperature reactivity coefficient of the full power limiting core is -0.0135 $/K while the average core void coefficient is -0.069 $/K from 0-20 % void. The core water temperature reactivity coefficient is +0.012 $/K. Following the neutronics analysis, the project developed RELAP5 and PARET-ANL models of the GSTR hot-rod fuel channel under steady state and transient conditions. The GSTR limiting core, determined as part of this analysis, provides a worst case operating scenario for the reactor. During steady state operations, the hot rod of the limiting core has a peak fuel temperature of 829 K and a minimum departure from nucleate boiling ratio of 2.16. After a $3.00 pulse reactivity insertion the fuel reaches a peak temperature is 1070 K. Examining the model results several seconds after a pulse reveals flow instabilities that result from weaknesses in the current two-channel model.
Associated Publications
Rights
Copyright of the original work is retained by the author.