Elsherbeni, Atef Z.Patel, Kyle2017-07-202022-02-032017-07-202022-02-032017https://hdl.handle.net/11124/171142Includes bibliographical references.2017 Summer.Modern communication systems require next generation antenna, whose performance can only be verified through specialized equipment and methodology. For example, a vector network analyzer can be used to determine metrics such as the impedance bandwidth of an antenna. However, a vector network analyzer provides only a portion of the operational characteristics of an antenna. Instead, controlled environments known as anechoic chambers are used to ascertain the radiation characteristics of an antenna under test. These facilities typically incorporate a variety of different instruments to facilitate the measurement process. Rotary tables, linear actuators, vector network analyzers, and amplifiers are examples of typical components that are used in an anechoic chamber. While one could certainly manually control these components, it is more efficient to automate the measurement procedure. This saves time and increases repeatability of measurements. This thesis presents a complete software design for automated antenna measurement system for use in anechoic chambers. This developed software is both modular and flexible, which allows for easy adaptation for new equipment over time and allows the system to run in a simulation mode if some hardware components are not present. The system has also proven its capability by successfully measuring the radiation pattern of a dipole antenna, even in an anechoic chamber lacking wall-to-wall absorbers.born digitalmasters thesesengCopyright of the original work is retained by the author.Design of an antenna measurement systemText