Anderson, Corby G.Zhang, Yicheng2016-02-232022-02-032016-02-232022-02-032016https://hdl.handle.net/11124/1700572016 Spring.Includes illustrations (some color).Includes bibliographical references.Froth flotation as a fundamental method for processing complex minerals is commonly applied to the surface chemistry and beneficiation of rare-earth-bearing minerals. This is due to the fact that it is possible to process a wide range of fine particle sizes and the process can be tailored to the unique mineralogy of a given deposit. Flotation effectiveness is primarily controlled by the surface-chemical properties of the minerals and related adsorption phenomena at the liquid–solid interface. This research program was designed to investigate the principles of surface chemistry and froth flotation of xenotime and selected gangue minerals. This led to a better understanding of the factors affecting flotation performance and separation of xenotime from associated gangue minerals in an efficient way. This investigation includes MLA analysis, surface area measurement, zeta potential tests, and adsorption tests of xenotime, ilmenite, zircon, schorl, and staurolite under conditions of various reagent additions and different temperatures. Octano-hydroxamic acid, sodium oleate, sodium silicates, and ammonium lignosulfonate were used in microflotation behavior evaluation. Efforts were made to evaluate the effects of temperature, pH, concentration, addition order, and depressants in the microflotation of minerals with anionic collectors such as octano-hydroxamic acid and sodium oleate. Other factors, such as bubble surface tension and bubble particle size, are also discussed based on the literature review and lab observations.born digitalmasters thesesengCopyright of the original work is retained by the author.collectordepressantfroth flotationmicroflotationrare earthxenotimeFroth flotation of xenotimeText