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ABSTRACT

Seismic deconvolution was introduced by Robinson in
1954 based on Wiener filter theory. If all filters in the
signal path, including the seismic source, are minimum
phase, there is nothing to annoy geophysicists about
deconvolution performance. Since many types of
non-explosive seismic sources which have nonminimum-phase
character have been introduced to the seismic world, many
types of deconvolution technigques for nonminimum~phase data
have been developed using Wiener filter theor§ and other
methods. However, these deconvolution techniques have not
completely solved the deconvolution problem for
nonminimum-phase data and have often made it more
complicated. Furthermore, a unified decoﬁvolution techniqgue
applicable to all types of seismic data has not been
developed previously.

General description of deconvolution techniques and
review for Wiener-Levinson deconvolution (henceforth W-L
deconvolution) are made, and conventional deconvolution
technigues, especially the addition of white noise in design
of deconvolution operators, are criticized. Even 1 %
additive white noise introduces considerably large phase
distortion, and increasing the noise level progressively

degrades the performance of deconvolution.
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In order to simplify and unify the process of
deconvolution for nonminimum-phase data including Vibroseis
daté, the Wiener transform is introduced.

By using the Wiener transform, generation of
minimum-phase equivalents to nonminimum-phase wavelets,
correction of time variance of the seismic data, and
generation of ailpass phase compensators are easily and
optimally carried out under the criterion of minimum
mean-square error.

As an optimal deconvolution technique for
nonminimum-phase data, a time-variant inverse attenuation
filter followed by phase-compensated spiking deconvolution
is proposed (named Sengbush-Hato deconvolution, henceforth
S-H deconvolution), and it is shown that this technique is
optimal under a wide range of conditions and types of
seismic data. It is also shown that attenuation is
accompanied with minimum phase using McDonal et al’s
experimental data (1958), and time-variant minimum-phase
inverse attenuation filter is used in S5S-H deconvolution of
seismic data.

This optimal deconvolution technique is applied to a
synthetic seismic trace which was formed using a dense
reflectivity function and a watergun signature, and its
performance is far superior to spiking and gapped

deconvolution, where the performance is measured by
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calculating the correlation coefficient and the relative
time shift between the desired output and each deconvolution
output after bandlimiting with the desired seismic pulse.

High performance of S-H deconvolution is confirmed by
computer simulations. For time-variant inverse-attenuated
traces with and without 3 % additive natural noise, the
correlation coe?Ficients of S—-H deconvolution are always
over 0.83 compared to 0.72 or less for the other types of
deconvolution. In addition, SH deconvolution by
compensating for phase distortion has no relative time
shift, whereas all of the others show time shift; 42 msec in
the case of the watergun signature used in the simulation.
Even for time-variant attenuated traces without time-variant
invérse attenuation filter, S-H deconvolution keeps the
largest correlation coefficient and has little or no phase
‘shiFt.' Also, wide tolerance is confirmed for misestimation
of the attenuation cqngxant used in generating the
time-variant inversgéi}zenuation filter in S-H
deconvolution.

Applicability of S~-H deconvolution to Vibroseis data
is also shown by using a Klauder wavelet and a sparse
reflectivity model for the high attenuation case. For
time-variant attenuated trace without inverse attenuation
filter, S-H and Ristow-Jurcyzk (1975) deconvolution have the

largest correlation coefficient and no relative time shift.
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For time-variant inverse-attenuated trace, all of the
deconvolutions, including no deconvolution, except for
spiking deconvolution, have nearly perfect correlation
coefficient, more than 0.98, and no relative time shift

because of the special character of Klauder wavelets.

vi
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INTRODUCTION

Since the advent of effective non-explosive seismic

sources such as, Vibroseis!'M

(CONOCO), steam guns,
waterguns, airguns, etc, has had a tremendous impact on
seismic exploration. These systems have supplied more
effective seismic data acquisition techniques on the one
hand; on the other hand, these systems have forced
geophysicists to change their data processing techniques due
to their nonminimum-phase character.

From the mid of 1970’s, outstanding studies of
deconvolution technique for Vibroseis data have been made by
Ristow and Jurczyk (1976), Bickel (1982), Gibson and Larner
(1984), and others based on Wiener-Levinson inverse
filtering theory introduced by Enders Robinson (1954).
Wavelet deconvolution techniques were also developed by
DeVoogd (1974) and Berkhout (1977), and many others.
However, these techniques do not have general applicability
to all types of nonminimum-phase seismic data; for example,
Ristow-Jurczyk method deconvolution can handle only
Vibroseis data.

Time variance and nonminimum phase of seismic data
have been big problems in deconvolution. These problems
can not be solved by simple techniques and performance of

techniques used has not been measured gquantitatively.
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Additive white noise has always been considered absolutely
essential to Wiener filter theory-based deconvolution.
These facts have been a big barrier to establishing optimal .
deconvolution of nonhinimum-phase data.

In this study, it is shown that additive white noise
introduces phase distortion that previously has not been
recognized or compensated for; additive white noise is not
only unnecessary but also produces inferior performance of
deconvolution. It is also shown using McDonal et al’s
experimental data in Pierre shale (1958) that the
attenuation filter derived from its amplitude spectrum is
minimum phase.

Considering the problems of deconvolution described
above, a unified and simplified technique of optimal W-L
deconvolution that uses the Wiener transform to compensate
for time variance and nonminimum phase is proposed. This
technique (S-H deconvolution) can be applied without
modification to all types of nmnonminimum—-phase data including
zero-phase seismic source data.

Explicit algorithms are given and definite measures
of performance demonstrate the superiority of S-H
deconvolution.

As examples of application of Wiener transform,
minimum-phase conversion, generation of inverse attenuation

filters, and generation of optimal phase compensators and
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its application are carried out in order to show validity of
Wiener transform.

S-H deconvolution is applied to a watergun signature
seismic model consisting of a realistic dense reflectivity
and a watergun signature. The results are compared
quantitatively with several Wiener theory-based
deconvolution procedures by using the correlation
coefficient and relative time shift.

Using the same data, the superior performance of S-H
deconvolution for cases of mismatched attenuation constant
used for generating time-variant inverse attenuation filters
is established.

Optimal deconvolution is also applied to a Klauder
wavelet seismic model censisting of a sparse reflectivity
and a Klauder wavelet in order to study the generélity of
optimal deconvolution being applicable to any type of

nonminimum-phase data.
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GENERAL DESCRIPTION OF DECONVOLUTION

Since Robinson (1954) introduced seismic
deconvolution based on Wiener filter theory, it has been one
of the most powerful tools for improving resolution of
seismic data.

Furthermore, non—-explosive seismic sources such as

™ system (Crawford, 1960), steam guns such as

Vibroseis
VaporchocTM (CGG), and others, have improved seismic data
acquisition because of their simple operation and
controllability of the source waveform.

Continuing development of seismic data acquisition is
accompanied by continuing development of the seismic data
processing, especially deconvolution.

Deconvolution for nonminimum-phase data as well as
other conventional deconvolution is classified into two
major categories, Wiener models based on Wiener filter

theory, and others. In this chapter, for these two models,

important and outstanding works are reviewed briefly.

Wiener Models

Wiener filters have been used as the most popular
statistical deconvolution for spectral broadening of
nonminimum-phase data as well as regular seismic data due to

its high performance and its ease to use, but this
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deconvolution technique is based on the following
assumptions: 1) the reflectivity series is random and white,
2) the natural noise is random and stationary, and 3) the
effective seismic\pufse is minimum phase and time-invariant.
On real seismic data, these assumptions are not satisfied,
especially on dgta acquired by nonminihum—phase sources
because of the special character of the source signatures.
In spite of these difficulties in applying Wiener filters,
this technique has been widely used for the deconvolution of
nonminimum-phase data.

Ristow and Jurczyck (1975) introduced phase-
compensated spiking deconvolution (henceforth called R-J
deconvolution) to Vibroseis data. Subsequently, Bickel
(1982) and Gibson and Larner (1984) studied the effects of
additive natural noise and additive white noise on the
performance of deconvolution for Vibroseis data and their
effect in the design of phase compensators. They also
studied the effect of applying an inverse attenuation
filter. However, their deconvolution techniques based on
R-J deconvolution is applied only to Vibroseis data, which

has zero-phase source wavelet.

Other Models

Other deconvolution techniques which are not based on

Wiener filter theory have been developed, including: 1)
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Homomorphic deconvolution (Ulrych, 1971), 2)

Maximum-1ikel ihood deconvolution (Kormylo and Mendel, 1983),
3) Minimum-variance deconvolution (Mendel, 1981), 4)
Q-adaptive deconvoluﬁion (Hale, 1985), and 5)
Minimum-entropy deconvolution (Wiggins, 1978). Jurkevics
and Wiggins (1984) summar ized merits and demerits of these
model-based deconvolution techniques well.

These techniques may not require some of the
assumptions which are required in the Wiener method, but
they require other assumptions. Some such as
maximum-1ikel ihood and minimum-entropy deconvolution assume
that the reflectivity function is sparse, which is not
realistic model of the real seismic process. Furthermore,
some types of model-based deconvolution techniques do not
work well under certain conditién, such as homomorphic
.deconvolution, which in the case of small amplitude
spectrum, introduces ambiguity in the phase values
associated with the very small amplitudes in the signal

spectrum.
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WIENER-LEVINSON DECONVOLUTION

As has been described in previous chapter, many
authors have studied deconvolution for nonminimum-phase
data, including Vibroseis data, using Wiener filter theory,
and there is no_doubt that Wiener filter theory will
continue to be used as one of the most useful deconvolution
techniques in the future because of its performance, its
ease in practical usage, and its freedom from parameter
estimation. In this chapter, a review of Wiener-Levinson
deconvolution (W-L deconvolution) will be made and then some
problems of traditional W-L deconvolution will be

considered.

Convolutional Model

The convolutional model of the seismic data
generation process in the signal path is expressed as
follows: -

s =c™*®r + n, (1)
where s is the seismic data, ¢ is the effective seismic
pulse, r is the earth’s reflectivity, and n is the additive
natural noise. The convolutional model of the effective
seismic pulse ¢ is shown as follows:"

c=b*h®*am*i, (2)

where b is the seismic source signature, h is the ghost and
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reverberation filter, a is the earth’s attenuation filter,
and i is the response of the recording instruments such as
the DFS—VTM (Texas Instruments) and geophone. Filters a and
h are minimum phase. Some types of sources such as the
Klauder wavelet (Klauder, 1960), which is the
autocorrelation_oF the Vibroseis sweep, steam guns,
waterguns, and some others are not minimum phase. The
filter i, especially when active electric circuits are used,
is not minimum phase.

In general, noise is classified into th components,
which are random noise and coherent noise such as ground
roll and refractions. However, in the study of W-L
deconvolution here, only random noise is taken into account;
the coherent noise being presumed to be adequately

suppressed by patterns and f-k filter before deconvolution.

Assumptions

In order to perform optimal W-L deconvolution, the
Followfng assumptions must be satisfied;
1) Reflectivity r is white and random,
2) Noise n is random and stationary,
3) Effective seismic pulse ¢ is minimum phase
and time-invariant.

W-L Deconvolution Process

The goal of W-L deconvolution developed by Robinson
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is to find the inverse of ¢ from the seismic data by solving
the Wiener-Hopf normal equation (eq. 3) and then to apply
the inverse to the seismic data in order to remove the
filter c,
¢ *w=2¢6,t >0, (3)

where ¢L is the truncated autocorrelation of the
windowed-seismic data, § is an impulse, and w is the
deconvolution operator, which is the inverse of the
minimum-phase equivalent to the effective seismic pulse c.

In the process, the window length must be chosen
carefully to obtain the characteristics of random process,
and also to keep the time variance of the effective seismic
pulse from adversely affecting deconvolution performance.
In addition, because truncation of the autocorrelation
function is directly related to the spectral smoothing in
the frequency domain which estimates the power spectrum of
the effective seismic pulse, the truncation length and the
ratio of the window-to-truncation length must be selected
carefully also. The process of spectral smoothing is
described in detail by Sengbush (1983, pl34).

Traditionally, whenever the W-L deconvolution
operator is generated, a small quantity is added to the
diagonal component of the normal equation, so-called
prewhitening, in order to make the solution stable. However,

prewhitening always reduces the performance of W-L
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deconvolution (Shugart, 1973).
After being filtered by the inverse w, the seismic
data becomes as follows:
S*w=c*r*w+n*w (4)
If the inverse w is almost perfect, that is if ¢ * w = §(t),
the deconvolved seismic data is
S *wssr +n*w, (5)
Since W-L deconvolution greatliy enhances noise in the
lower and higher frequency band of the seismic data where
the signal-to-noise ratio is very low, the freguency-band of
the deconvolved data must be restricted by applying a
bandpass filter, called the d-filter, which has known and
desirable characteristics,
s *w*dz=r *d+n*w?* d. (6)
1f the noise is very small, the final form of the
convolutional model after W-L deconvolution is as follows:

s *w*dzr * d. (7)

Problems of W-L Deconvolution

In application of W-L deconvolution to real data, the
following problems occur; 1) the effective seismic pulse may
not be minimum-phase and is not time-invariant, 2) the
reflectivity is not random and not white, 3) the noise is
not random and not stationary, and 4) the noise is not small

enocugh to be ignored.
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Concerning the noise, it must be suppressed
sufficiently by proper field processing and proper data
processing before applying deconvolution because W-L
deconvolution does not enhance signal-to-noise ratio, but
rather its performance is degraded by presence of the noise.
The degradation of the W-L deconvolution_perFormance is
described under various noise conditions by Berkhout (1977).

Many efforts have been made to solve or to bypass the
problems described above, such as signature deconvolution,
which is preprocessing by the nonminimum-phase inverse of
the source signature before deconvolution, phase estimation
by bispectrum (Matsuoka and Ulrych, 1984), the Wapco process
by Compagnie Generale de Geophysigue (Fourmann, 1974), and
some others. However, these studies did not always solve
the problems completely.

Among the problems mentioned, since only the source
signature may contribute significant nonminimum-phase
characteristics and the time-variant earth’s attenuation may
significantly affect the nonstationarity of the seismic
data, these are core problems which should be solved at
first. The problems of compensation of time variance and
compensation of minimum-phase can be solved by using the
Wiener transform which will be introduced in a later

chapter.
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CRITICISM ON CONVENTIONAL DECONVOLUTION

In spite of many author’s efforts, especially Ristow
and Jurczyk, Bickel, and Gibson and Larner, to study
deconvolution for nonminimum-phase data, their techniques
are not always the best way to solve this problem, but
rather make it more complicated. In this chapter, several
confusing factors are picked up and are criticized and then
some discussions are made in order to build the optimal

deconvolution technique for nonminimum-phase data.

Ultimate Goal

The ultimate goal of seismic data processing for
stratigraphic interpretation is to obtain both high
resolution and high signal-to-noise ratio data. In the
deconvolution process, these two reguirements for
achieving the ultimate goal are contradictory to each other
because the deconvolution process itself does not enhance
the signal-to-noise ratio at all. Therefore, the additive
natural noise, which is an important factor that degrades
the performance of the deconvolution, should be suppressed
sufficiently before applying deconvolution so that the
deconvolution operator will be based on signal only.

In this sense, we should remove all filters including

the Klauder wavelet in case of Vibroseis deconvolution in
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order to obtain only the underlying reflectivity.

Addition of White Noise

Degradation of the performance of W-L deconvolution
by the presence of additive natural noise appears as a phase
distortion in the deconvolution output; In figure 1, a
minimum-phase wavelet (b_) and its noise-added version (b))
which has 3 % natural white noise (pseudo-Gaussian
distribution) are superimposed and show no visible
difference. To these two wavelets, W-L spiking
deconvolution is applied without additive white noise (fig.
2) in order to investigate the effect of additive natural
noise. In figure 2, d_ and d, are outputs of deconvolution
to b and its 3 % natural noise-added version (b,). d. is
nearly a spike at the time origin, but the waveform of dn is
totally destructive. In order to investigate effects by
natural noise in detail in frequency domain, spectral
analysis was carried out to both wavelets (dm and d_,) and
these results are shown in figure 3 and 4.

Ampl itude spectrum (Am) of dm is ideally flattened
but amplitude spectrum (An) of dn is distorted (fig. 3).
The same destructive tendency can be also seen on the phase
spectrum (P_ ) of d_  compared to the zero-phase spectrum of
(Pm) of d (fig. 4). From these spectral analyses,

degradation of performance of deconvolution can be realized
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when even a small additive natural noise exists on the
seismic data.

Concerning additive white noise, conventional
deconvolution processes including deconvolution of
nonminimum-phase data such as those described by Bickel, and
Gibson and Larner, apbly small amounts of additive white
noise on the Wiener—HopF normal equation for the purpose of
making the solution stable. However, to apply additive
white noise which has the same effect as the presence of the
additive natural noise is not appropriate. Even
minimum-phase signatures produce phase distortion in the W-L
deconvolution output if the white noise is added.

In order to study effect of additive white noise in
deconvolution, W-L spiking deconvolution was applied to the
minimum-phase wavelet b (fig. 1) used in previous
simulation by changing amount of additive white noise. In
figure 5, output (do) of W-L deconvolution to the wavelet bn
without additive noise is almost a spike, but the output
(dl) with 1 % additive white noise has bandl imited waveform.
The results of spectrum analysis for both deconvolution
outputs (dj and d,) are shown in figure 6 and 7. In figure
6, the amplitude spectrum (Am) of deconvolved wavelet (dg)
is sufficiently whitened. but the amplitude spectrum (An) of
the deconvolved wavelet (dl) loses its higher freqguency

components above 100 Hz rapidly. In figure 7, the phase
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spectrum (Pn) of the deconvolved wavelet (d,;) is distorted
compared to the zero-phase spectrum (Pm) of the deconvolved
wavelet (do).

In fact, sincé any finite-length time function always
has non-zero spectral value at every point except possibly
on a set of measure zero even if it is designed as
bandlimited‘sfgnal, the probability of unstable solution of
the Wiener-Hopf normal equation is vanishingly small. As a
matter of the fact, a stable deconvolution operator (dk) of
the Klauder wavelet (k) can be obtained by solving
Wiener-Hopf normal equation without additive white noise
(Fig. 8).

In this sense, we do not need to apply any additive

white noise in design of the W-L deconvolution operator.

Unified Treatment

Conventional deconvolution techniques for
nonminimum-phase data can not be applied to the other types
of nonminimum—phase‘seismic data. For instance, R—q
deconvolution can not be applied to mixed-phase data because
the output of R-J deconvofution consists of convolution of
reFlectivity with Klauder wavelet by applying the
minimum-phase version of Klauder wavelet to the
spiking-deconvolved seismic data.

The optimal deconvolution technigue should have
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applicability to any type of nonminimum-phase data including
Vibroseis data. All filters which are convolved with
reflectivity should be removed to obtain the underlying
reflectivity only, aﬁd the d-filter whose character is
well-known and desirable must be applied to the deconvolved

data in order tp bandlimit the noise.
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TOOLS FOR SIMPLIFICATION AND UNIFICATION

In this chapter, according to criticisms mentioned in
the former chapter, ih order to simplify and unify the
complicated deconvolution process for nonminimum-phase data,
the Wiener transform is introduced and t&pical applications
of the Wiener transform are shown. In addition, influences
of the additive white noise on the Wiener transform are

discussed.

Wiener Transform

The Wiener transform is defined as the solution to
the deterministic Wiener-Hopf normal equation without
additive white noise. In another words, the Wiener
transform is W-L spiking deconvolution without additive
white noise applied to a deterministic stable finite-length
function. So, the Wiener transform of y, expressed as W(y),
is obtained by solving equation (8),

¢y *ws=26, t 3 0, (8)
where ¢y is the exact complete autocorrelation of vy.
Thus, the solution of equation (8) is the optimal
finite-length inverse of the minimum phase equivalent of vy,
that is,
W(y) = ym_l. (9)

Equality means equality in the sense of minimum mean-square
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P

9"
error/between the two functions. So, if ¢y is violated by
truncating the autocorrelation, shaping the autocorrelation,

or adding white noise, W(y) is no longer the Wiener

transform of y. / .

Minimum Phase Conversions

One of typical examples of application of the Wiener
transform is to generate the minimum-phase equivalent to a
function y, which is calculated optimally by applying the
Wiener transform to y twice without additive white noise,
that is,

W(W(y)) = ¥ (10)

m.
Three kinds of nonminimum-phase seismic source, the
Klauder wavelet (k), the Vaporchoc signature (v), and the

watergun signature (w), and their minimum-phase equivalents

(k Ve and wg) calculated by applying the Wiener transform

m?*
twice without additive white noise are shown in figure 9,
10, and 11, respectively. Although there are other
well-known methods to generate the minimum-phase egquivalent
ym from y; such as the Hilbert transform (see Appendix A)
(fig. 12) and the Z-transform (see Appendix B), the Wiener
transform is apparently the simplest and easiest method to
use, and insures optimality in the sense of mean-square

error.

In order to examine the influence of additive white
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Figure 9. Klauder wavelet k and its minimum-phase equivalent
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Figure 10, Vaporchoc signature v and its minimum-phase

equivalent Vm'
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noise on minimum-phase conversion, the minimum-phase
equivalent to the Klauder wavelet is obtained by applying
the Wiener transform twice without and with 0.1.% additive
white noise (kg o .and kg ;) (Fig. 13) and the amplitude
spectrum of both minimum-phase equivalents were computed
(KO.O and Kg ) (fig. 14).

In figure 13, it is realized that even very small
additive white noise ,0.1 % in this case, makes a big
difference between noise-added minimum-phase version (ko.l)
and noise-free minimum-phase version (k0.0)' In figure 14,
the amplitude spectrum K, , is more whitened than amplitude
spectrum KO.O even though added white noise is very smail.
It should be realized that additive white noise on Wiener
transform in minimum-phase conversion works as a bias on
the amplitude spectrum of minimum-phase version.

In addition, spiking deconvolution without white
noise was applied to both noise-added minimum-phase version
(kO.l) and noise-free minimum—-phase version (k0.0)' and the
correlation coefficient value (henceforth CC value) (see
Appendix C) between each deconvolution output and a spike at
the time origin was calculated. The CC values for the
deconvolution outputs are 0.9987 and 0.9999, respectively.

Since the minimum-phase equivalent must be one and
only one wavelet among wavelets which have the ‘same

amplitude spectrum, the noise-added version can not be the
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minimum-phase equivalent to the Klauder wavelet (k) because

the noise-free version is guaranteed to be the minimum-phase

equivalent.

Allpass Phase Compensator

As already mentioned in the former chapter, if W-L
spiking deconvolution without additive white noise is
applied to seismic data which contains a nonminimum—phase
filter element y in the signal path, the W-L deconvolution

1

operator does not invert y, but does generate ym‘ .

Consequently, this difference introduces phase distortion

8 where ey and Sm are the phase spectrum of y and Ym?®

9y- m?
respectively. Therefore, we must apply y‘l*ym, whose phase
.spectrum is Gm—ay, to the seismic data before or after the
W-L spiking deconvolution in order to compensate for the
phase distortion introduced by W-L spiking deconvolution.
This allpass phase compensator is, however, unstable because
of unstability of y_l, which is inverse of the
nonminimum-phase filter y. To bypass this problem, Fourmann
(1974) introduced the allpass phase compensator g, called
the Wapco operator. This allpass phase compensator is
easily obtained by convolving y with the Wiener transform of
ys that is,

g =Yy * Wly). (11)

The allpass phase compensator is stable and its phase
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spectrum is By—e which is the same as the phase distortion

m*
introduced by W-L spiking deconvolution. Folded g, that is
g(-t), has the desired phase spectrum em-ey and must be
convolved with seismfc data either before or after W-L
deconvolution. Because convolution of g(-t) with the
seismic data is_the same as crosscorrelation of g with the
seismic data, the process of allpass phase compensation is
summarized as follows:

1) Compute allpass phase compensator g = y * W(y),

2) Correlate g with the seismic data before or

after spiking deconvolution.

The combination é;gbess of the allpass phase
compensator and W-L spiking deconvolution is called
phase-compensated spiking deconvolution hereafter.

The following computer simulations using the Klauder
.wavelet, the Vaporchoc signature, and a watergun signature
show the deterministic phase-compensated spiking
deconvolution process.

The Klauder wavelet. (k) and its Wiener transform
(W(k)), which is the deterministic deconvolution operator,
without additive white noise are shown in figure 15.
Because the Klauder wavelet is zero phase, it has shifted by
its half length L/2 to produce causality. Figure 16 shows
W-L spiking deconvolution (gk) of k, which is the same as

the allpass phase compensator, and phase-compensated spiking
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deconvolution (¢k) obtained by taking autocorrelation of g.
¢k is sharp spike and is shifted by L/2 to position it at
the original time zero of the Klauder wavelet.

To the Vaporchoc signature (v) and the watergun
signature (w), the same process described above was applied.
Stable deconvolytion operators (W(v) and w(w)) are obtained
(fFig. 17 and 19) and sharp spikes (¢v and ¢,,) are generated
at the time origin (fig. 18 and 20).

In case of applying phase-compensated spiking
deconvolution to zero-phase seismic data, the result must be
delayed by L/2 in order to.shift the data to the original
time origin. Performance of phase-compensated spiking
deconvolution is estimated by computing the CC value between
a spike énd both the output of spiking deconvolution (gk,
Qv,and_gw ) and the output after pﬁase compensation (¢k. ¢V,
and ¢w). These values are listed in Table 1.

In general discussion about allpass phase compensator
g, whenever some additive white noise is added in design of
deconvolution operator by chance or unnecessarily or some
additive natural noise exists on the seismic data, the same
amount of additive white noise must be added to allpass
phase compensator g. Figure 21 shows the Klauder wavelet
(k) and its W-L deconvolution (dk) with 0.5 % additive white
noise. After applying phase compensation with and without

0.5 % additive white noise to the spiking-deconvolved
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Figure 21. Klauder wavelet k and spiking deconvolution dk

with 0.5 % additive white noise.
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Figure 22. Phase compensation of deconvolved-Klauder wavelet

d,_ with and without 0.5 % additive white noise (¢l, ¢0).
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Seismic source Klauder Vaporchoc Watergun
wavelet signature signature

CC value after

deconvolution 0.265 0.877 0.517

CC value after

phase compensation 0.947 0.999 0.934

Table 1. Correlation coefficient between spike and both
output of spiking deconvolution and output
after phase compensation for three types of

nonminimum-phase wavelets

Klauder wavelet, these results are superimposed and shown
_(¢l and ¢g) in figure 22. Although ¢, obtained adding 0.5 %
white noise is not so sharp spike which seems to be the
effect by 0.5 % white noise addition, it appears at the
correct location and its waveform is nearly symmetric. On
the other hand, ¢O which is generated without 0.5 % additive
white noise has phase-distorted waveform. This demonstrates
that the phase compensator should contain the same amount of
additive white noise as that of W-L deconvolution operator
in order to compensate for phase distortion introduced by

W-L deconvolution.
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Inverse Attenuation Filter

In order to correct the time variance of the seismic
data, which is introduced by time-variant earth’s
attenuation, the time-variant inverse attenuation filter
must be applied to the seismic data before deconvolution.
The time-variant attenuation filter and its inverse filter
are also obtained by making use of the Wiener transform, as
described by Hato and Sengbush (1986). This élgorithm is
based on attenuation being a minimum-phase filter.

Attenuation studies by McDonal et al (1958) show that
‘the linear law given by In[A(f;x)] = afx holds, where x is
the distance travelled and a is the characteristic
attenuation constant for earth material through which the
sgismic wave has travelled. Wuenschel (1965) used McDonal
et al’s experimental data and showed that the causal filter
.due to Futterman (1962) predicted accurately the far field
pulse waveform from the near field pulse waveform.

The -powerful validity of the Wiener transform for
generating minimum-phase attenuation filters using McDonal
et al’s data and their linear law is demonstrated here. The
far-field pulse waveform after 399.7 feet of vertical travel
is estimated by applying to the near-field pulse waveform
both minimum-phase attenuation filter calculated by Wiener
transform and zero-phase attenuation filter. The results

are superimposed on the observed far-field pulse waveform
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(fig. 23), and show that the minimum-phase attenuation
filter predicts the attenuated pulse waveform much more
precisely than does the zero-phase filter. The attenuation
constant that gave tﬁe best estimate, 1.40 x 10'5, was
obtained by finding the maximum CC value between observed
far-field pulseAwaveForm and predicted far-field pulse
waveform. The CC values were computed for attenuation

~5 (fig.

constants ranging from 0.88 X 107> to 1.88 x 10
24). McDonal’s estimate of the attenuation constant, 1.38 x
1072, is also indicated.

Phase velocity with respect to frequency V(f) was

computed by using

2mfX

' , (12)
Om(f) + 27F T

V(F) =

where x is distance traveled, T is difference in onset
times, and Bm(F) is minimum phase lag of the attenuation
filter. The result shown in figure 25 compares favorably
with those obtained by Wuenschel.

In the optimal deconvolution which will be described
in the next chapter, the algorithm for generating inverse
attenuation filter will be used. This algorithm is
summarized as follows:

1) Estimate the time-variant amplitude spectrum of the

attenuation filter [A(f3;1)] from the seismic data,
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2)

3)

4)

39

where time-variance is indicated by record time 1.
Compute the time-variant zero-phase attenuation
filter ao(t;t) using the inverse Fourier transform.

Compute the time-variant inverse of the minimum-

phase equivalent, am‘l, using the Wiener transform,

|

Apply the time-variant inverse to the data to

W(a

compensate for attenuation.
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OPTIMAL DECONVOLUTION

Optimal Deconvolution

According to fhe facts criticized in the former
chapter, in order to simplify and unify complicated problems
and then to build the oétimal deconvolution for all kinds of
séismic>data, a time-variant (written as TV) inverse
attenuation filter followed by phase-compensated spiking
deconvolution is proposed, which is called S-H deconvolution
hereafter. The processing steps are summarized as follows:

1) To suppress the noise as much as possible before
applying deconvolution,

2) To apply the TV inverse attenuation filter to the
seismic data in order to correct for time
variance,

3) To apply W-L spiking deconvolution without
additive white noise,

4) To apply the allpass phase compensator to the
spiking-deconvolved data in order to compensate
for phase distortion introduced by applying W-L
spiking deconvolution to nonminimum-phase data,

5) To apply the bandlimited desired seismic pulse to
phase-compensated spiking-deconvolved data.

The schematic diagram of S5-H deconvolution is shown in

figure 26.



T-3283 41

heai r al w

. N
i L -® « >

Figure 26. Schematic diagram of S5-H deconvolution.

lf?_ .

o

S . ) I /\\/\\/4 .

“oloo 0.05 | 0.10
Time in sec

0

(=

Figure 27. Resampled (2 msec to 4 msec) watergun signature.
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Convolutional Model

The seismic trace can be expressed as the following
convolutional model,

Ss=r*b*h=*i*a+n, (13)
where r is reflectivity, b is the known source wavelet
(nonminimum pha;e), h is due to ghosts and reverberations
(minimum phase), i is the instrument response
(nonminimum phase), a is TV earth’s attenuation filter
(minimum phase) and n is additive natural noise.

In general, a nonminimum-phase character of the
instrument response will be easily corrected to the minimum-
phase character because the instrument response is usually
well-known. In addition, minimum-phase filtering effects do
not introduce any problem in the W-L deconvolution if
additive noise is not applied. Therefore the convolutional
model of the seismic data can be simplified as follows:

s =r *b * a4+ n. (14)

At the first step, the TV inverse attenuation filter

1

a is applied to correct the time variance of the seismic

data,

N (15)

s*alz=pr»*p»r»gag=»a
At the second step, W-L spiking deconvolution is
applied, which converts all filters to the inverses of their

minimum—-phase equivalents,

-1 —_ * » -1 * -1 »* -1
s * a w =T b bm + n a bm . (16)
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At the third step, the allpass phase compensator g,
which is convolution of b with W(b), is correlated with the
seismic trace,

s * a-l » ; g=r*b* bm-l ¢ g
+n=alxp-lyg, (17)
where ¢ is crosscorrelation operation.

At the final step, the desired seismic pulse, the
d-filter, is convdlved with the seismic trace to bandlimit
the noise,

s*al*woggrd=rrd

+n*al» bm“ 6 g *d. (18)

Simulation Using Dense Reflqctivity and Watergun Signature

To study the performance of S-H deconvolution for
nonminimum-phase data, the computer simulation was dqﬁe
using a watergun signature, which is the SODERA 5$-80
watergun signature resampled by 4 msec (fig. 27), and a
dense reflectivity function (fig. 28), which is generated
from well data.

The desired seismic pulse was designed as 45 points
in length and 4 msec sampling and its freguency band is
trapezoidal specified by 5/6 and 60/65 Hz (fig. 29).

The amplitude spectrum of the attenuation filter is
assumed as exp(-afVt), where a is the attenuation constant,

1 is two-way travel time, V is an average velocity at time
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1, and f is frequency in Hertz. In this simulation, the
attenuation filter and inverse attenuation filter were
designed as 32 points with 4 msec sampling rate.

Three attenuaﬁion cases are considered, with 0.02,
0.05, and 0.1 used as the attenuation constant for
low attenuation, moderate attenuation, and high attenuation
case, respectively. Velocity V is always assumed 1.0 in
each attenuation case.

The amplitude spectrum of TV attenuation filter and
of TV inverse attenuation filter at two different reference
times (vt = 0.5 and 1.0) in<éa§e\of moderate attenuation are
shown in figure 30 and 31. A zero-phase attenuation filter
(ao), a minimum-phase attenuation filter (am), and a
minimum-phase inverse attenuation filter (am‘l) at two
different reference times (v = 0.5 and 1.0) in case of
moderate attenuation are shown in figure 32 and 33,
respectively.

When doing computer simulation, four different types
of deconvolution, spiking deconvolution (called SP
deconvolution in tables) with and without additive white
noise, gapped deconvolution (called GP deconvolution in
tables), and S-H deconvolution were applied to both natural
noise-free and 3 % natural noise-added dense watergun model
traces for the following attenuation cases: 1) low

attenuation, 2) moderate attenuation, and 3) high
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attenuation. Additive natural noise is obtained from a
pseudo-Gaussian random number generator and shown in figure
34. After deconvolution, the d-filter was applied and some
selected output traces will be displayed.

The desired output trace, which is the convolution of
reflectivity with d-filter, is shown in figure 35 and
remarkable reflection events are seen at 0.45 seconds and at
0.7 seconds (arrows mark El and E2).

In order to study the effect of various deconvolution
methods on TV attenuated data without applying the TV
inverse attgnpation filter, no deconvolution, which is
generated by applying only the d-filter, spiking
deconvolution without and with 5 % white noise, gapped
deconvolution with 10 points gap, and S-H deconvolution were
applied to the dense watergun model trace (r*b*a(t)), which
was TV attenuated by using moderate attenuation constant
(a=0.05), with and without 3 % additive natural noise. The
output of each deconvolution in the natural noise-free case
convolved with the d-filter is shown in figures 36 through
40. As can be seen in figure 40, output of S-H
deconvolution has relatively well-recovered reflection
events (El and E2). On the other hand, outputs of other
deconvolutions have large phase shift and severe waveform
distortion.

The same deconvolutions were also applied to TV
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Figure 36. No deconvolution output for TV attenuated dense

watergun model.
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Figure 37. Spiking deconvolution for TV attenuated

dense watergun model.
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Figure 38. Spiking deconvolution with 5 % additive white

noise for TV attenuated dense watergun model.
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Figure 39. Gapped deconvolution (gap = 10 points) for TV

attenuated dense watergun model.



T-3283 52

- E1
3 E2

\%

0.5

[\f\\])\V /\UAAJ\V&/;VMV’\WMVAVAVQV{\HAVAV V,\V/\vﬂvg{\éﬂ [\VAWAVA \/{)\f\é,\ /&VA\%\VA,ITO

Time in sec

0.0

-0.5

Figure 40. S~H deconvolution for TV attenuated dense

watergun model.

ATV aall Al an A y v
2 i VA i\va AVAV i VA I o AUAU ?A\G g VII\WVI\\I]
T [Time in sec

3

!

Figure 41. No deconvolution output for TV inverse-attenuated

dense watergun model.
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inverse—-attenuated dense watergun model trace
((r*b*a(1)*a"! (1)) with and without 3 % additive natural
noise. Each output in the natural noise-~-free case convolved
with the d-Filter~aré shown in figures 41 through 45. As in
the previous simulation, only 5-H deconvolution can recover
reflection events E1l and E2 for TV inverse-attenuated trace.

In order to show the superiority of S-H deconvolution
quantitatively, the CC value and relative time shift between
the desired output and each deconvolution output convolved
with d-filter were calculated for the following 4 different
types of inputs; with and wifhpqt TV inverse attenuation
filter, and with and without 3 % natural noise. These
results are tabulated on tables 2 through 5. The value
inside parenthesis indicates the relative time shift (in
samples) of the deconvolution output with respect to the
desired output.

In the natural noise-free case without TV inverse
attenuation filter (table 2), S-H deconvolution has the
largest CC values, 0.66 and 0.52, for moderate and high
attenuatién, respectively. For low attenuation, the CC
value of no deconvolution is 0.75 and largest, but its
output has large time shift (13); on the other hand, the CC
value of S-H deconvolution is 0.73 and it has no time shift.
In the 3 % natural noise-added case without TV inverse

attenuation filter (table 3), the same results are also
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Figure 42. Spiking deconvolution for TV inverse-attenuated

dense watergun model.
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Figure 43. Spiking deconvolution with 5 % noise for

TV inverse-attenuated dense watergun model.
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Figure 44. Gapped deconvolution (gap=10 points) for TV

inverse-attenuated dense watergun model.
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Attenuation 0.02 0.05 0.1
constant
No deconvolution 0.75 0.64 0.51°
(13) (14) (14)
SP deconvolution 0.50 0.45 0.35
(4) (4) (4)
SP deconvolution 0.61 - 0.45 0.34
with 5 % noise (13) (4) (14)
GP deconvolution 0.71 0.54 0.43
(gap=10 points) (13) (14) (14)
S-H deconvolution 0.71 0.66 0.52

Table 2. Correlation coefficient between desired output and
each deconvolution output without TV inverse attenuation

filter for dense watergun model without natural noise
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Attenuation 0.02 0.05 0.1
constant
No deconvolution 0.75 0.64 0.51
(13) (14) (14)
SP deconvolution 0.50 0.45 0.35
(4) (4) (4)
SP deconvolution 0.62 - 0.45 0.34
with 5 % noise (13) (14) (14)
GP deconvolution 0.71 0.54 0.43
(gap=10 points) (13) (14) (14)
S-H deconvolution 0.73 0.65 0.53

(0) (1) (1)

Table 3. Correlation coefficient between desired output
and each deconvolution without TV inverse attenuation

filter for dense watergun model with 3 % natural noise.
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Attenuation 0.02 0.05 0.1
constant
No deconvolution 0.75 0.76 0.75
(13) (13) (13)
SP deconvolution 0.56 0.56 0.56
(13) (13) (13)
SP deconvolution 0.67. 0.67 0.67
with 5 % noise (13) (13) (13)
GP deconvolution 0.72 0.72 0.71
(gap=10 points) (13) (13) (13)
S-H deconvolution 0.85 0.85 0.85
(0) (0) (0)

Table 4. Correlation coefficient between desired output and
each deconvolution output with TV inverse attenuation

filter for dense watergun model without natural noise.
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Attenuation 0.02 0.05 0.1
constant
No deconvolution 0.75 0.75 0.74
(13) (13) (13)
SP deconvolution 0.56 0.53 0.55
(13) (13) (13)
SP deconvolution 0.68 - 0.67 0.67
with 5 % noise (13) (13) (13)
GP deconvolution 0.72 0.72 0.71
(gap=10 points) (13) (13) (13)
S-H deconvolution 0.85 0.83 0.84

Table 5. Correlation coefficient between desired output and
each deconvolution output with TV inverse attenuation

filter for dense watergun model with 3 % natural noise.
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obtained. All other deconvolutions have large time shift.
Gapped deconvolution, which has been often used as
deconvolution of nonminimum-phase data, has small CC value
and large time shiFt'value (14) for moderate and high
attenuation cases.

In both the natural noise-free and noise-added cases,
inclusion of the TV inverse attenuation filter increases the
CC value of S-H deconvolution for each attenuation case; the
value is always greater than 0.83 and time shift is always
zero (table 4 and 5). The CC values of all other
deconvolutions also increase due to the TV inverse
attenuation filter, but they still have large phase
distortion.

From these results, it is realized that S-H
deconvolution always gives the best result even if time
variance in the data was not compensated by applying the TV

inverse attenuation filter.

Mismatched Attenuation Constant

In the former section, TV inverse attenuation filter
was always designed by using matched attenuation constant
used in TV attenuation filtering. However, it is difficult
to estimate the exact attenuation constant from the real
seismic data in practical seismology.

In this section, using the same data used in the
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dense watergun model, the same deconvolution processes were
applied to the TV attenuated trace (a=0.05) by changing the
attenuation constant (a=0.025 for underestimation case and
a=0.1 for overestimatfon case) in the TV inverse attenuation
filter. The CC value between the desired output and each
deconvolution output convolved with d-filter are presented
in table 6.

In the overestimation case, the CC value of S-H
deconvolution is 0.68 and is not largest but only S-H
deconvolution has no time shift. On the other hand, in the
underestimation case, S-H decbnyqlution has the largest CC
value, 0.73, and its time shift value is 0.

OQutputs of S-H deconvolution by overestimating and
underestimating the attenuation constant are shown in figure
46 and 48, respectively. In order to compare performance of
SH deconvolution visually, spiking deconvolution was applied
to the same overestimation and underestimation trace and
these output are shown in figure 47 and 49, respectively.

S-H deconvolution recovers event El relatively well
in the overestimation case, and recovers both events El and
E2 well in case of underestimation. On the other hand,
spiking deconvolution does not restore both events,
especially in the overestimation case. In the output of
spiking deconvolution in the underestimation case, some wave

packets can be recognized at times close to reflection
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.Attenuation constant

Inverse attenuation

constant

No deconvolution

SP deconvolution

SP deconvolution

with 5 % noise

GP deconvolution

(gap:lO points)

S-H deconvolution

0.72

(13)

0.68

(13)

62

0.025

0.51

(12)

0.59

(13)

0.60

(13)

Table 6. Correlation coefficient between desired output and

each deconvolution output for dense watergun model without

natural noise by underestimated and overestimated

attenuation constant.
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Figure 46. S-H deconvolution for dense watergun model by

overestimated attenuation constant.
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Figure 47. Spiking deconvolution for dense watergun.model

by overestimated attenuation constant.
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Figure 48. S-H deconvolution for dense watergun model by

underestimated attenuation constant.
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Figure 49. Spiking deconvolution for dense watergun model

by underestimated attenuation constant.
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events El and E2, but their waveforms are distorted or
oscillating.

From these results, S-H deconvolution still holds its
high performance even when using a mismatched attenuation

constant in TV inverse attenuation filtering.

Simulation Using Sparse Reflectivity and Klauder Wavelet

To study applicability of S-H deconvolution to other
type of source signature, the same deconvolutions used in
former simulation and R-J deconvolution were applied to
a TV attenuated Klauder wavelet seismic model consisting of
sparse reflectivity and Klauder wavelet with and without TV
inverse attenuation filter for the high attenuation case
(a=0.1). The CC value and relative time shift between
desired output and each deconvolution output convolved with
d-filter were calculated for each case and is listed in
table 7.

Desired output and output of no deconvolution
application are shown in figures 50 and 51, respectively.
Outputs of spiking deconvolution with and without 5 %
additive noise, gapped deconvolution, R-J deconvolution,
and S-H deconvolution are shown in figures 52 through 56.
Although S-H deconvolution and R-J deconvolution keep better
performance than that others in case of no application of

TV inverse attenuation filter, the second reflection event



T-3283 66

Inverse attenuation filter WITHOUT WITH
No deconvolution 0.63 0.99
(1) (0)

SP deconvolution 0.56 0.66
(-155) (-1)

SP deconvolution 0.57 0.81
with 5 % noise (0) (-1)
GP deconvolution 0.63 0.98
(gap=10 points) (1) (0)
R-J deconvolution 0.68 0.99
(0) (0)

S~-H deconvolution 0.68 0.99

Table 7. Correlation coefficient between desired output and
each deconvolution with and without TV inverse attenuation
filter for sparse Klauder wavelet model without natural

noise (High attenuation case)
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Figure 50. Desired output for sparse Klauder wavelet model.
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Figure 51. No deconvolution for TV attenuated sparse Klauder

wavelet model.
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Figure 52. Spiking deconvolution for TV attenuated sparse

Klauder wavelet model.
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Figure 53. Spiking deconvolution with 5 % additive white

noise for TV attenuated sparse Klauder wavelet model.
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Figure 54. Gapped deconvolution (gap=10 points) for TV

attenuated sparse Klauder wavelet model.
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Figure 56. S-H deconvolution for TV attenuated sparse Klauder

wavelet model.
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is not restored sufficiently.

On the other hand, by applying TV inverse attenuation
filter before deconvolution, all deconvolution performances,
including no deconvolution output (fig. 57) are nearly
perfect, except for spiking deconvolution (table 7). This
is due to the special characteristic of Klauder wavelets
whose amplitude spectra are originally whitened. That is to
say, within the specific frequency band of interest, this
input trace is already spectral whitened before applying
deconvolution. Furthermore, the d-filter which has flat
ampl itude spectrum does not distort amplitude spectrum of
trace if its frequency band is the same as that of Klauder
wavelet. From these facts, though S-H deconvolution does
work well for Klauder wavelet model, no deconvolution need
to be applied.

However, in practical seismology, there are many
factors, which distort well-whitened Klauder wavelet
spectrum, such as instrument response in land surveys and
multiples and ghosts in marine surveys. In such cases, S-H
deconvolution is needed and will hold its performance on

real seismic data.
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FUTURE WORK

Following topics can be considered to be future
studies:

1) more detailed simulation for various
nonminimum—-phase data, including Vibroseis wavelets, by
considering other filtering factors such as instrumental
response,

2) determination of exact attenuation constant from
real data by spectral analysis for exact compensation of
time variance,

3) more detailed quantitati?e investigation of the
influence of additive natural noise on the deconvolution
results,

4) application of S-H deconvolution to real seismic

data.



T-3283

CONCLUSIONS

1) Validity of the Wiener transform for
simplification and uhiFication of processing various types
of seismic data was proved.

2) Necessity of additive white noise on Wiener-Hopf
equation was denied by showing various results of data
processing without additive white noise.

3) S-H deconvolution, which is time-variant inverse
attenuation filtering followed by phase-compensated spiking
‘deconvolution, always has the highest performance for
nonminimum-phase data.

4) S-H deconvolution without time-variant inverse
attenuation filter also works.wel! for nonminimum—-phase
data.

5) S-H deconvolution has wide tolerance for
underestimation and overestimation of the attenuat.ios
constant for time-variant inverse attenuation filter.

6) S-H deconvolution is qualified as the
deconvolution technique which always gives the highest

performance when applied to any type seismic source data.
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APPENDIX A
HILBERT TRANSFORM

The Hilbert transform has been used as a minimum
~phase converter, Real and imaginary parts of Fourier
transforms of causal function are related by the Hilbert
transform. Furthermore, when the causal function has
minimum phase, its phase spectrum is connected with the
logarithm of the amplitude spectrum through the Hilbert
transform. Therefore, a minimum-phase equivalent to a
nonminimum-phase wavelet can be obtained by making use of
this relationship. However, unlike the minimum mean-square
error criterion with the Wiener transform, the Hilbert
transform does not guarantee optimality in minimum-phase
conversion.

Minimum phase conversion by the Hilbert transform
is as follows:

1. Compute the amplitude spectrum by Fourier transform,

2. Take the logarithm of the amplitude spectrum,

3. Generate the minimum-phase spectrum by applying the
Hilbert transform to the logarithmic amplitude spectrum
(this process can be carried out by circular convolution
of Hilbert operator with logarithmic amplitude spectrum),

4, Apply the inverse Fourier transform to amplitude spectrum
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and minimum-phase spectrum,

5. Extract real

part of

inverse Fourier-transformed datsa.
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APPENDIX B
Z-TRANSFORM

In digital processing, any stable function can be
expressed by Z—transform. Suppose e"jWt to be z, when the
function has minimum phase, all zeros of its Z-transform are
located outside the unft circle on Z plane. On the other
hand, some zeros or all zeros are located inside the unit
circle in case of mixed phase and maximum phase,
respectively. Therefore, if the exact coordinates of zeros
inside the unit circle are known, they can be moved outside
the unit circle by computing the conjugate reciprocal value
of each zero, and the exact minimum-phase equivalent can be
obtained. However, minimum-phase conversion by Z-transform
is not'practical due to extreme difficulty of finding roots
of high-order polynomial.

Jenkins and Traumb (1970) showed one numerical

technique for finding zeros of high-order polynomials.
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APPENDIX C
CORRELATION COEFFICIENT

The correlation coefficient is an estimator of
similarity between two functions. This value is defined as

follows;

. Mex(®gne)
gh ~ —
V@0 Pho)

where ¢g(0) and ¢h(0) are values at the origin of the

" ’

autocorrelation of functions g and h, which corresponds to
the total energy of function g and h, respectively, and
¢gh(t) is crosscorrelation of g and h.

-chh = 1 means the samé waveforms independent of
amplitude and time shift. When CCgh = -1, the waveforms are
the same and polarity is reversed. CCgh = 0 means
uncorrelated waveforms. The shift 14 @t which the absolute
value of ¢gh is the maximum is a measure of |inear phase

‘shift of h(t) with respect to g(t). So, the pair CCgh and

14 Measures the waveform similarity.
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APPENDIX D

PROGRAMES FOR COMPUTER SIMULATION FOR OTIMAL DECONOLUTION

HOPREP : PREPARATION STEP
HOAFIL : INVERSE ATTENUATION APPLICATION
HODCON : DECONVOLUTION STEP '

**************i&*#ﬁ‘***&**************Q***

C
C * PROGRAM : HOPREP *
C RRERRERERNERRRRERERERREREFEREREERERREREEERERERER
DIMENSION - DFILT(125),RREF(600),DREF(600),PULSE(250),
. SEIS(600),W1(1000),AFILT(512),TREF(600)
REAL NREF (600) ,KREF (600), IREF (600) ,KAREF (600) ,
. NLEVEL ,KLAUD (250)
CHARACTER*12 DATANI1,DATANZ,DATAN3,DATAN4,DATANS,DATANG
CHARACTER*1  ANS,Y,N
DATA Y/'Y’"/N/'N"/
o
C---- PARAMETER DECISION
C
IRMS =1
IFIRST =2
IMAX =3
IKLAUD =0
IDFILT =0
IRREF =
IDREF =
INREF =
IKREF =
IPULSE =0
[IREF =
IKAREF =
ISEIS =0
c )
C---- PROCESS SELECTION
C
1 WRITE(6,*) ‘Do you generate source wavelet (r) ? (Y/N)’
READ(5,10) ANS
10 FORMAT(AL)
IF (ANS.EQ.N) GOTO 10!
C
C---- SOURCE WAVELET GENERATION ---- k(t)
C
WRITE(6,*) *XXXXX SOURCE WAVELET k GENERATION XXXXX‘
WRITE(6,*) * Enter data file name to read’
‘READ(5,12) DATANI
WRITE(6,*) Enter data format (1/2)’

READ(5,*) IFORM
WRITE(6,*) Enter length in point’
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26
27
25

40

Cmmm—m
101

110

130
135

READ(5,*) LENGK
WRITE(6,*) ’ Enter sampling rate in sec’
READ(5,*) DELT

OPEN (UNIT=9,FILE=DATANI,STATUS="UNKNOWN’)
DO 25 I=1,LENGK

IF(IFORM.EQ.1) READ(9,26) KLAUD(I)
IF(IFORM.EQ.2) READ(9,27) KLAUD(I)
FORMAT( 1X,F15.7)

FORMAT(16X,F15.7)

CONTINUE

CLOSE (UNIT=9)

OPEN (UNIT=10,FILE="SOURCE.FIL",STATUS="UNKNOWN")
CALL NORM8S (KLAUD,LENGK,1,LENGK, IRMS)

DO 40 I=1,LENGK

T=(I-1)*DELT

WRITE(10,*) T,KLAUD(I)

CONTINUE

IKLAUD=1

CLOSE (UNIT=10)

PROCESS SELECTION

WRITE(6,*) ‘Do you generate reflectivity (r) 2 (Y/N)’
READ(5,110) ANS

FORMAT(Al)

IF(ANS.EQ.N) GOTO 201

REFLECTIVITY GENERATION ----- r(t)

WRITE(6,*) *XXXXX REFLECTIVITY r GENERATION XXXXX’

WRITE(6,*) Enter (DATA FILE NAME)’

READ(5,12) DATANI

FORMAT(A12)

WRITE(6,*) * Enter (ISTART,LENGTH,DELT,DATA FORMAT (1/2))°
READ(5,*) ISTART,LENG,DELT,IFORM

OPEN (UNIT=10,FILE=DATANI, STATUS="0LD")
OPEN (UNIT=11,FILE="RREF.FIL” ,STATUS="UNKNOWN")

IF(ISTART.EQ.!) GOTO 135

IEND=1START-1 ! This loop is dummy read
DO 130 I=1,IEND

READ(10,*) A,B

CONTINUE

CONTINUE

DO 140 I=1,LENG
[F(IFORM.EQ.1) READ(10,141) RREF(I)
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141
142
140

145

146

150

240

c
Cm=mn-
c

IF(IFORM.EQ.2) READ(10,142) RREF(I)
FORMAT( 1X,F15.7)
FORMAT(16X,F15.7)

CONTINUE

! Remove bias from reflectivity
SUM=0.0

DO 145 I=1,LENG.

SUM=SUM+RREF (1)

CONTINUE

AVE=SUM/FLOAT (LENG)

DO 146 I=1,LENG

RREF (1)=RREF(I)-AVE

CONT INUE

CALL NORM8S5 (RREF,LENG, 1,LENG, IRMS)

DO 150 I=1,LENG
T=(I-1)*DELT
WRITE(11,*) T,RREF (1)
CONTINUE

IRREF=1

CLOSE (UNIT=10)

CLOSE (UNIT=11)

PROCESS SELECTION

WRITE(6,*) ‘Do you generate d-filter (d) ? (Y/N)’
READ(5,210) ANS

FORMAT (A1)

IF (ANS.EQ.N) GOTO 301

DESIGN OF DESIRED FILTER ---- d(t)

WRITE(6,*) ‘XXXXX DESIRED PULSE d GENERATION XXXXX’
WRITE(6,%*) Enter (LENGD,DELT,F1,F2,F3,F4,1HAM)’
READ(5,*) LENGD,DELT,F1,F2,F3,F4,IHAM

CALL FILT86(DFILT,LENGD,DELT,F1,F2,F3,F4,1HAM,1)

OPEN (UNIT=10,FILE="DFILT.FIL’,STATUS="UNKNOWN")
CALL NORM8S(DFILT,LENGD,!,LENGD, IRMS)

DO 240 I=1,LENGD

T=(I-1)*DELT

WRITE(10,*) T,DFILT(I)

CONTINUE

IDFILT=1

CLOSE (UNIT=10)

PROCESS SELECTION
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301

310

331
330

336
335

340

WRITE(6,*) ‘Do you generate desired output trace (r*d) ? (Y/N)’
READ(5,310) ANS

FORMAT (A1)

IF(ANS.EQ.N) GOTO 401

DESIRED OUTPUT TRACE GENERATION ---- r(t)*d(t)

WRITE(6,*) *XXXXX DESIRED OUTPUT TRACE r*d GENERATION XXXXX’
WRITE(6,*) * Enter (LENG,DELT--REFLECTIVITY)’
READ(5,*) LENG,DELT

WRITE(6,*) * Enter (LENGD,DELTD--DESIRED FILTER)’
READ(5,*) LENGD,DELTD

OPEN (UNIT=10,FILE="RREF.FIL* ,STATUS="UNKNOWN")
OPEN (UNIT=11,FILE="DFILT.FIL’ ,STATUS="UNKNOWN’)
OPEN (UNIT=12,FILE="DREF.FIL* ,STATUS="UNKNOWN")

DO 330 I=1,LENG
READ(10,331) RREF(I)
FORMAT(16X,F15.7)
CONTINUE

DO 335 [=1,LENGD
READ(11,336) DFILT(I)
FORMAT(16X,F15.7)
CONTINUE

LENGDH=LENGD/2

LENGW =LENG + LENGD -1

CALL ZERO85(W1,1000)

CALL MOVESS5(RREF,WI1 (LENGDH+1),LENG)

CALL CORR85(W!,LENGW,DFILT,LENGD,DREF,LENG)
CALL NORM8S5(DREF,LENG, 1 ,LENG, IRMS)

DO 340 I=1,LENG
T=(I-1)*DELT
WRITE(12,*) T,DREF(I)
CONTINUE

IDREF=1

CLOSE (UNIT=10)

CLOSE (UNIT=11)

CLOSE (UNIT=12)

PROCESS SELECTION

WRITE(6,*) ‘Do you generate psuedo random noise (n) 2?2 (Y/N)’
READ(5,410) ANS

FORMAT (A1)

IF (ANS.EQ.N) GOTO 501
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Cmm—v
c

531
530

541
540

545

NATURAL NOISE SERIES GENERATION ---- n(t)

WRITE(6,*) "XXXXX NATURAL NOISE n GENERATION XXXXX’
WRITE(6,%*) * Enter (LENG,DELT)’
READ(5,*) LENG,DELT

CALL RANDSS (NREF ,LENG,0.0,1.0)
CALL NORM8S (NREF ,LENG, I ,LENG, IRMS)

OPEN (UNIT=10,FILE="NREF.FIL’,STATUS="UNKNOWN")
DO 430 I=1,LENG
T=(I1-1)*DELT

‘WRITE(10,*) T,NREF(I)

CONTINUE
INREF=1
CLOSE (UNIT=10)

PROCESS SELECTION

WRITE(6,*) ‘Do you generate r*k trace ? (Y/N)’
READ(5,510) ANS

FORMAT (A1)

I[F(ANS.EQ.N) GOTO 601

r(t)*k*t TRACE GENERATION

WRITE(6,*) "XXXXX r*k TRACE GENERATION XXXXX’

WRITE(6,*) * Enter (LENG,DELT) —-- REFLEVCTIVITY’
READ(5,*) LENG,DELT

WRITE(6,*) ’ Enter (LENGK) -- SOURCE WAVELET”
READ(5,*) LENGK

WRITE(6,*) ’ Enter source wavelet type (0:zero-phase)’

READ(5,*) ITYPE

OPEN (UNIT=10,FILE="RREF.FIL" ,STATUS="UNKNOWN")
OPEN (UNIT=11,FILE="SOURCE.FIL’,STATUS="UNKNOWN")
OPEN (UNIT=12,FILE="KREF.FIL” ,STATUS="UNKNOWN")

DO 530 I=1,LENG
READ(10,531) RREF(I)
FORMAT(16X,F15.7)
CONTINUE

DO 540 I=1,LENGK
READ(11,541) KLAUD(I)
FORMAT (16X,F15.7)
CONTINUE

IF(ITYPE.EQ.0) GOTO 545
IF(ITYPE.NE.O) GOTO 546
CONTINUE
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546

549

550

Cmmmm
601

605

C-—=-

LENGKH=LENGK/2

LENGW =LENG + LENGK -1
CALL ZERO85(W1,1000)
CALL MOVESS (RREF ,WI1 (LENGKH+1),LENG)

CALL CORR85(W!,LENGW,KLAUD,LENGK,KREF,LENG)

GOTO 549

CONTINUE

CALL CONVB5(RREF,LENG,KLAUD,LENGK,KREF,LENG)

CONTINUE

CALL NORM85(KREF,LENG, 1,LENG, IRMS)

DO 550 I=1,

LENG

T=(I-1)*DELT
WRITE(12,*) T,KREF(I)

CONTINUE
IKREF=1

CLOSE (UNIT=10)
CLOSE (UNIT=11)
CLOSE (UNIT=12)

PROCESS SELECTION

WRITE(6,*) ‘Do you convolve another pulse (i) with r*k ? (y/n)’

READ(5,605) ANS

FORMAT (A1)

IF(ANS.EQ.N) GOTO 701

NOISELESS i-convoived SEISMIC TRACE GENERATION -- r*k*i

WRITE(6,*)
WRITE(6,*)
READ(5,*)
WRITE(6,*)
READ(5,12)
WRITE(6,*)
READ(5,*)
WRITE(6,*)
READ(5,*)
WRITE(6,*)
READ(5,*)

’ XXXXX TRACE
’ Enter
LENG,DELT

’ Enter
DATANI

’ Enter
IFORM

’ Enter
IITYPE

’ Enter
LENGI

r*k*i GENERARION XXXXX*
(LENG,DELT(sec)) -- r*k TRACE’

file name of filter i’
data file (i) format (1/2)°
filter type (0:zero-phase)’

filter (i) length’

OPEN (UNIT= 9,FILE="KREF.FIL" ,STATUS="UNKNOWN’)

OPEN (UNIT=10,FILE=DATANI

» STATUS="UNKNOWN" )

OPEN (UNIT=11,FILE="IREF.FIL" ,STATUS="UNKNOWN’)
OPEN (UNIT=12,FILE="PULSE.FIL’,STATUS="UNKNOWN")

DO 630 I=1,

LENG

READ( 9,631) KREF(I)
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631
630

641
642
640

Cmmmm

651

670

680

FORMAT (16X,F15.7)

CONTINUE

DO 640 I=1,LENGI

IF(IFORM.EQ.1) READ(10,641) PULSE(I)
IF(IFORM.EQ.2) READ(10,642) PULSE(I)
FORMAT( 1X,F15.7)

FORMAT(16X,F15.7)

CONTINUE

CONVOLUTION OF PULSE (I) WITH KREF

IF(IITYPE.EQ.0) GOTO 651

IF(IITYPE.NE.O) GOTO 652

CONTINUE

LENGIH = LENGI/2

LENGIW = LENG+LENGI-1

CALL ZERO85(W1,1000)

CALL MOVES8S(KREF,WI1(LENGIH+1),LENG)

CALL CORRB5(W!1,LENGIW,PULSE,LENGI, IREF,LENG)
GOTO 660

CONTINUE
CALL CONV8S (KREF,LENG,PULSE,LENGI, IREF,LENG)

CONTINUE
CALL NORM8S (IREF,LENG,1,LENG, IRMS)

STORE DATA ON IREF.FIL & PULSE FORM ON PULSE.FIL

DO 670 I=1,LENG
T=(I-1)*DELT
WRITE(11,*) T,IREF(I)
CONTINUE

DO 680 I=1,LENGI
T=(I-1)*DELT
WRITE(12,*) T,PULSE(I)
CONTINUE

IIREF =1

IPULSE=1

CLOSE (UNIT= 9)

CLOSE (UNIT=10)

CLOSE (UNIT=11)

CLOSE (UNIT=12)

PROCESS SELECTION

CONTINUE

WRITE(6,*) ‘Do you generate attenuated trace (r*k*i*a) ? (Y/N)’

READ(5,710) ANS
FORMAT (A1)
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731
730

IF(ANS.EQ.N) GOTO 801
Attenuated SEISMIC TRACE GENERATION -- r(t)*k(t)*i(t)*a(t)
WRITE(6,*) “XXXXX Attenuated TRACE r*k*i*a GENERATION XXXXX’

WRITE(6,*) * Enter input type (l:r*k,2:r*k*i)’
READ(5,*) ITYPE.

WRITE(6,*) Enter (LENG,DELT) of input trace’
REAB(5,*) LENG,DELT

WRITE(6,*) * Enter length of attenuation filter’
READ(5,*) LENGA

WRITE(6,*) ~ Enter attenuation constant’
READ(5,*) ALFA

WRITE(6,*) * Enter velocity (constant)’
READ(5,*) VEL

WRITE(6,*) Enter reference time (tau) in sec’

READ(5,*) TAU
IF(TAU.EQ.0.0) ITV=1
IF(TAU.NE.O.0) ITV=0

IF(ITYPE.EQ.2) OPEN (UNIT=10,FILE="IREF.FIL" ,STATUS="UNKNOWN")
OPEN (UNIT=11,FILE="KAREF.FIL’,STATUS="UNKNOWN" )

DO 730 I=1,LENG
READ(10,731) TREF(I) ! store data in temporary file TREF

- FORMAT (16X,F15.7)

CONTINUE
APPLICATION OF ATTENUATION FILTER ACCORDING TO ITV

IF(ITV.EQ.0) GOTO 760

------- GENERATION OF ATTENUATION FILTER AT EACH TIME POINT

DG 750 I=1,LENG

TAU=(1-1)*DELT

CALL ATTEN86(AFILT,DELT,LENGA,TAU,VEL,ALFA,1)

CALL PCONV86(TREF,LENG,I,AFILT,LENGA,Z)

KAREF (1)=2Z

CONTINUE

GOTO 770 ,
------- GENERATION OF TIME-INVARIANT ATTENUATION FILTER & APPLY
CONTINUE ’

CALL ATTENS6(AFILT,DELT,LENGA,TAU,VEL,ALFA,1)

CALL CONV85(TREF,LENG,AFILT,LENGA,KAREF,LENG)

CONTINUE
CALL NORMBS(KAREF,LENG, 1,LENG, IRMS)

DO 790 I=1,LENG
T=(I-1)*DELT
WRITE(1L,*) T,KAREF(I)
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790  CONTINUE
C

IKAREF=1

831
830

840

850

e NoNe

CLOSE (UNIT=10)
CLOSE (UNIT=11)

PROCESS SELECTION

WRITE(6,*) ‘Do you generate seismic trace (r*k*i*a+N*n) ? (Y/N)’
READ(5,810) ANS

FORMAT (A1)

IF(ANS.EQ.N) GOTO 901

SEISMIC TRACE GENERATION ---- r(t)*k(t)*i(t)*a(t) + N*n(t)

WRITE(6,*) ’*XXXXX SEISMIC TRACE r*k*i*a+N*n GENERATION XXXXX’
WRITE(6,*) ’ Enter (LENG,DELT,NOISE LEVEL)’
READ(5,*) LENG,DELT,NLEVEL

OPEN (UNIT=10,FILE="KAREF.FIL’,STATUS="UNKNOWN’)
OPEN (UNIT=11,FILE="NREF.FIL" ,STATUS="UNKNOWN”)
OPEN (UNIT=12,FILE="SEIS.FIL" ,STATUS="UNKNOWN’)

DO 830 I[=1,LENG
READ(10,831) KAREF(I)
READ(11,831) NREF(I)
FORMAT(16X,F15.7)
CONTINUE

DO 840 1=1,LENG
SEIS(1)=KAREF (1) + NLEVEL*NREF(I)
CONTINUE

CALL NORM8S(SEIS,LENG,1,LENG,IRMS)

00 850 I=1,LENG
T=(I-1)*DELT
WRITE(12,*) T,SEIS(I)
CONTINUE

ISEIS=1

CLOSE (UNIT=10)

CLOSE (UNIT=11)

CLOSE (UNIT=12)

WRITE(6,*) "XXXXX HOPREP PROGRAM COMPLETE XXXXX’
STOP

END

tA XX RS RXR2AZRRRER2S 22 R 2R RZEER SR SED]

* PROGRAM : HOAFIL *

(22X 2RSSR R R 222 R X2 X2 R 2R 2R X222 2 2 2g sl
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DIMENSION DATAIN(1250),DATAOUT(1250) ,AFILT(513)
REAL IFILT(513)
CHARACTER*12 DATAN1,DATANZ,DATAN3
CHARACTER*1 ANS,N
DATA N/’N’/
C
C---- PARAMETER
c
IRMS =1
IFIRST=2
IMAX =3
IPRED =1
PNOIS =0.
C
C---- START MESSEGE
C

WRITE(6,*) “XXXXX HOAFIL START (INVERSE ATTENUATION FILTER) XXXXX’
1 WRITE(6,%*) * Enter input data file name’

READ(5,12) DATANI
12 FORMAT(A12)

WRITE(6,*) Enter output data file name’
READ(5,12) DATAN2
WRITE(6,*) Enter data length in points”’
READ(5,*) LENG
WRITE(6,*) Enter sampling rate in sec’
READ(5,*) DELT

C
WRITE(6,*) ’ Enter inverse attenuation filter length’
READ(5,*) LENGA
WRITE(6,*) Enter attenuation constant (positive)’
READ(5,*) ALFA
WRITE(6,*) Enter velocity (constant)’
READ(5,*) VEL

C
WRITE(6,*) * Enter reference time (tau) in sec’
READ(S5,*) TAU

C

C---- OPEN 11,12

C
OPEN (UNIT=10,FILE=DATANI » STATUS=" UNKNOWN‘ )
OPEN (UNIT=11,FILE=DATAN2 + STATUS="UNKNOWN" )

C

C---- READ DATA FROM FILES

C

DO 100 I=1,LENG
READ(10,101) DATAIN(I)

101 FORMAT(16X,F15.7)

100  CONTINUE

C-——---- CHECK TIME VARIANT OR TIME INVARIANT
IF(TAU.EQ.0.0) GOTO 200
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IF(TAU.NE.0.0) GOTO 210
C
C---- GENEARTION OF INVERSE ATTENUATION FILTER & APPLICATION
C
200 CONTINUE ! Time-variant inverse attenuation
DO 1000 I=1,LENG
TAU=(1-1)*DELT .
CALL ATTEN8S86(AFILT,DELT,LENGA,TAU,VEL,ALFA,1})
CALL WTRANS6(AFILT,IFILT,LENGA, IPRED,PNOIS)

CALL MNORM86 (AFILT,LENGA,IFILT,LENGA) ! Matched normalization

CALL PCONV86(DATAIN,LENG,I,IFILT,LENGA,Z)
DATAOUT(1)=Z
1000 CONTINUE

GOTO 1500
C
210 CONTINUE ! Time-invariant inverse attenuation
CALL ATTEN86(AFILT,DELT,LENGA,TAU,VEL,ALFA,!)
CALL WTRANS6(AFILT,IFILT,LENGA, IPRED,PNOIS)
CALL CONV8S(DATAIN,LENG, IFILT,LENGA,DATAOUT,LENG)
C
C---- NORMALIZATION AND DATA OUTPUT
C

1500 CONTINUE
CALL NORMB5(DATAOUT,LENG, 1,LENG, IRMS)
DO 2000 I=1,LENG
T=(1-1)*DELT
WRITE(11,*) T,DATAOUT(I)
2000 CONTINUE

C
C---- CLOSE FILES
C V
CLOSE (UNIT=10)
CLOSE (UNIT=11)
WRITE(6,*) "XXXXX HOAFIL COMPLETE XXXXX’
STOP
END
C BRI RN R RN NN RN RN RN NN
c * PROGRAM : HODCON *
c MMM N NI RN

DIMENSION SPDCON(1200) ,ZPDCON(1200) ,RJDCON(1200),
. SHDCON(1200),W1(2048),W2(2048),W3(2048),
. WAPCO(1024) ,WORK(2048)

DIMENSION DREF (1200),DFIL(600),SEIS(1200)

REAL KLAUD(600) ,NODCON(1200)

COMPLEX COMP(2048)

CHARACTER*12 DATANI,DATAN2,DATAN3,DATAN4,DATANS,DATANG
CHARACTER*1  ANS,Y,N

DATA Y/'Y’"/WN/'N"/

IRMS =1

IFIRST=2
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11
12

C----

51
50

IMAX =3
IDIST =1
IPULSE=0
START MESSAGE & SELECTION OF DECONVOLUTION PROCESS

WRITE(6,%) *XXXXX START HODCON XXXXX’

WRITE(6,*) Enter name of input data’

READ(5,12) DATANI

WRITE(6,*) * Enter name of desired output (DREF.FIL)’
READ(5,12) DATAN2

WRITE(6,*) ' Enter name of source wavelet (SOURCE.FIL)’
READ(5,12) DATAN3

WRITE(6,*) * Enter source wavelet type (0:zero-phase)’
READ(5,*) IZERO

WRITE(6,*) ’ Enter source wavelet length in points’
READ(5,*) LENGK

WRITE(6,*)" Enter name of desired seismic pulse(DFILT.FIL)’
READ(5,12) DATAN4

WRITE(6,*) * Enter length of desired seismic pulse’
READ(5,*) LENGD

WRITE(6,*) ’ Enter data length to treat’

READ(5,*) LENG

WRITE(6,%*) ’ Enter sampling rate in sec.’

READ(5,*) DELT

FORMAT(AL)

FORMAT(A12)

SOME INTERNAL PARAMETERS DEFINITION

LENGDH=LENGD/2
LENGDW=LENG+LENGD-1
LENGKH=LENGK/2
LENGKW=LENG+LENGK-1

OPEN DATA FILE & READ DATA

OPEN (UNIT=10,FILE=DATANI1,STATUS="UNKNOWN")
OPEN (UNIT=1!,FILE=DATANZ2,STATUS="UNKNOWN")
OPEN (UNIT=12,FILE=DATAN3,STATUS="UNKNOWN")
OPEN (UNIT=13,FILE=DATAN4,STATUS="UNKNOWN" )

DO 50 I=1,LENG
READ(10,51) SEIS(I)
READ(11,51) DREF(I)
FORMAT(16X,F15.7)
CONTINUE

DO 60 I=1,LENGK
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READ(12,61) KLAUD(I)

61 FORMAT(16X,F15.7)
60 CONTINUE

DO 70 I=1,LENGD

READ(13,71) DFIL(I)

71 FORMAT(16X,F15.7)
70 CONTINUE
C

C---- OPEN FILE AND READ DATA REQUIRED

C
2 WRITE(6,10)
10 FORMAT (1HO, *

o o ¢ o
L S )

READ(5,*) ITYPE

SELCT DECONVOLUTION TYPE® /

0:
I
4:
6:

NO DECONVOLUTION’/

PREDICTIVE DECONVOLUTION® /
RISTOW-JURCZYK DECONVOLUTIN’/
SENGBUSH-HATO DECONVOLUTION’ )

IF(ITYPE.EQ.0) GOTO 500
IF(ITYPE.EQ.1) GOTO 1000
IF(ITYPE.EQ.4) GOTO 4000
IF(ITYPE.EQ.6) GOTO 5000
WRITE(6,%*) ‘***** DECONVOLUTION TYPE ERROR TYPE (Y:RETRY,N:STOP)”

READ(5,100) ANS
100  FORMAT(AL)

IF (ANS.EQ.Y) GOTO 2

STOP

tZ 2 X2 RS XA R AR R X222 R R Ri 2 sl s 2 X X R 2 2 X R X

L2 A2 22X XS R R XR R X2 R At 2 X X R X 2

c
C NO DECONVOLUTION (JUST APPLY d-FILTER)
C
5

00 CONTINUE

WRITE(6,*) *XXXXX NO DECONVOLUTION START XXXXX’
Enter output data file name’

WRITE(6,*)
READ(5,12) DATANS

C---- APPLY d-FILTER
C

CALL ZERO8S5 (WORK,LENGDW)

CALL MOVESBS5(SE1S,WORK(LENGDH+1),LENG)

CALL CORR8S (WORK,LENGDW,DFIL,LENGD,NODCON,LENG)
CALL NORM85(NODCON,LENG, 1,LENG, IRMS)

c

C---- COMPUTE RMS AND CC VALUE

c
[FIX=0

CALL SIMLR86(CC,ISHIFT,CCFIX,IFIX,NODCON,LENG,DREF,LENG)

CALL DEVI85(DEVI,NODCON,DREF,LENG)

WRITE(6,*) *
WRITE(6,*) -

RMS ERROR
CC VALUE

" yDEVI

"4CC," ISHIFT = 7, ISHIFT
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OPEN (UNIT=15,FILE=DATAN5,STATUS="UNKNOWN")

T-3283
C---- STORE DATA ON #15
c

DO 530 I=1,LENG

T=(I-1)*DELT
WRITE(15,*) T,NODCON(I)

CONTINUE

CLOSE (UNIT=15)

END

WRITE(6,*)
READ(5,12)

‘- Do you continue to work 2 (Y/N)’

ANS

IF(ANS.EQ.Y) GOTO 2

GOTO 9000

BRRRRRRRERNRNRERRERRERN RN IN NN NRRNR

PREDICTIVE DECONVOLUTION

L2222 222222222222 22 R s R id t 2 X2 2 2 RS

CONTINUE
WRITE(6,%*)
WRITE(6,*)
READ(5,12)
WRITE(6,*)
READ(5,*)
WRITE(6,*)
READ(5,*)
WRITE(6,*)
READ(5,*)
WRITE(6,*)
READ(5,*)
WRITE(6,*)
READ(5,*)

"XXXXX PREDICTIVE DECONVOLUTION START XXXXX’

’ Enter
DATANS
! Enter
I[START

’

LWIN

’

Enter

Enter
NOP

4

IPRED

’

PNOIS

Enter

Enter

PNOIS=PNOIS/100.

output data file name’

design gate start point’
design gate length’

W-L equation order’

prediction points (l: spiking)’

additive white noise level (%)’

DECONVOLUTION APPLICATION

CALL PDCON86(SE1S,SPDCON,LENG, ISTART,LWIN,NOP, IPRED,PNOIS)

APPLY d-FILTER

CALL ZERO85(WORK,LENGDW)

CALL MOVEB8S(SPDCON, WORK(LENGDH+1),LENG)
CALL CORR8S5 (WORK,LENGDW,DFIL,LENGD,SPDCON,LENG)
CALL NORM8S5 (SPDCON,LENG, 1,LENG, IRMS)

COMPUTE RMS ERROR AND CC VALUE

IFIX=0

CALL SIMLR86(CC, ISHIFT,CCFIX,IFIX,SPDCON,LENG,DREF,LENG)
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CALL DEVI85(DEVI,SPDCON,DREF,LENG)

WRITE(6,*) ’ RMS ERROR = ‘,DEVI
WRITE(6,*) CC VALUE = ’,CC,” ISHIFT = *,ISHIFT
C
C---- WRITE SPIKING DECONVOLVED DATA ON UNIT-15
C
OPEN (UNIT=15,FILE=DATANS,STATUS="UNKNOWN" )
DO 1240 I=1,LENG
T=(I-1)*DELT
WRITE(15,*) T,SPDCON(I)
1240 CONTINUE
CLOSE (UNIT=15)
C
C---- END
C
WRITE(6,%) * Do you continue to work ? (Y/N)’
READ(5,12) ANS
IF(ANS.EQ.Y) GOTO 2
GOTO 9000
C [ZZ X2 XXX XREXSZSRRZES 2R X2 2 XX 2 X
C R-J DECONVOLUTION |
C (T2 RIS AEEZZEE RS R R R R R 2
4000 CONTINUE
IF(IZERO.EQ.O0) GOTO 4010
WRITE(6,%*) * Source is not zero-phase, try again’
GOTO 2
4010 CONTINUE
WRITE(6,%*) ‘XXXXX START R-J or G-L DECONVOLUTION START XXXXX’
WRITE(6,*) * Enter output data file name’
READ(5,12) DATANS
WRITE(6,*) ’ Enter noise level (%) on deconvolution’
READ(5,*) PNOISI
WRITE(6,*) * Enter noise level (%) on phase compensator’
READ(5,*) PNOIS2
WRITE(6,*) * Enter design gate start point’
READ(5,*) ISTART
WRITE(6,*) ~ Enter design gate length’
READ(5,*) LWIN
WRITE(6,*) Enter W-L equation order’
READ(5,*) NOP
C :
C---- DECONVOLUTION (R-J) -==-- 1-ST STEP (SPIKING DECONVOLUTION)
C
IPRED=1
PNOIS1=PNOIS1/100.
PNOIS2=PNOIS2/100. .
CALL PDCONB6(SEIS,W!,LENG, 1START,LWIN,NOP, IPRED,PNOISI)
C

C---- GENERATE MINI-PHASE EQUIVALENT OF KLAUDER WAVELET-----

C

2-ND STEP
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CALL WTRAN8B6(KLAUD,W2,LENGK, IDIST,PNOIS2)
CALL WTRANB6(W2  ,W3,LENGK,IDIST,PNOISZ)

C---- COVOLUTION OF MINI-PHASE EQUIVALENT WITH SPIKING DECONVOLVED DATA
CALL CONV85(WI,LENG,W3,LENGK,RJDCON,LENG)
C---- WRITE RJDCON ON UNIT-15

OPEN (UNIT=15,FILE=DATANS5,STATUS="UNKNOWN’)
CALL NORM85 (RJDCON,LENG, I ,LENG, IRMS)
DO 4400 I=1,LENG
T=(I1-1)*DELT
WRITE(15,*) T,RJDCON(I)
4400 CONTINUE
CLOSE (UNIT=15)

C
C---- APPLY d-FILTER AND COMPUTE RMS ERROR, CC VALUE
C
CALL ZERO85(WORK,LENGDW)
CALL MOVES8S (RJDCON,WORK (LENGDH+1) ,LENG)
CALL CORR85(WORK,LENGDW,DFIL,LENGD,RJDCON,LENG)
CALL NORM8S (RJUDCON,LENG, ! ,LENG, IRMS)
C
C---- COMPUTE RMS ERROR AND CC VALUE
C
[FIX=0
CALL SIMLR86(CC,ISHIFT,CCFIX,IFIX,RJDCON,LENG,DREF,LENG)
CALL DEVI85(DEVI,RJUDCON,DREF,LENG)
c )
WRITE(6,%*) ’ RMS ERROR = 7,DEVI
WRITE(6,*) CC VALUE = ’,CC,” ISHIFT = *,ISHIFT
c .
C---~- END
C i
WRITE(6,%) ’ Do you continue to work 2 (Y)’
READ(5,12) ANS
IF(ANS.EQ.Y) GOTO 2
GOTO 9000
C (&AL 22 2RSSR RS2 222222 X2 XXX 22 2 2 2 3
C SH- DECONVOLUTION
C I I I I I I I I IE I I I I IE I 6 I IE I I I IE I I I I I I I I I I I N NN
5000 CONTINUE
WRITE(6,*) “XXXXX START S-H DECONVOLUTION XXXXX‘
WRITE(6,%*) ~ Enter output data file name’
READ(5,12) DATANS
WRITE(6,*) Enter design gate start point’

READ(5,*) ISTART
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WRITE(6,*) * Enter design gate length’

READ(5,*) LWIN

WRITE(6,*) ’ Enter W-L equation order’

READ(5,*) NOP

WRITE(6,*) ' Enter noise level (%) on phase compensator’

READ(5,*) PNOISE
SPIKING DECONVOLUTION STAGE

IPRED =1

PNO1SD=0.0

CALL PDCON86(SEIS,W1,LENG, ISTART,LWIN,NOP, IPRED,PNOISD)
PHASE COMPENSATOR GENERATION

LENGW =LENG+LENGKH
LENGF =LENG+LENGK-1

PNOISE=PNOISE/100.

CALL WTRAN86 (KLAUD,WORK,LENGK, IPRED,PNOISE)

CALL CONV85(KLAUD,LENGK,WORK,LENGK,WAPCO,LENGK)

APPLICATION OF PHASE COMPENSATOR BY CONSIDERING SOURCE TYPE

IF(IZERO.EQ.0) GOTO 5201
IF(IZERO.NE.O) GOTO 5202

5201 CONTINUE

C
Cm—mm
c

CALL ZEROBS (WORK,LENGKW)

CALL MOVES5(W1,WORK(LENGKH+1),LENG)

CALL CORRS85 (WORK,LENGKW,WAPCO,LENGK,SHDCON,LENG)
GOTO 5300

CONTINUE

CALL ZERO8S5 (WORK,LENGKW)

CALL MOVESB5(W1,WORK,LENG)

CALL CORR85(WORK,LENGKW,WAPCO,LENGK,SHDCON,LENG)

CONTINUE
CALL NORM8S5 (SHDCON,LENG, 1,LENG, IRMS)

APPLY d-FILTER

CALL ZERO8S (WORK,LENGDW)

CALL MOVE8S5 (SHDCON,WORK (LENGDH+1) ,LENG)

CALL CORR85 (WORK,LENGDW,DF IL,LENGD, SHDCON,LENG)
CALL NORM85 (SHDCON,LENG, 1,LENG, IRMS)

WRITE ON 15
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OPEN (UNIT=15,FILE=DATANS5,STATUS="UNKNOWN’)
DO 5400 I=1,LENG

T=(I-1)*DELT

WRITE(15,*) T,SHDCON(I)

CONTINUE

CLOSE (UNIT=15)

RMS ERROR COMPUTE
IFIX=0

CALL SIMLR86(CC,ISHIFT,CCFIX,IFIX,SHDCON,LENG,DREF,LENG)
CALL DEVI8BS(DEVI,SHDCON,DREF,LENG)

WRITE(6,*) ’ RMS ERROR = ’,DEVI

WRITE(6,*) CC VALUE = ’,CC,’ ISHIFT = ’,ISHIFT
END

WRITE(6,*) 4 Do you continue to work ? (Y)’

READ(5,12) ANS
IF(ANS.EQ.Y) GOTO 2
CONTINUE

COMPLETION

CLOSE (UNIT=10)

CLOSE (UNIT=11)

CLOSE (UNIT=12)

CLOSE (UNIT=13) :

WRITE(6,*) * Do you want to continue this program 7 (Y)’
READ(5,12) ANS

IF(ANS.EQ.Y) GOTO 1

CLOSE (UNIT=99)

WRITE(6,*) ’“XXXXX HODCON PROGRAM COMPLETE XXXXX’
STOP

END



