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ABSTRACT

Slope estimation is a critical step for many post-processing seismic image techniques. Ac-

curate slope images allow for automatic interpretation techniques to e�ectively and e�ciently

follow seismic horizons, and identify structurally discontinuous features with little to no in-

formation from the interpreter. However, accurately estimating slope, while simultaneously

mitigating slope discontinuities caused by noise, is di�cult.

The structure tensor method estimates slope from local structure within ellipsoids whose

half-widths are speci�ed by the user. This method performs well for seismic images with

highly variable structure and computes slope fastest amongthree slope estimation methods

analyzed in this thesis. Although, no slope derivative constraints exist, which can produce

slope discontinuities that are caused by noise. The plane-wave destructor method solves a

non-linear optimization problem using the Gauss-Newton method to estimate slope. This

method has an optional input parameter for initial slope, which can contain valuable in-

formation. Yet, the smoothing regularization is performedon each slope perturbation and

not the slope, thereby allowing slope discontinuities fromthe initial slope image to persist

through iterations. The smooth dynamic warping method, proposed in this thesis, estimates

slope by �nding a globally optimal shift solution. This method is the �rst slope estima-

tion method to constrain slope derivatives, preventing slope discontinuities caused by noise.

However, some parameter choices may signi�cantly increase computational time or memory

requirements.

Through qualitative and quantitative analyses of 2D and 3D real and synthetic seismic

images, I identify the advantages and disadvantages between three slope estimation meth-

ods.
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CHAPTER 1

INTRODUCTION

Estimating seismic reection slopes is an integral step formany seismic image techniques.

Slope estimation is the process of identifying the same seismic reection events between

adjacent traces. An accurate slope image provides structural information about horizons and

the location of faults and unconformities; however, with increasingly complex seismic imaging

challenges, slope estimation has become more di�cult. Processes, like those described by

Luo and Hale (2012) and Wu and Hale (2013), use slope estimates to automatically extract

horizons from seismic images. Noise and poorly resolved reectors in an image can produce

unreliable slope estimates, which may require additional information from the interpreter

(Wu and Hale, 2013).

Ideally, estimated slope images are smooth and contain structural discontinuities (e.g.,

faults and unconformities). Accurate slope estimates have been used to enhance seismic

structure (Morelatto and Biloti, 2013) or to help smooth data while retaining the integrity

of structural features (Hale, 2009). Smooth slope images canprovide better slope estimates in

noisy images, but are less e�ective at accurately estimating discontinuities caused by seismic

structure. A less smooth image better shows the locations offaults and unconformities, but

is more a�ected by noise.

Novel techniques, such as those described by Fomel (2002) andHale (2009), use plane-

wave destructors and structure tensors, respectively, to estimate slopes. Both methods

employ smoothing, but by not explicitly constraining the rate at which slope estimates

may vary in an image, poorly resolved image regions can produce slope discontinuities.

This should not be mistaken for slope discontinuities caused by discontinuous structures

in the image. A successful slope estimation method accurately estimates slope and slope

discontinuities.
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I propose a third method for slope estimation using dynamic warping. Dynamic time

warping (DTW) is a technique developed by Sakoe and Chiba (1978) to optimally align two

time signals. Dynamic warping has diverse applications in geophysics (Anderson and Gaby,

1983; Hale, 2012; Mu~noz and Hale, 2012; Hale and Compton, 2013;Compton and Hale, 2013;

Wheeler, 2015). The appeal of DTW is it produces a globally optimal solution; however, due

to the NP-complete, or computationally intractable, natureof extending DTW to images

(Hale, 2012), past work is problem speci�c. I propose a more adaptable, generic modi�cation

to smooth dynamic warping and show its application to slope estimation.

A common term used to describe the angle formed by the plane ofa rock bed relative to

the horizontal, is dip. Figure 1.1 is a diagram that illustrates dip for an example application

where dip is used to track a horizon. In 2D, slope estimation produces one slope image. For

the 3D case, slope estimation produces two slope volumes to properly describe the seismic

structure. The two volumes can either describe dip and azimuth or inline and crossline slope.

For simplicity, I use inline and crossline slope with units of samples per trace for each. More

speci�cally, the relationship between dip� with units of (degrees) and slopep is � = tan(p).

Figure 1.1: A small subset of a near-o�set Gulf of Mexico seismic image. The red line is an
interpreted horizon, the yellow line represents the horizontal axis, and the cyan curve shows
the geologic layer's deviation from horizontal, otherwiseknown as dip� . The green ellipse
highlights a less resolved area of the image for which slope estimation will be di�cult.
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Figure 1.2: Three synthetic seismic images with constant negative slope (a), constant zero
slope (b), and constant positive slope (c).

Figure 1.2 aids one in intuitively identifying the correct slope sign for a particular seismic

feature. Cool colors correspond to negative slope with features trending from lower left to

upper right (Figure 1.2a) and warm colors correspond to positive slope with features trending

from upper left to lower right (Figure 1.2c).

The ability to intuitively distinguish between positive and negative slopes becomes espe-

cially useful when looking at 3D images. Figure 1.3 highlights the distinction between inline

and crossline slope estimates. The upper left panel of Figures 1.3a and 1.3b shows the equiv-

alent of a time slice for a unitless synthetic seismic volume. The bottom left panel shows

an inline from the volume, the bottom right panel shows a crossline from the volume, and

the upper right panel shows a 3D representation of the volumefor one inline, one crossline,

and one \time" slice. Inline slope estimation computes slopes for structure in the inline

direction. From the intuition established using Figure 1.2,one would expect the color of the

crossline panel in Figure 1.3a to be blue; however, inline slope only considers the slope in

the inline direction, therefore one should only analyze slope estimates in that direction. The

same holds true for the crossline direction. The red boxes inFigures 1.3a and 1.3b highlight

the words inline and crossline, respectively, to easily distinguish inline and crossline slope

estimates.
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Figure 1.3: Inline slope estimates (a) and crossline slope estimates (b) shown for a synthetic
seismic volume with constant, positive inline slopes and constant, negative crossline slopes.

In this thesis, I perform qualitative and quantitative analyses between two widely used

slope estimation methods and a third method I propose. Chapter 2 provides an overview of

the plane-wave destructor method proposed by Fomel (2002) and the structure tensor method

proposed by Hale (2009). I analyze the e�ects of comparable parameters and address the

shortcomings of each method. Chapter 3 describes a smooth dynamic warping method for

slope estimation with brief comparisons to the plane-wave destructor and structure tensor

methods, addressing the shortcomings described in Chapter2. In Chapter 4, qualitative and

quantitative analyses of each method are performed.
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CHAPTER 2

CURRENT METHODS FOR SLOPE ESTIMATION

Smooth slope images are common in slope estimation. A smoothslope image provides

more insight than a rough image that may contain large sampleto sample variations in

slope estimates. For example, Figures 2.1a and 2.4a contain many slope estimates that vary

rapidly from sample to sample, providing interpreters little to no structural information.

Moreover, such variations can cause discontinuities in slope estimates, which in turn cause

major problems with the processes that use these estimates.The moderately smoothed

slope images, shown in Figures 2.1b and 2.4b, provide interpreters with more structural

information than their rough slope image counterparts and would be better candidates for

use in other image processes.

While smoothness makes slope estimation more robust to noise, there is a limit to how

smooth the resulting image should be. Smoother images can provide better slope estimates

in the presence of noise but are less e�ective at estimating slope discontinuities caused by

features such as faults and unconformities. This is apparent in Figures 2.1c and 2.4c where

slope estimates are smooth across the interpreted faults represented by the red lines. While

noise-induced slope discontinuities are undesirable, discontinuities caused by discontinuous

seismic features are desirable. The question then becomes,How can one estimate smooth

slopes while also estimating discontinuous slopes that arecaused by geologic structure?

In this chapter, I introduce the most common slope estimation methods used in industry

and their approaches to slope estimation. I then describe the smoothing aspects and the

analogous parameters of each method that control smoothing. Finally, I discuss the short-

comings of each method which are addressed in Chapter 3 with my smooth dynamic warping

method for slope estimation.
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Figure 2.1: Slope estimates computed using the structure tensor method for crossline 73 from
the Teapot Dome seismic dataset. Slope estimates are shown for no smoothing (a), moderate
smoothing (b), and excessive smoothing (c). Smoothing values used for this method are
comparable to those used in Figure 2.4.

2.1 Structure tensor

The coherent structure of seismic images make them good candidates for structure ten-

sors (van Vliet and Verbeek, 1995; Weickert, 1999; Fehmers and H•ocker, 2003), which are

commonly used to analyze the orientation of image features.

Hale (2009) describes a method for estimating slope using structure tensors, which are

generated by smoothing outer products of image gradients. The �rst step is to generate a

matrix T for each sample in the image. The dimensions of the matrix correspond to the

dimensions of the input image. For a 2D seismic image,T is a 2� 2 symmetric positive-

semide�nite matrix:

T =
�
t11 t12

t12 t22

�
: (2.1)

An eigen-decomposition

T = � uuu T + � vvv T (2.2)

is performed to obtain eigenvectors perpendicular and parallel to linear features in the image,

where u is the perpendicular eigenvector andv is the parallel eigenvector. Eigenvectorsu

and v are orthogonal to each other. Here,� u and � v are the eigenvalues corresponding to

6



u and v, respectively, and by convention, are labeled so that� u � � v � 0. Slope valuesp

can be estimated from the components of either vector but in practice, the eigenvectoru

is used. Slopes are estimated by taking the negative quotient between the second and �rst

component ofu:

p = �
u2

u1
: (2.3)

In 3D, each structure tensorT is a 3� 3 symmetric positive-semide�nite matrix:

T =

2

4
t11 t12 t13

t12 t22 t23

t13 t23 t33

3

5 ; (2.4)

whose eigen-decomposition

T = � uuu T + � vvv T + � www T (2.5)

obtains eigenvectorsu, v , and w with corresponding eigenvalues� u, � v, and � w . Again,

eigenvalues are labeled so that� u � � v � � w � 0.

Slope estimation in 3D produces two slope volumes: slopes estimated in the crossline

direction p2 and slopes estimated in the inline directionp3. Eigenvector u now has three

components and slopesp2 and p3 are computed as

p2 = �
u2

u1
(2.6)

and

p3 = �
u3

u1
: (2.7)

The implementation of the structure tensor method allows the user to specify three pa-

rameters for 2D slope estimation: the parameterpmax controls the maximum slope, positive

or negative, that can be assigned to an image sample, and the parameters� 1 and � 2 rep-

resent the half-widths of Gaussian smoothing �lters. In 3D,a fourth parameter � 3 controls

the half-width, and thus smoothing, in the third dimension.Subscripts 2 and 3 correspond

to the horizontal dimensions and subscript 1 to the verticaldimension. Figures 2.2 and 2.3
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Figure 2.2: Structure tensors plotted for a subset of image samples overlaid on a 2D crossline
from the Teapot Dome dataset.

Figure 2.3: Structure tensors plotted for a subset of image samples overlaid on a 3D volume
from the Teapot Dome dataset.
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show 2D and 3D structure tensors computed for real seismic images, respectively. Structure

tensors are represented as ellipses in 2D and appear as smallline segments where structural

orientation is easily determined. The tensors that appear more circular correspond to regions

of the image where structural orientation is more di�cult to determine. The more circular

structure tensors can be seen near the fault and in the noisy region at the bottom of Figure

2.2.

Similarly, structure tensors are represented as ellipsoids in 3D. As structural orientation

becomes more di�cult to distinguish, the ellipsoid shape changes from elongate to spherical.

This is apparent in the ellipsoids in more coherent regions near the top of Figure 2.3 versus

more noisy regions near the bottom of the image.

2.2 Plane-wave destructor

The application of plane-wave destructors characterizes seismic images by local plane

waves (Fomel, 2002; Claerbout, 2004). A slope estimation method using plane-wave destruc-

tors is developed by Fomel (2002) and can be described as a prediction error �lter. The

method estimates slopes by solving the Gauss-Newton minimization problem

C
0
(p0)� pd + C(p0)d � 0 (2.8)

Figure 2.4: Slope estimates computed using the plane-wave destructor method for crossline
73 from the Teapot Dome seismic dataset. Slope estimates areshown for no smoothing
(a), moderate smoothing (b), and excessive smoothing (c). Smoothing values used for this
method are comparable to those used in Figure 2.1.
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for slope updates by minimizing the sum of squared plane-wave destruction outputs. In

equation 2.8, C(p) represents the convolution of the data with a plane-wave destruction

�lter, p0 the initial slope estimate, � p the slope update, andd the data. As mentioned

before, the resulting slope images can contain highly varying slope values from sample to

sample. Fomel includes a regularization term

"D � p � 0 (2.9)

that minimizes the derivatives of the slope update �p, where" is the regularization parameter

and D is the gradient operator. The parameter" determines the weight for the minimization

goals described by equations 2.8 and 2.9.

The equations above adequately describe slope estimation in 2D and 3D. The goal de-

scribed by equation 2.8 changes slightly from estimating slopes of locallylinear features in

the 2D case to estimating locallyplanar features in the 3D case.

The current implementation of the plane-wave destructor for slope estimation can be

found in the Madagascar software package. It is important tonote that Fomel's imple-

mentation is more recent than what was presented in his 2002 paper. The implementation

contains many more parameters as compared to the structure tensor method; however to

make the analysis of each method more comparable, this thesis only focuses on analogous

parameters between methods. The programsfdip , contained in the Madagascar software

package, has parameterspmax and pmin that control the maximum and minimum slope that

can be assigned to an image sample, and parametersr1 and r2 represent the smoothing

radii. In 3D, the parameter r3 controls the radius, and thus smoothing, in the third dimen-

sion. Again, subscripts 2 and 3 correspond to the horizontal dimensions and subscript 1

to the vertical dimension. The regularization parameter" is controlled by these smoothing

parameters.
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2.3 Shortcomings

Discontinuities are caused by the lack of constraints on thederivatives of slope. While

both methods take measures to prevent discontinuities caused by noise, neither method

explicitly constrains the derivatives of slope estimates.

If one were to use the structure tensor method for image samples with easily distinguish-

able structure, the eigen-decomposition (equations 2.2 and 2.5) would produce eigenvectors

whose corresponding largest and smallest eigenvalues are far apart. The result makes the

labels perpendicular and parallel eigenvector meaningful. However, the structure tensor

method imposes no constraints on the derivatives of estimated slopes. For image samples

with less or no distinguishable structure, the eigen-decomposition would produce eigenvec-

tors whose corresponding largest and smallest eigenvaluesare similar or equal. As described

in Fehmers and H•ocker (2003), no preferred orientation exists for this case. The result makes

the labels perpendicular and parallel arbitrary because any vector can describe the orien-

tation. Furthermore, discontinuities in the slope image can result. Figure 2.5 shows slope

estimates computed for the structure tensor method with slope discontinuities apparent near

the bottom right of the image.

To prevent discontinuities, the plane-wave destructor method smoothes slope estimates

with regularization (equation 2.9). While this is comparableto imposing constraints on

the derivatives of slopes, it is not equivalent. Smoothing with regularization assumes that

the sum of many smooth images is smooth, which may not be the case. Additionally, the

regularization term only smoothes the slope updates �p and not the slopep; hence if the

initial slope image p0 contains discontinuities, they will remain in the �nal slope image.

Figure 2.6 shows an example where slope estimates computed for the plane-wave destructor

method contain slope discontinuities caused by noise. The initial slope image is the output

from the structure tensor method, which contains slope discontinuities. From Figures 2.5

and 2.6, it is obvious the same slope discontinuities exist at the same image locations.
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Figure 2.5: Slope estimates computed using the structure tensor method for a synthetic
seismic image with N/S=1.0.

Figure 2.6: Slope estimates computed using the plane-wave destructor method for a synthetic
seismic image with N/S=1.0.
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CHAPTER 3

SLOPE ESTIMATION USING SMOOTH DYNAMIC WARPING

Dynamic time warping (DTW) �nds shifts that optimally align f eatures between two

time signals (M•uller, 2007; Sakoe and Chiba, 1978). Constraints imposed on the rate at

which these shifts may vary in time allow accurate shift estimation in the presence of noise.

Hale (2012) describes a way to extend the DTW algorithm to estimate shifts between seismic

images. This new dynamic image warping (DIW) algorithm �nds optimal shifts between two

images such that computed shifts applied to one image approximate the other. Shift values

computed from DIW are useful when shifts between two images are large and vary rapidly

in time.

When shifts vary smoothly in time (e.g., Compton and Hale, 2013), a better approxi-

mation can be achieved from smooth dynamic warping (SDW; Hale and Compton, 2013).

This technique also computes optimal shift values between two images, but in contrast to

DIW, smooth shifts can be obtained by computing shifts for a subset of image samples.

Shifts computed using SDW are more robust in the presence of noise and increase computer

memory e�ciency, which make SDW the preferred warping algorithm for slope estimation.

However, both DIW and SDW require large shifts between two images to obtain accurate,

meaningful results. This condition is not satis�ed in the case of slope estimation where shifts

often require sub-sample precision; therefore minor but necessary changes must be made to

the SDW algorithm. The changes not only allow the use of SDW for slope estimation, but

extend the method to other applications requiring small, smooth shift estimates.

In this chapter, I �rst introduce the dynamic warping algorithm. I then describe the

added steps for SDW and the additional modi�cations required for slope estimation. Next, I

show the results of estimating slopes using SDW and make brief comparisons to the structure

tensor and plane-wave destructor methods. Finally, I discuss considerations for using the
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SDW method, including utility and caveats.

3.1 Dynamic warping

To better understand smooth dynamic warping and the modi�cations required for slope

estimation, one must �rst understand dynamic image warping. Dynamic image warping

computes shifts between two images by �nding a globally optimal solution to a non-linear

optimization problem that satis�es linear inequality constraints.

Optimal shifts are found in four steps. First, alignment errors e[i; l ] are computed for

sample indicesi and lags l. Lags are bounded by speci�ed lower and upper shift bounds

ul and uu, respectively, and have a lag interval of 1. Distancesd[i; l ] are then accumulated

by summing alignment errorse[i; l ], while simultaneously recording the error minimizing

movesm[i; l ]. Such moves are constrained by lower and upper shift strainboundssl and su,

respectively. The shift and shift strain constraints can bewritten as

0 � l � nl � 1; wherenl = uu � ul + 1 (3.1)

and

sl � u[i ] � u[i � 1] � su: (3.2)

Finally, the minimum distance is found ind[N � 1; l] and, using the error minimizing moves

m[i; l ], backtracking is performed to �nd the optimal sequence of shifts u[i ]. Hale (2012)

provides a more detailed description of the steps required for dynamic image warping.

By computing shifts subject to constraints 3.1 and 3.2, one not only constrains the

maximum and minimum shifts estimated, but also constrains the amount shifts can change

from sample to sample. In other words, the derivatives of shifts are constrained.

3.2 Smooth dynamic warping and modi�cations

In addition to the steps described above, SDW includes threesteps that produce a glob-

ally optimal smooth shift solution that requires less computer memory. After computing

alignment errorse[i; l ], subsampling is performed one[i; l ] subject to the subsampling pa-
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rameter h. The parameterh determines the spacing between subsampled alignment errors

such that

h = i [j ] � i [j � 1]; (3.3)

where i [j ] is an array of indices that represents the indices of subsampled locations in an

image. By subsampling alignment errorse[i; l ], the number of possible changes in lag in-

creases, requiring an additionalfor loop during the accumulation step. The result of SDW

is subsampled shiftsu[i [j ]]. Lastly, bicubic interpolation is performed onu[i [j ]] to obtain

shifts u[i ] for all sample indicesi . A di�erent interpolation method may be used in the �nal

step; however, analyses described in Chapter 4 suggests bicubic interpolation provides the

best slope estimates.

The �rst modi�cation from the original SDW algorithm comput es alignment errors using

least absolute deviation

e[i; l ] � j f [i ] � g[i + l ]j;

rather than the typically computed least squares problem

e[i; l ] � (f [i ] � g[i + l ])2:

As discussed in Wheeler (2015), theLp norm for p = 2 may not be optimal for all

applications of dynamic warping. Least absolute deviationis resistant to outliers in the

data, making it a more robust error approximation. This is helpful in our application of

SDW where outliers are a result of noise in the image and can bee�ectively ignored.

For the applications shown in Hale (2012); Hale and Compton (2013); Compton and

Hale (2013), computed shifts are large and well approximatedby integers. For images with

large, time-varying shifts, SDW produces smooth, sub-sample precision shifts. Sub-sample

precision is a result of the interpolation between integer-value subsampled shifts. Because

slope estimates do not vary with time and typically require sub-sample precision for accurate

results, estimating integer-value subsampled shifts still causes a problem.
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To address this problem, I introduce an integerk that changes the sampling interval of

lags, and therefore shifts, from 1 to1
k . Subsequently, shift estimates range fromul to uu

with increments of 1
k .

3.3 Slope estimation

To estimate slope values for an imagef using dynamic image warping, I must �rst choose

the second image to warp. Usingf , a second imageg is generated by shiftingf one trace

to the left. By warping image f to g, I am essentially computing shifts between each trace

and the adjacent trace. The resulting shiftsu are equal to the slopesp being estimated.

However, these estimated slopes correspond to locations between samples. To obtain slope

values at exactly the sample locations inf , I must interpolate computed slopes back onto

the sample locations for imagef .

To make analogies with the slope estimation methods described in Chapter 2, I reintro-

duce the parameters that constrain shift estimation, or more speci�cally, slope estimation

for the SDW method. The structure tensor and plane-wave destructor methods each have a

parameterpmax that controls the maximum and minimum slopes estimated. Constraint 3.1

constrains shifts by lower and upper shift boundsul and uu, respectively. Since shifts are

equal to slopes in this application of SDW,� ul = uu = pmax .

As described in Chapter 2, neither the structure tensor nor the plane-wave destructor

methods explicitly constrain slope derivatives. Constraint 3.2 constrains the derivatives of

shifts with lower and upper shift strain boundssl and su, respectively. Once again, since

shifts are equal to slopes,sl and su constrain the derivatives of slope, which allows the SDW

method to estimate slopes without estimating discontinuities caused by noise.

The implementation of SDW allows the user to specify up to sixparameters for 2D slope

estimation. Although I focus on analogous parameters between each method, introducing

parameters that constrain slope derivatives is a vital aspect to the SDW method. The pa-

rameter pmax constrains the maximum slope, and parametersh1 and h2 control subsampling

in the �rst and second dimensions, respectively. Because the SDW algorithm uses an in-
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terpolation step between subsampled slope values,h1 and h2 indirectly control smoothing.

Strain parameterss1 and s2 more directly a�ect smoothing by controlling the maximum

strain. For example, a strain parameters1 = 0:1 allows each sample to stretch or squeeze a

maximum of 10% in the �rst dimension when �nding corresponding values between adjacent

traces. In 3D, two additional parametersh3 and s3 control smoothing and maximum strain,

respectively, in the third dimension. Once more, subscripts 2 and 3 correspond to the hori-

zontal dimensions and subscript 1 to the vertical dimension. The sixth optional parameter

k determines the sampling interval, and therefore precision, of slope estimates in units of

samples per trace. For example,k = 10 produces slope estimates with precision up to one

tenth of a sample per trace.

Figure 3.1: Near-o�set Gulf of Mexico image.

Figures 3.1 and 3.2 show a real seismic image without and with slope estimates, re-

spectively, for each of the three methods using smoothing parameters found in Fomel et al.

(2007). The near-o�set Gulf of Mexico data are publicly available and they appear in the pa-

per referenced above, which allow me to reproduce the results found in that paper. Although

the same parameters were chosen for each method, it is obvious there are similarities and

di�erences throughout. Chapter 4 provides more insight into the similarities and di�erences

through qualitative and quantitative analyses.
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Figure 3.2: Slope estimates computed using the structure tensor method (a), plane-wave
destructor method (b), and smooth dynamic warping method (c) for a near-o�set Gulf of
Mexico image.
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3.4 Considerations

As mentioned in Compton and Hale (2013), the SDW algorithm signi�cantly reduces

computer memory by only computing shifts on a subsampled grid. However, reduction in

computer memory increases computational time. This is because, for sparse subsampled

grids, h is large, increasing the possible number of lags. In other words, the larger the value

of h, the more computations required during the accumulation steps, which are the most time

consuming steps for SDW (Hale and Compton, 2013). This becomes a balancing act between

computation time and memory. Fast slope estimates can be achieved by using a dense sub-

sampled grid, but require a larger amount of computer memory. Conversely, less computer

memory is required for sparse subsampled grids, but necessitates more computational time.

It is also important to note the potential error caused by choosing a subsampled grid

that is too sparse. Figure 3.3a shows slope estimates for a synthetic seismic image. As noted

in Chapter 1, red indicates positive slope values and blue indicates negative slope values.

The area highlighted by the red rectangle in Figure 3.3a highlights an area of rapid slope

variation. The left half of the rectangle should be red, indicating positive slope, while the

right side of the rectangle should be blue, indicating negative slope. However, because I

chose a subsampled grid that is too sparse, the incorrect slope sign is shown on both sides of

the rectangle. To prevent such errors, the subsampling parametersh2 and h3 should be no

smaller than the most rapid slope variation in the image. Users can take advantage of the

ability to customize this algorithm for slope estimation tocater to their speci�c needs and

resources.

Computer memory as a function of smoothing parameter choiceis unique to the SDW

method, but the unfavorable results caused by choosing smoothing parameters that are too

large are common among the three methods. Figures 3.3b and 3.3c show slope estimates

for the structure tensor and plane-wave destructor methodsusing smoothing parameters

that are too large. Red rectangles in both �gures highlight areas where the method either

incorrectly estimates slope sign or incorrectly estimateszero slope.
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Figure 3.3: Slope estimates computed using the smooth dynamic warping method (a), struc-
ture tensor method (b), and plane-wave destructor method (c) for a synthetic seismic image.
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CHAPTER 4

METHODS COMPARED

The di�culty in analyzing the accuracy of slope estimation methods is we typically do

not know the correct answer. One solution might be to estimate slopes by hand. However,

hand estimates are tedious and unpractical for large images, and in some cases human error

may be larger than errors from computational methods; I unintentionally demonstrate the

e�ect of human error later in this chapter.

Instead, I generate a synthetic seismic image for which the exact slope values are known

at every sample in the image. I can add deformations to the image that represent structural

deformations in a real seismic image. By knowing the position of an image sample before and

after deformation, I can exactly compute the slope value. The synthetic images in Figure 4.1

contain faults and unconformities (red lines in the �gure) and steep, rapidly varying slopes.

Of the two faults shown in Figure 4.1, the left sloping fault intersects the right sloping fault

noted by the broken red line.

Additionally, I can alter the amount of noise in the image by adjusting the root mean

square (RMS) noise to RMS signal (N/S) ratio. Figure 4.2 shows synthetic seismic images

for three N/S ratios. As the amount of noise increases, faults,unconformities, and seismic re-

ections become increasingly di�cult to distinguish. The variability of slope values, changes

in slope, slope discontinuities, and noise provides a thorough test for each slope estimation

method.

The structure tensor and plane-wave destructor methods employ smoothing parameters

� and r , respectively. The smooth dynamic warping method uses parametersh and s that

a�ect the smoothness of slope estimates. To properly analyze the accuracy of each method, I

must �rst determine optimal comparable parameters. Ratherthan using the same parameter

values for each method, I avoid introducing bias by using their optimal parameters.
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Figure 4.1: Synthetic seismic image (a) with known slope values (b). The color bar has
been adjusted (c) to better show slope values in the shallow portion of the image. The
noise-to-signal ratio for this example is 0.0.
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Figure 4.2: Synthetic seismic images for N/S=0.0 (a), N/S=0.5 (b), and N/S=1.0 (c).
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To �nd the optimal parameters for each method, I compute RMS error

eRMS =

vu
u
t 1

M

MX

i =1

(~p � p)2; (4.1)

where M is the number of image samples, ~p is the estimated slope, andp is the known

slope. For di�erent pairs of � , r , h, and s values, we computeeRMS to �nd the pair that

produces the lowest RMS error for the synthetic with N/S=0.5.This N/S ratio introduces a

reasonable amount of noise. Figure 4.3 shows plots ofeRMS for each method. From the range

of eRMS in Figure 4.3a, one can note that the structure tensor method is largely inuenced

by the choice of� parameters. TheeRMS range for the plane-wave destructor and smooth

dynamic warping methods, shown in Figures 4.3b and 4.3c, is smaller, which suggests the

choice of smoothing parameters for these methods has less inuence on accuracy than for the

structure tensor method. However, it is important to note that the structure tensor method

is able to achieve the lowesteRMS value of the three methods. The strain parameters, used

in the smooth dynamic warping method, is shown in Figure 4.3d.The colorbar values were

adjusted to better show the di�erence in the three predominant eRMS values, 0.72, 0.58, and

0.57.

The optimal parameters for each method are as follows:

� � 1 = 23, � 2 = 1

� r1 = 75, r2 = 6

� h1 = 72, h2 = 12

� s1 = 0:3, s2 = 0:2

Figure 4.3d suggests there are multiple combinations of strain parameterss that yield the

same minimumeRMS ; the only limitation being strain parameters that are too small. Slope

estimates for unrealistically large values ofs1 ands2 , not shown, suggest the smooth dynamic

warping method will not estimate discontinuous slopes caused by noise, even for values of

strain that essentially remove the slope derivative constraint. That is not the case. Even

with N/S=0.5, the synthetic seismic image does not present all of the challenges of a real
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Figure 4.3: RMS error values computed for di�erent combinations of smoothing parameters
for the structure tensor method (a), plane-wave destructormethod (b), and smooth dynamic
warping method (c) as well as strain parameters for the smooth dynamic warping method
(d). Each image was computed using the synthetic seismic image with N/S=0.5. Optimal
parameter pairs are highlighted with white ellipses.

seismic image.

Figure 4.4 shows slope estimates computed using the smooth dynamic warping method

with the same subsampling parameters from Chapter 3, but I essentially remove the slope

derivative constraint by choosing extremely large values for strain parameterss1 and s2.

Whereas large strain parameters did not produce discontinuities caused by noise for the

synthetic image, discontinuities are apparent in Figure 4.4.

Generally, more information is required in the vertical direction of a seismic image because

most are largely horizontally continuous and vertically variable. For that reason, all three
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Figure 4.4: Slope estimates computed using the smooth dynamic warping method for a
near-o�set Gulf of Mexico image.

methods �nd the optimal parameter in the horizontal direction is smaller than for the vertical

direction.

4.1 Synthetic image analyses in 2D

Using the optimal parameters computed in the previous section, I can analyze slope

estimates for each method with varying levels of noise. Figures 4.5, 4.6, and 4.7 show the

e�ects of noise on slope estimation. As noise increases, eachmethod estimates lower slope

values. Figure 4.7a shows discontinuities caused by noise estimated near the lower right

portion of the image, where slope values are steepest. For all levels of noise shown, the plane-

wave destructor and smooth dynamic warping methods do not produce slope discontinuities

caused by noise.

To reiterate, the plane-wave destructor method is iterative and uses regularization to

smooth slope updates in order to prevent slope discontinuities caused by noise. But if I

were to supply the plane-wave destructor method with an initial slope image that contains

discontinuities, as in Chapter 2, those discontinuities will remain.
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Figure 4.5: Slope estimates computed using the structure tensor method (a), plane-wave
destructor method (b), and smooth dynamic warping method (c) for a synthetic seismic
image with N/S=0.0.

Figure 4.6: Slope estimates computed using the structure tensor method (a), plane-wave
destructor method (b), and smooth dynamic warping method (c) for a synthetic seismic
image with N/S=0.5.

Figure 4.7: Slope estimates computed using the structure tensor method (a), plane-wave
destructor method (b), and smooth dynamic warping method (c) for a synthetic seismic
image with N/S=1.0.
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Figure 4.8: RMS error versus noise/signal ratio computed foreach method. The structure
tensor method is shown in green and labeled (ST), the plane-wave destructor method is
shown in blue and labeled (PWD), and the smooth dynamic warping method is shown in
red and labeled (SDW).

For 21 N/S ratios between the values zero and one, I computeeRMS for each method

to further explore the e�ects of noise on slope estimation. Figure 4.8 showseRMS as a

function of N/S ratio for each method. For N/S ratios from 0.0 to0.5, the smooth dynamic

warping curve produceseRMS values that are between the structure tensor and plane-wave

destructor curves; for larger N/S ratios, the smooth dynamicwarping curve is slightly above

the plane-wave destructor curve.

The RMS error curves provide us with a general idea of the accuracy of each method with

varying levels of noise, but other statistical methods can provide more speci�c measures of

accuracy. One method is to compute sample standard deviation

� p =

vu
u
t 1

100

100X

i =1

(~p � p)2; (4.2)

where ~p is the estimated slope value andp is the known slope value. Typically,� p is computed

using the mean of the data set. Since I know the exact slope value for every sample in the
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image, I instead use the known slope values.

Figure 4.9 shows the sample standard deviation images for 100realizations of N/S=0.5.

For steep slope values, rapid slope variations, and areas near faults and unconformities,� p

values increase for all three methods. Overall, the structure tensor method produces lower

� p values than the plane-wave destructor and smooth dynamic warping methods.

The errors at the faults and unconformities are more apparent in Figure 4.10 where the

color bar values have been clipped. At the top of Figures 4.10aand 4.10b, near traces 100

and 200, there are errors apparent. The same location in Figure 4.10c shows less pronounced

errors. The errors near seismic discontinuities are causedby smoothing. Since the smooth

dynamic warping method places constraints on the rate at which slope values may vary,

and since there is no explicit smoothing performed, the smooth dynamic warping method

produces less error near discontinuous features.

Because the structure tensor method computes slope locally, it is more adapted to es-

timate slope in highly variable images like the synthetic shown throughout this chapter.

The plane-wave destructor and smooth dynamic warping methods each �nd global slope

solutions, making them more error-prone to highly variableimages.

4.2 Synthetic image analyses in 3D

Slope estimates in 3D are not an accumulation of 2D estimatesin the inline and crossline

directions. Rather, each method uses information from all three directions to produce a more

accurate result than for 2D slope estimates. To test whether3D slope estimates are more

accurate than 2D slope estimates, I extract one crossline slice from a 3D synthetic volume

and estimate slope in 2D. For the same crossline slice, I compare the accuracy of the 2D and

3D slope estimates.

Figures 4.11, 4.12, and 4.13 show 2D and 3D slope estimates foreach method side-by-

side. Considering only minor di�erences are visible between 2D and 3D slope estimates for

each method, I created Table 4.1 to outline the parameter values used to create Figures 4.11,

4.12, and 4.13, as well as theeRMS values.
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Figure 4.9: Sample standard deviation images computed for thestructure tensor method
(a), plane-wave destructor method (b), and smooth dynamic warping method (c).
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Figure 4.10: Sample standard deviation images computed for the structure tensor method
(a), plane-wave destructor method (b), and smooth dynamic warping method (c) for clipped
color bar values.
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Figure 4.11: Slope estimates computed using the structure tensor method for one crossline
taken from a 3D synthetic volume. Shown are 2D slope estimates(a) and the same crossline
slice from 3D slope estimates (b).

Figure 4.12: Slope estimates computed using the plane-wave destructor method for one
crossline taken from a 3D synthetic volume. Shown are 2D slope estimates (a) and the same
crossline slice from 3D slope estimates (b).

Figure 4.13: Slope estimates computed using the smooth dynamic warping method for one
crossline taken from a 3D synthetic volume. Shown are 2D slope estimates (a) and the same
crossline slice from 3D slope estimates (b).
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Table 4.1: Slope estimation parameters for 2D and 3D slope estimation with resulting eRMS

values.

2D 3D

Structure tensor

� 1 = 6 � 1 = 6
� 2 = 2 � 2 = 2

� 3 = 2
eRMS = 0:075 eRMS = 0:071

Plane-wave destructor

r1 = 15 r1 = 15
r2 = 5 r2 = 5

r3 = 5
eRMS = 0:091 eRMS = 0:073

Smooth dynamic warping

h1 = 22, s1 = 0:2 h1 = 22, s1 = 0:2
h2 = 7, s2 = 0:3 h2 = 7, s2 = 0:3

h3 = 7, s3 = 0:3
eRMS = 0:092 eRMS = 0:078

From the optimal parameters found in Section 4.1 and heuristic testing, I choose pa-

rameters that produce similareRMS values for 3D slope estimation. Table 4.1 compares the

accuracy of slope estimation between 2D and 3D slope estimates. For all three methods,

3D slope estimation produces a more accurate result. In 3D, relatively little information is

added to the local slope solution for the structure tensor method; whereas, relatively more

information is added to the global slope solutions for the plane-wave destructor and smooth

dynamic warping methods.

Similar to how the 2D synthetic is created, I generate a 3D synthetic volume for which

I know the exact inline and crossline slope values. While the 3D synthetic, shown in Figure

4.14, is less variable than the 2D synthetic, it contains three planar faults and folding.

For the parameters in Table 4.1, I compute inline and crossline slope estimates for each

method, Figure 4.15. I can adjust the N/S ratio for the 3D synthetic as I did for the 2D

synthetic. Figure 4.16 shows each method's accuracy as a function N/S ratio. Each curve

spans a smallereRMS range due to less variability in the 3D synthetic. Moreover,each curve

is closer together relative to the 2D curves. From these results, one can infer each method

produces near indistinguishable results.
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Figure 4.14: Synthetic 3D seismic volume with N/S=0.5.

4.3 Real image analyses in 3D

Synthetic images provide the bene�t of knowing the exact slope value for every sample in

the image, but even with added noise, synthetic images do notfully encompass the challenges

of slope estimation. The Teapot Dome seismic volume provides a real data example. Per-

forming hand estimates for every sample in the volume would take an unreasonable amount

of time, but for a couple of samples, I can compare my hand estimates with the estimates

for each method.

Figures 4.17a, 4.17b, and 4.17c show slope estimates for eachmethod with the location

of one image sample of interest highlighted by the red circle. For the image sample, cyan dot

in Figure 4.17e, I can estimate slope by hand (yellow line) andvisualize the slope estimates

for each method with lines of di�erent colors. Continuing with the convention from the RMS
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Figure 4.15: Inline and crossline slope estimates computed using the structure tensor method
(a) and (b), plane-wave destructor method (c) and (d), and smooth dynamic warping method
(e) and (f) for a 3D synthetic volume with N/S=0.5.
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Figure 4.16: RMS error versus noise/signal ratio computed inthe inline (a) and crossline
(b) directions for each method. The structure tensor methodis shown in green and labeled
(ST), the plane-wave destructor method is shown in blue and labeled (PWD), and the smooth
dynamic warping method is shown in red and labeled (SDW).
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error curves, the structure tensor method is represented bythe green line, the plane-wave

destructor method is represented by the blue line, and the smooth dynamic warping method

is represented by the by the red line. Analyzing all four lines,any one can reasonably

represent the slope at the image sample location.

Figure 4.18 shows the results of the same test for a di�erent image sample in the crossline

direction. Although my hand estimate is steep as compared to the other three methods, again

any of the four lines can reasonably represent the slope at the image sample location.

4.4 Discussion

The analyses performed throughout this chapter did not determine a slope estimation

method as superior. Rather, I have identi�ed advantages anddisadvantages for each method.

Table 4.2 provides a brief summary of these �ndings. The compute times were found by

averaging the compute times for 100 3D slope estimates for a 101� 102� 103 synthetic seismic

volume.

Table 4.2: Compute times, advantages, and disadvantages for each method.

Slope estimation methods
Compute
time

Pros Cons

Structure tensor 0.22sec.
better slope esti-
mates for highly
variable images

can estimate slope disconti-
nuities caused by noise

Plane-wave destructor 21.33sec.
input option for
initial slope image

slower than the other meth-
ods, and unwanted slope dis-
continuities will remain if
present in the initial slope im-
age

Smooth dynamic warping 6.91sec.

slope deriva-
tive constraint
prevents slope
discontinuities
caused by noise

for small subsampling param-
eters, requires substantially
more computer memory than
the other methods
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Figure 4.17: Inline slope estimates computed using the structure tensor (a), plane-wave
destructor (b), and smooth dynamic warping methods (c). Thered box on the seismic
image (d) highlights the location of the zoomed image (e). The cyan dot shows the location
of the image sample for slope estimation and the yellow, green, blue, and red lines represent
slope estimates.
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Figure 4.18: Crossline slope estimates computed using the structure tensor (a), plane-wave
destructor (b), and smooth dynamic warping methods (c). Thered box on the seismic image
(d) highlights the location of the zoomed image (e). The cyandot shows the location of the
image sample for slope estimation and the yellow, green, blue, and red lines represent slope
estimates.
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CHAPTER 5

CONCLUSIONS

In this thesis, I introduced a slope estimation method that uses a modi�ed smooth

dynamic warping algorithm to estimate slopes while constraining slope derivatives. This

method is the �rst of its kind to place constraints on the rateat which slope values can vary in

an image. By performing both qualitative and quantitative analyses on the structure tensor,

plane-wave destructor, and smooth dynamic warping methods, I identi�ed the strengths and

weaknesses of each method.

Local slope estimates allow the structure tensor method to more accurately estimate

slope in images with highly variable structure; however, for image regions with little-to-no

distinguishable structure, the structure tensor method can estimate slope discontinuities. To

prevent estimating slope discontinuities, the plane-wavedestructor method smoothes slope

estimates with regularization. But as I showed in Chapter 2,if slope discontinuities exist

in the initial slope image, those discontinuities will remain in the �nal slope image. The

smooth dynamic warping method constrains the rate at which slope estimates may vary

from sample to sample. This constraint combined with no explicit smoothing, allow the

smooth dynamic warping method to estimate slope near faultsand unconformities better

than the other methods analyzed.

To obtain a slope solution without estimating slope discontinuities caused by noise, I

changed the computation of alignment errors to compute absolute deviation rather than

least squares. In addition, I included a parameter that allows a user of the smooth dynamic

warping method to modify the slope sampling interval. The resulting slope image is a global

solution to a non-linear minimization problem with linear inequality constraints.

In Chapter 4, I performed error analyses in 2D and 3D using synthetic seismic images,

but the di�erences between real and synthetic images are vast. As such, the superiority of
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any method over the others might be regarded as speci�c to that particular example. That

is not to say synthetic analyses are not useful. From synthetic analyses, I determined image

features that result in higher error in all methods, those being faults, unconformities, and

steep, rapidly varying slopes.

5.1 Future work

For image locations containing no data, the current implementation of the modi�ed

smooth dynamic warping method estimates the minimum user speci�ed slope. A better

value is zero, but I have found it is di�cult to distinguish no data from slope values that

equal the minimum speci�ed value.

The structure tensor method computes linearity and planarity, which are measures for

the coherency of structure. One could presumably use these measures to vary the amount

of smoothing throughout an image to smooth less for more coherent structure and more for

less coherent structure.
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