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ABSTRACT

The results of a theoretical study of the mechanical behavior of
brittle rock up to and including total failure are presented., It is shown
that the constant temperature deformational behavior of brittle rock can
be described by means of three equations which relate the three principal
stresses and the three principal inelastic strains resulting from micro-
cracking occurring within the rock structure. These equations are shown
to form the brittle-material counterparts of the three '"laws' governing
the plastic behavior of ductile materials. The three equations are used
to solve a hypothetical engineering design problem which is concerned with
predicting the collapse of a circular tunnel in a brittle rock which is
subject to a uniform hydrostatic stress at large radial distances from the

opening.
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INTRODUCTION

Rock mechanics like all engineering disciplines must have a theoreti-
cal foundation., However, this foundation should be of such a form that it
can be used with some ease by the engineer in the design of engineering
structures in rock. The development of analytical methods which may aid
in the rational design and in determining the stability of engineering
structures in competent brittle rock materials forms the subject matter
of this thesis. By the design of an engineering structure in rock, we
refer to the design of any excavated subsurface opening, the design of any
open surface structure, or the design of any system of openings in rock
that is virtually self-supporting., A self-supporting system of openings
is defined as a system where the structural stresses are carried by the
rock without requiring the use of artificial support systems.

There are two essential prerequisites necessary in the rational
design of engineering structures in rock. (1) The stress distribution in
the vicinity of the proposed structure must be known beforehand., (2) The
design engineer must determine the ability of the proposed structure to
withstand these stresses without undergoing structural instability — a
process commonly referred to as total failure. It is recognized that the
design of engineering structures in rock is in a number of ways a more dif-
ficult problem than, say, the design of structures made with steel or con-
crete., There are at'least three reasons for this state of affairs. (1)

The stress and displacement field in the vicinity of the structure are at .
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best understood only qualitatively. (2) The geology is generally poorly
defined and its influence on the stress and displacement distributions
near the structure is little understood. (3) There is a general absence
of suitable analytical procedures to aid in the initial design of the
proposed structure.

Because of these problems, the engineer cannot apply either the same
analytical procedures or achieve the precision in designing structures in
rock as is commonly used in the design of conventional structures using
steel or concrete. 1In fact, it should be accepted from the beginning
that a different approach to the problem in designing structures in rock
should be developed. This approach should be one in which it is recog-
nized that only an approximate design can be made before the structure
is built and that such a design must be modified as more information
becomes available during the course of the construction.

One factor necessary for designing or evaluating the stability of
any kind of structure is a knowledge of the mechanical properties of its
material, i.e., stress-strain behavior, fracturing characteristics,
et cetera. The composition of most structural materials such as metals
and concrete is uniform and reproducible to the degree that their mechan-
ical properties in service are somewhat the same as those measured in the
laboratory. Consequently, a rational design can be made on the basis of
published mechagical property{values. On the other hand, the same equiv-
alence does not exist for rock materials for two reasons. (1) The com-

position of even the most common rock types is highly variable. (2) The
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problem-of the gize effect is present because unless the mechanical prop-
erty testsare conducted at a scale such that the test specimen includes
these effects in a normal proportion, the test results will not be repre-
sentive of the in situ rock mass. Of course, the alternative is to per-
form the test in situ. Comparatively few tests of this nature have been
performed in this manner because of both the physical limitations of the
test equipment and the prohibitive cost of such experiments. The current
procedure is to design the structure on the basis of the results of the
small scale laboratory measurements with a safety factor usually deter-
mined by the experience of the design engineer. While this procedure is’
somewhat unsatisfactory, laboratory measurements can and do provide a use-
ful basis for the initial design.

To fully understand the ground control problems involved in the design
of large-scale engineering structures in rock, it is essential that the
design engineer have at his disposal a quantitative knowledge of the actual
mechanical behavior of the rock. To this end, the mechanical properties of
rock under controlled conditions of pressure, temperature, environment, and
strain rate have been extensively studied in recent years (Brace, 1964; Mogi,
1966; Brace, et al., 1966; Scholz, 1968a). The objective of these investiga-
tions was to develop a mechanical equation of statel/ for rock. However, in

gpite of the large number of controlled laboratory experiments on small test

1/

="A mechanical equation of state is defined as a general relationship between
intensive variables (stress,strain, temperature,strain rate,etc.)and/or extensive
variables (volume, heat capacity,etc.), A knowledge of such an equation for a given
material enables an estimate of the behavior of the mterial under general
conditions once certain material properties are evaluated,
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specimens of rock materials, this problem has yet to be completely
resolved. One possible reason for this involves the procedure in test-

ing specimens. The objective of the laboratory test is to give a

response characteristic (stress-strain relation, fracture strength, etc.)

of the rock which is a property of the rock system alone and not the com-
bined response of both the rock and the loading system. A knowledge of

the true rock response characteristics is one of the first steps in the
development of an equation of state for the rock, It is known that the
existence of end effects can adversely affect the response characteristics
of the test specimen because of the elastic mismatch between the specimen
and the loading end plates (Mogi, 1966; Brady and Blake, 1968). While
recent improvementsmin sample design (Brace, 1964; Mogi, 1966) have 1arge1y
eliminated this phase of the problem, the problem of determining a mechani-
cal equation of state for rock materials persists. There is evidénce sug-
gesting that this problem is a result of a general absence of analytical

techniques which can be used to describe the mechanical behavior of rock.

THESIS OBJECTIVES

This thesis is concerned with developing analytical procedures which
can be used to describe the constant. temperature mechanical behavior of
rock under multiaxial stress conditions. We shall restrict the study to

brittle rock materials which are characterized by a tight pore structureg{

2/

='A tight pore structure is a structure wherein the porosity is due pri-
marily to the presence of inter-and transgranular cracks,
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There are four primary objectives of this thesis. These objectives
roughly follow the general outline of the thesis. They include: (1) the
background of the problem and the development of a physically realistic
mathematical model of brittle rock; (2) the formulation of a theory of
the mechanical behavior for brittle rock materials under multiaxial stress;
(3) the systematic compilation of a set of equations which can easily be
used to determine the deformational behavior of brittle rock materials
under multiaxial stress conditions; (4) the application of these equations

to solve a hypothetical engineering design problem in brittle rock.
BACKGROUND OF THE PROBLEM

Experimental Background

During the past decade, a number of experiments have beenvperformed
in which the mechanical behavior of rock under varying conditions of tem-
perature, strain rate, and confining pressure was examined in detail. Some
of these investigations of rock behavior were concerned with determining
the stress-strain relations and the variation of the elastic properties of
rock within the brittle domain (Brace, 1964; Mogi, 1959). Other investiga-
tions have been concerned with the brittle-ductile transition (Heard, 1960)
and the ductile behavior of rock both at high temperatures and confining
pressures (Griggs, et al., 1960; Handin and Hager, 1957; Matsushima, 1960).
In this thesis the former phase is examined in detail; namely, the stress-
strain relationships, the variation of the elastic properties with stress,
and the fracturing characteristics of brittle granular materials displaying

a tigﬁt pore structure.
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For most rock materials exhibiting brittle behavior, the axial stress-
strain curve is concave upward for stresses on the order of a kilobar
(1 kilobar = 15,000 psi) or greater. The lateral stress-strain relation
is often concave downward over the same stress interval (Jaeger, 1962 ;
Walsh, 1965a, b, c). Some investigators (Birch, 1960, 1961; Brace, 1964)
have suggested that these effects are due to the presence of pores and/or
minute cracks present within the rock structure., Figure 1 illustrates
diagrammatically the typical axial and lateral stress-strain behavior of
brittle rock in conventional uniaxial compression tests performed at room
temperatures. The axial and lateral strains are denoted by efﬁ and e;z,
respectively. The axial stress is denoted by o0,,. Following a convention
established by Brace (1964),‘both‘the axial and lateral stress-strain
curves will be categorized into four regions of behavior.

In region I the axial stress-strain curve is characterized by a con-
cave upward slope. The radius of curvature increases as the applied axial
stress increases. The lateral stress-strain relationship is concave down-
ward over the same stress interval. As the applied axial stress increases,
both the Young's modulus and Poisson's ratio increase. The amount and rate
of increase of these properties are a function of both the rock material and
the amount of closable pore space (Brace, 1964).

During region‘II the elastic moduli have values. Brace (1964)
showed that the ratio of ‘axiél and lateral strain 1is approximately
constant, Region IT deformation ends when the maximum principal

stress attains a critical value after which any increase in the applied

3In a conventional compression test, an increasing force is applied to the
.ends of the specimen throughout the test.
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stress results in localized failure, i.e., microcracking (Brace, et al.,
1966). 1If unloading occurs in either regions I or II, a slight hysteresis
loop is observed, attributed by Walsh (1965b) to the frictional sliding of
closed cracks.

Region III deformation is characterized by permanent changes occurring
in the microscopic fabric of the rock. Microcracking is taking place and
the lateral strain is increasing at a faster rate than the axial‘strain.
This region is characterized by a volume increase due to the microcracking
process. This change is attributed by Brace (1964) to result»from a crack-
ing of the individual grains and/or a loosening of the grain structure.
There is a slight tendency for the slope of the axial stress-strain curve to
increase during this region. Brace, et al. (1966), defined this increase
as "crack hardening' because the stress required to make the microcracks
grow increased after some microcrack growth had occurred. Region IIT defor-
mation ends when the slope of the axial stress vs. volumetric strain
(e;§=ef§+2€§§) curve becomes infinite. Figure 2 illustrates diagramatically
a typical axial stress vs. vélumetric strain curve for brittle rock,

In region IV the lateral strain is increasing rapidly and the apparent
Poisson's ratio approaches large values ( > 0.50 ) near incipient failure,
The total lateral strain becomes quite large during the latter portions of
region IV. This is because a large number of voids (microcrapks) have been
generated throughout the specimen (Brace, 1964). 1If the specimen is stressed
to total failure (i.e., collapse of the test sPecimen), large through-going
fractures form out of both the microcrack systems and the grain“boundaries;

This eventually leads to the formation of a macroscopic fracture surface

(Brace, 1964; Brace, et al., 1966),
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There is substantial experimental evidence suggesting that time-depend-
ent deformation at constant stress (creep) occurs in brittle rock during
regions III and IV. For example, Matsushima (1960) found in room tempera-
ture creep tests on a granite in uniaxial compression that the creep
strainv(time dependent deformation) normal to the axis of compression was
larger than the creep strain in the axial direction and that the lateral
creep rate increased much more rapidly with stress than did the axial
creep rate. Scholz (1968b) also found evidence of creep in a granite
during regions III and IV. Both authors concluded that the volume of the
rock increased during cfeep and that the creep strain was due to the‘gen-
eration of microcracks within the rock structure.

The above observations suggest that the mechanical behavior of brittle
rock materials is influenced by the presence of cracks. The curvature of
the stress-strain curves as well as the attenuation and wave propagation
characteristics of low amplitude stress waves in brittle rock (Walsh, 1966;
Brady, 1968) suggest that the closing and/or frictional sliding of these
cracks have a significant effect on the overall static and dynamic mechani-
cal behavior of brittle rock. The experimental results ihdicage a need for
theoretical work and apparently, little success will be obtained unless
effects are directed along the lines of statistical analysis. In short,
theoretical studies on the mechanical behavior of rock materials must be
statistical in their very nature. The physical and chemical makeup of rock

suggests such an approach,
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Theoretical Background

The problem of determining the elastic mechanical behavior of a poly—
crystalline aggregate (polycrystal) in terms of the elastic properties of
the constituting crystals has received repeated attention (Hashin, 1959;
Bishop and Hill, 1951; Hill, 1952). The first contribution was made by
Voight (1928) who calculated the elastic moduli of the polycrystal by aver-
aging over all possible orientations of the individual crystals and then
making the simplifying assumption that all the crystals would be subjected
to the same uniform strain as that applied to the polycrystal. Reuss (1929),
using a similar approach, avéraged the elastic compliances. This approach
would be equivalent to assuming that all the crystals are in the same state
of uniform stress as that applied to the polycrystal. Both theories assume
that there are no cavities or cracks within the aggregate. Bishop and Hill
(1951) have shown theoretically that the Voight and Reuss models actually
form upper and lower bounds, respectively, for the elastic moduli of a poly-
crystalline aggregate.

When one considers aggregates containing cavities, there is no longer
a well-developed theory to serve as a guideline since both the Voight and
Reuss theory only apply for aggregates composed of a single crystal phase
without any cavities. The theoretical treatment of such materials as quasi-
isotropic bodies relies on the assumption that the cavities are uniformly
distributed both in space and orientation. Thus, there will be no outstand-

ing directional properties for samples containing a large number of cavities.
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Walsh (1965a,b,c) evaluated theoretically the effect of cracks on
the mechanical deformation of brittle rock materials. He advanced a
mathematical model wherein a brittle rock structure was represented by
an elastic isotropic continuum containing a large number of randomly
oriented cracks., He confirmed analytically the experimental result that
the compressibility (compressibility is defined to be the ratio of the
volumetric strain to the hydrostatic pressure which produces the volumetric
strain) of porous materials is greater than that of the solid material of
identical composition. Walsh showed that the difference between the two
cases, irregardless of the pore shape or concentration, was equal to the

rate of change of porosity with pressure, i.e.,

. d
" =8 -1 > 1)

where P is the pressure B*'and B are the effective and intrinsic (crack-
free) compressibilities, and 1 is the porosity of the aggregate. This
expression was evaluated by Walsh (1965a) for both spherical and ellip-
soidal pore shapes and it was shown that the latter shape can increase the
compressibility nearly as much as a spherical pore of the same diameter
as the.maximum lengéh of ellipsoidal pore, even though the porosity in the
two cases is considerably different.

Walsh (1965b,c) also evaluated the effect of narrow ellipSoidal-
like cracks on the uniaxial elastic moduli of brittle rocks. He demon -

strated analytically that an increase in the magnitude of the Young's
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modulus and Poisson's ratio occurs as these cracks close under an increas-
ing compressive stress. For example, Walsh (1965c) found that the initial

(region I) and final (region II) Poisson's ratios could be expressed as

;)

v o+ 3 (1-21/_) <1-Ef/E> s

where v,, Vv,, and v are the initial, final, and intrinsic (crack-free)

n

Vy

(2)

]

Ve

Poisson's ratios and E,, E,, E are the initial, final, and intrinsic

$ 9
Young's moduli, respectively. Walsh showed that when the applied compres-
sive stress is large enough to close most of the cracks, Young's modulus
(E; ) and Poisson's ratio (v,) do not equal their intrinsic values because
frictional sliding along some crack interfaces occurs. Because frictional
sliding can occur in the Walsh model, the theory predicts a hystersis
effect during an unloading cycle, i.e., cracks, although suitably oriented
for sliding, do not slide immediately in the reverse sense when unloading

occurs (refer to appendix F). This prediction is in accord with experimental obser-

vations on tAhe stress-strain behavior of brittle rock during regﬁ‘.ons Iand II
(Brace, 1964).

THE MECHANICAL BEHAVIOR OF. BRITTLE ROCK
UNDER MULTTAXTAL STRESS STATES

Synopsis

In this section, we are concerned with extending the model of brittle
rock presented by Walsh to multiaxial stress states. In particular, we

are concerned with developing a physically realistic empirical model of
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brittle rock behavior and in laying the theoretical foundation necessary
to develop the ground rules required to describe the behavior of brittle

rock when microcracking is occurring within the rock structure.

Behavior During Regions I And IT

To analytically describe the behavior of brittle rock under multiaxial
stress, we make the following assumptions. (1) Like Walsh, we assume that
a tight brittle rock structure can be mathematically modeled by an elas-
tically isotropic continuum containing a large number of ellipsoidal-like
cracks of which some may close under applied comﬁression loads and when
the closed cracks are suitably oriented with respect to the applied stresses,
they may undergo frictional sliding. (2) These cracks can be collectively
characterized by the distribution function P(c,B, ), where c is the crack
half-length, B is the inclination of the crack major axis to the direction
of the maximum principal stress (o,,), and ¢ is the angle between the crack
normal projected onto the intermediate and least principal stress” plane
and the x, axis. Figure 3 illustrates the nomenclature used to specify
orientation of the crack to both the stress axes (011,022,033) and the
coordinate axes (X;,X,,%X3). (3) The crack interaction effects can be
neglected as a first order approximation.

The third assumption enables us to express the differential strain

energy density of a material containing N, voids as (Hashin, 1959)

4
The maximum, intermediate, and least principal stresses are.denoted by
Oy1503p, 055, respectively. 1In this thesis compressive stress is taken to
be positive.
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oy ydegy = o de’ + 5 /). r015d<§_&.2U1VJdAc>] R (3)
n=1 i
where the superscripts "*'" and "off refer to the effective strain and purely

elastic (intrinsic or c_rack—free)Astrains in the specimen, reSpe_ctively,—&;is'a unit
vector in the j (j=1,2,3) direction,u, (i=1,2,3) is the displacement of the
void surface in the {% (j=1,2,3) direction,and ;}dAc is the differential cross
sectional area of the void normal in the {a direction, The latter terms in
equation 3 are the additional differential strain energy density components
resulting from the presence of the N, voids in a specimen of volume'V .

The effective strains are derived from equation 3 using the identity

%

deyy = gfL— (Uijde;:) (Jaeger, 1962). The effective strains in the prin-
13 ' .
cipal directions are
Ne
% . 1 -
dey; = de’y + v Zd[ 9‘:‘:5 ul\)ldAc]
n=1 i
Ne
dee:'z = degy + %— Zd[ Sc:ﬁ ug%dAc] (&)
n
n=1

[aN
o
%)
)
I

Ne
= deds +Vl_ de &p ua\'deAc] .
- n
n =1 :

When the voids are modeled by narrow ellipsoidal slots, the strain compo-
nents can be evaluated for the cases where some of the N, cracks are open
and where others are both closed and undergoing frictional sliding. As the
applied stresses (assumed to be compressive) increase, some of the N, voids

close and if the closed cracks are suitably oriented, frictional sliding can
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occur along the crack surfaces. Both the closure of cracks and the fric-
tional sliding of suitably oriented cracks give rise to the strain incre-
ments in equation 4. These strain components can be easily evaluated
for an arbitrary primary crack distributions.

When the primary cracks are random1y<iistribﬁted.thfoughout the rock struc-
ture, certain approximations for these additional strain components are._pos-
sible if both the open crack density (p,,) and the density of closed cracks
suitably oriented for frictional sliding (p,, ,) are known. For the open
crack ("op'”) components, the differential strain increments can be written
as (see appendices B and E for justification)

de§? = A11popdory

degf = A1y popdez (5)

o9
i

~

degg = A11p°Pd033 2

where A;; is a constant (see appendix B). When the applied stress
system is axisymmetric (0,5=055), the differential strain increments for the

closed sliding crack ("cls™) components are(éeeappendices}BandIZforjustifica—

tion)
defi® = ByypeLsdory
~ 1
defs® = Boopersdoy, = - EBllchsdcll (6)
~ —_ 1
degh® = BagpPersd0yy = - EBllchsdcll F

where By, = Bg,. Since the sum of the principal strain components (defj®)

must be zero for this mode of deformation, B,, =-3B;;. In equation S and 6,

5 The reader may refer to appendices A through E for a discussion of these
details,
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the constants A,, and B,, are unknowns to be evaluated from experi-
mental data for each rock type (see equations 13 and 14).

General relationships for the crack densities (pop,chs) are derived
in appendix D. When the primary cracks are uniformly distributed through-

out the material structure thedistribution function can bewrittenP(c,B,®) =

: 1
N
cosfdpdede ¢ DoIp <p°£.~N°;L> and pcIL <pcIL =1‘p01p> are the 'densities"

Z”t(cﬂ; ax " Ca1 n)

of cracks open and closed before loading, then when the primary cracks are
uniformly distributed through the structure the crack densities during a
loading cycle can be written

— I ]
Pop = v ,popSlnBo

(7)

I . .
Pers T Pet (SlnB::Lax"SlnB@in) )

where
Cy oy = length of the largest primary crack
Cp¢n = length of the smallest primary crack
N,, =total number of open cracks
N, s =total number of sliding cracks

V =specimen. volume .
When dop,=dogz,, the angular limits B, , B8;.x, and By, are (see appendices C

and E)
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B .
—_ .k _ 1
A co 2
o ainel 11
Bo sin [ 1k ]
1 (1K)
par = Lltan! = & cosml ———h (8)
1 = 3 [rart (1-K)/ T2
k = d933/d011 9 B = constant .

The angular coordinates B,, Bzayx, and B,;, refer to the angular limits of
open cracks and closed sliding cracks, respectively. Figure 4 illustrates
these angular orientations for a specimen subjected to an axisymmetricstate of
stress (Uggzcss)w Notice that the long axes of cracks contained within

the angular range -B,<B<B, are open and those contained within the angular
range B, ;,<BB, 1« are closed and suitably oriented for frictional sliding.

When 0,,#054, equation 6 will be approximated by the expression

clLs o~
de7i® = Byy pors 9011

RN
acgs® T Byy (o2 pors oy, )
1-k,

L ~

de5a® = Bas pers 4011

where
B do do
By = - SR ke =3 22 and k; = a—iﬁ . There are two
14 (—= O11 O11

reasons for choosing the functional relationship in equation 9{21)Whe;;k2=k3;this
equation reduces to equation 6. (2) When k, # k4, the amount of strain in
the direction of the intermediate érincipal stress must decrease as k,
increases because there are fewer primary cracks suitably oriented for slid-

ing. This equation satisfies both requirements.
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To calculate the uniaxial "felastic' moduli during the initial stages

of regions I and IT, the total principal strains can be expressed as

’ %
dey, T deyq + delf + defh®

d * ~d + de?® + degk® (10)
d€z3 = 9€3 €33 €33

% %
degp T degy

where ¢,; and ¢;, represent the elastic strains. The relationship between

the elastic strains and the principal stresses is given by Hooke's law.

The uniaxial Young's modulus and Poisson's ratio during the initial stages
. I I .

of region I (pyp=Pops PeL=Por) and region IT (p,, =0, p, = 1.0) are

easily found from équations 5, 6, and 10 to be

~ 1 I I
E1= E + (Ay100p + Byipel)

1 1
Et'E’E + By,
(11)
Vil v o4 1
E;= gt 5B11peL
Ei= E + §B11

?
where the subscripts i, "f'" refer to the initial region I and initial
region II values respectively. The intrinsic (i.e., crack-free) values of

Young's Modulus and Poisson's ratio and denoted by E and v, respectively,

Equation 11 leads to the identities
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E, N\ I Ve V
vy = v (fE“L‘/’Jr pet By (“I;;E“
(12)
v, = v+ 3 (1-2v) (1-E/E)

When p;i = 1.0, these relations reduce to Walsh's (1965c) results (see

equation 2).
The relationships between the constants A;,, B,;, and sz are found

from equation 11 to be

E, = E
A ! (13
11 2 Yy ¥ )
1-—E B/
1.1
E, E
1 1
By, = E: - E (14)
I _ v ~1 1
PeL = 2 <E1 E> E, E . (15)

These constants can be calculated by measuring the slopes of the axial and
lateral stress-strain curves during the initial stages of regions I and II,
respectively. The intrinsic values of Young's modulus (E) and Poisson's
ratio (v) can be determined by measuring the velocities of longitudinal and
shear waves in the rock when it is subjected to a hydrostatic pressure large

cqs 8
encugh to close the open cracks within the rock . As an example of the

8The reader may refer to Simmons and Brace (1965) for a description of the
experimental procedure to measure these properties.
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procedure to calculate the above constants, we refer to figure 9a. This
figure shows a typical axial and lateral stress-strain curve for a cylin-
drical specimen of the Westerly granite deformed under uniaxial compres-

sion (after Brace, et al., 1966). This rock is a low porosity, hard brittle
rock known to display elastic behavior (i.e., the strain is completely
recoverable) in uniaxial compression for values of the applied stress up

to approximately 15,000 psi. The values of the Young's moduli and Poisson's
ratios during the initial stages of regions I and II are found from fig-

ure 9a to be 6x10% psi and 0.20 and 8.5x10% psi and 0,31, respectively.

The intrinsic (crack-free) values of Young's modulus and Poisson's ratio

have been found by Simmons and Brace (1965) to be approximately 12 x10% psi
and 0.24, respectively. If these values are substituted into equations 13,
14, and 15, we find the values of the constants A,,, B;,, and pé& tobe 0,233 x
10%/psi, 0.0417x 10~8/psi, and(3.64,respéptively.Therefore the strain components
due to open cracks and closed cracks undergoing frictional sliding can now

be calculated under any combination of the applied stresses.

‘Behavior During Regions III and IV

Experiment has shown (Paulding, 1965; Brace, et al., 1966; Bieniawski,
*1967) that during regions III and IV the strains (when the applied stresses
are compressive) due to microcracking can be accounted for by the opening
of voids (i.e., microcracks), the long axes of which make a small angle to
the direction of the maximum principal compressive stress. These éxperi-

ments- have shown also that there is little or no permanent strain parallel
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to the maximum principal stress direction and that the volume change could.

be accounted for by a permanent increase in the cross-sectional area of the
specimen,

We shall consider in this thesis two possible classes of failure initi-
ation in brittle rock.

The term failure initiation refers to the beginning
of microcrack growth.

(1) Failure initiation when the applied stresses are

(i.e., there is no grain boundary cement present to inhibit movement on the
crack surface).

\

compressive occurs from closed cracks which can undergo frictional sliding

This class of failure initiation is denoted as the '"cls"

class and is operative when the orientation of the cracks satisfies the modified
Griffith criterion, i.e., failure initiation from closed cracks occurs when

n
exceeds a critical value., 1If T( )

the difference between the shear stress acting along the crack surface
normal stress acting on the n

5 n n)
and T, ) (T, ) =

= uoén), where cén) is the

crack surface and is the coefficient of

M
friction along the crack surface) are the shear and
respectively, on the n

frictional shear stress,
crack surface, then failure initiation occurs for
cracks which satisfy the condition

NN

‘ T Ty
where T is

=
a constant,

Te

(16)
This quantity is a measure of the stress required
to initiate frictional sliding along the crack surface.
illustrates

Figure 5 (a,b)
diagrammatically two possible modes of failure initiation in
this class,

namely intergranular (opening of the grain boundary) (figure 5a)

and intragranular (microcrack growth initiating at a grain boundary and
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propagating within a host grain) ( figure 5b ). Notice that the con-
stants T, would be different for each mode. (2) Failure initiation in
brittle rock when the applied stresses are tensile is assumed to occur
from open cracks once the tensile stress acting normal to the crack
surface exceeds a critical value, ‘i.e., microcrack growth in applied

tension occurs when

a<n) < o (17)

where ( - ) o, is the tensile stress required to initiate microcracking
from an open crack whose long axis is normal to the least principal
stress (0,4). Figure 6 shows a typical microcrack occurring along a
grain boundary for an open crack whose orientation is such that equa-
tion 17 is satisfied. This class of failure initiation is denoted as
the fopt' class.

Once the crack distribution (i.e., grain boundaries and other micro-
fractures) in the rock has been determined by standard petrofabric
measurements, the number of cracks suitably oriented for failure initia-
tion for either the "cls'" or "opt' class can be calculated. The actual
microcrack density (number of microcracks per unit volume) within rock
is approximated by advancing the hypothesis that ﬁhe total number of

microcracks for a fixed stress level is proportional to the number of
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cracks suitably oriented for failure initiation. The reader can refer
to appendix G for the procedure involved in determining the microcrack
density.

Once the microcrack densities in the rock for the "cls' and "opt’
failure initiation classes are known, it is possible to estimate the
strains occurring within the rock by making the equations to satisfy
the following three conditions. (1) The strains due to microcracking
are proportional to the density of microcracks within the rock. (2)
The volumetric microcrack strain (i.e., the sum of the three principal
microcrack strains) vs. the maximum principal compressive stress rela-
tion should be of a form such that the volume of the specimen tends to
increase as the applied stress is increased above the critical stress
required to initiate microcracking. Thié condition arises because the
microcrack growth process is not an instantaneous process (Brace, et al.,
L966). The microcracks tend to grow larger as the applied stress(es)
increase. (3) Near total failure (or structural instability) of the
rock, the microcrack stress-strain relations must express the experi-
mental observation that the microcracks are in the process of joining,
i.e., at total failure where the specimen ruptures into two or more
parts, the strains normal to the direction of maximum compression tend

to become quite large (Brace, et al., 1966). Appendix H illustrates an
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empirical approach which was used to determine the microcrack strains.
However, the reader will netice that there are two major criticisms
against these expressions, (1) The equations are difficult to evalu-
ate. Accordingly, their use in solving practical problems involving
the design of engineering structures in brittle rock is limited
because of this complexity. (2) These equations do not take into
account the known rate sensitive properties of brittle rock. The next
section of the thesis is concerned with developing the stress-strain
relations of brittle rock during regions III and IV which eliminate

both of the above criticisms.

A MECHANICAL EQUATION OF STATE FOR BRITTLE ROCK

Synopsis

We are concerned in this section with developing the groundrules
governing the behavior of brittle materials once microcracking is
initiated within the material structure. It is shown that the ground-
rules are somewhat analagous to the "laws' of classical plasticity when
plastic strain hardening is occurring. Because of this similarity, a

brief discussion of the plasticity '"laws' is presented in the following

section.
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The Laws of Classical Plasticity

Introduction

Plasticity can be defined as that property of a material where it
can be deformed continuously and permanently without rupture during the
application of stresses which exceed those necessary to cause gross yield-
ing of the material. This permanent deformation occurs under stress and
this deformation can build up to large amounts once the yield stress is
exceeded. The final configuration of the material depends on the history
of loading. ’

For the most part, materials are used under conditions where they
remain elastic and so the theory of elasticity is of prime importance.
However, there are areas of manufacture and applications where the plastic
behavior must be considered. For example, the study of plasticity is impor-
tant in the mechanics of metal forming where the materialsare prepared and
converted into the desired geometrical form. TIn general, both the design
engineer and the metallurgist are interested in the more practical aspects
of plastic deformation and their relation to industrial materials, either
in forming processes or in the mechanical properties that these processes
develop. The "laws' of classical plasticity provide the metals engineer
with the necessary analytical tools to solve such practical engineering
problems,

Most elasticity problems involve six variableé, namely, the three

principal stresses and the three principal strains. Therefore, we need
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only six equations to solve such problems. Three of these equations are
provided by Hooke's law. The physical conditions inherent in the partic-
ular problem provide the remaining equations, namely, the compatibility
and equilibrium of force conditions and the associated boundary conditions
imposed by the problem.

There are three additional variables, over and above the six variables
needed to express the elastic behavior once plastic deformation occurs in
the material. The additional three variables are the plastic componénts of
the three principal total (elastic and plastic) strains. There are now
three additional equations needed to solve problems when plastic deforma-
tion is occurring within the material. These three additional equations are

provided by the three "laws"™ of classical plasticity.

The First Plasticity "Law'" - The Mechanical Equation of State

The most important of the plasticity "laws' required to analyze the
plastic deformation in materials is the condition governing yielding (or
equivalently, the initiation of plastic flow) and the relationship of the
stresses to the plastic strains resulting from these stresses. To this end,
a number of yield conditions have been proposed. However not one of them
is completely satisfactory both from the viewpoints of accuracy and simplicity.
All of these yield conditions are empirical because they cannot be derived
‘from fundamental considerations. These yield conditions are also restricted

to their use because they can apply only to isotropic materials.



T 1256
27
The simplest yielding condition is the shear stress (Tresca) criterion.
This is expressed by the equation
S, = 011 - 0az (18)
where S, is the stress in a uniaxial test when yielding first occurs and
0y, and 0,5 are the values of the greatest and least principal stresses at
the beginning of yielding. The maximum observed error when this criterion
is used is on the order of 10 percent. A more complex yield condition is

the distortional energy condition. This is expressed as

So= j%IV/(011;022)z+(022"033)2+(611‘033)2 ’ (19)

where 0,, is the intermediate principal stress. It is known that this yield
condition gives rise to a maximum error of approximately 5 percent (Lubahn
and Felgar, 1961). There have been proposed other yielding conditions such
as the equivalent shearing stress condition but they are in general very com-
plex and consequently their use in performing engineering calculations is
severely restricted. Interestingly, the simple shear stress yield criterion
has been found to be quite adequate for engineering purposes.

For most materials, a larger and larger stress is required to cause
plastié flow to continue as the plastic strain increases. This phenomenon
is defined as strain hardening and it is manifested by a rising stress-strain
curve in the plastic region. It has been found that for many materials the
strain hardening characteristics for a fixed plastic strain rate can be often

represented by the simple equation

s, = A (eo(" )>m , (20)
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(»)

. are the stress and the plastic strain in a uniaxial test,

where S, and ¢
m is a constant defined to be the strain hardening exponent, and A is a con-
stant termed the ''strength coefficient'., 1If logarithms are taken of both
sides of equation 20, we see that if the mechanical behavior is correctly
represented by this equation, then the log S vs.log éi?relationéhip for the
uniaxial test will be a straight line, where m is the slope and log A is

the intercept of the straight line on the log S  coordinate axis.

It is essential to make a definition of strain hardening that will
apply to multiaxial stress states, not just to the case of uniaxial load-
ing specified by equation 20. There have been proposed several definitions
of strain hardening. However, they all give values of the strain hardening
characteristics of materials which are within 15 percent of each other
(Lubahn and Felgar, 1961). TFor example, some authors make use of the defini-
ticn that the strain hardening is measured by the numerically largest prin-
cipal plastic strain while other prefer to use the definition that the strain
hardening is best measured by the difference between the maximum and least
principal plastic strains.

The first law of classical plasticity is that the yielding conditions
give the relationship between the stresses in the uniaxial test and the prin-
cipal stresses in the general multiaxial stress case if there is the same
amount of strain hardening in the uniaxial case and the multiaxial case. This

law can be stated mathematically as

() (P) (P)

F(0115022,055) = G(eyy75 65275 €53 ) (21)
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where F and G represent suitable functions of the principal stresses and
principal plastic strains, respectively, which result in the above equality.
Equation 21 is referred to as the universal stress-strain relation or simply,
the mechanical equation of state for a material at constant temperature and
a fixed plastic strain rate exists.

For many engineering materials, it has been found that the universal

stress-strain relationship can be written as

P
Se = 013 = 0gg = A 'e( ) * (22)
where e(p) is the numerically largest principal plastic strain and the brack-
ets ' ! refer to the absolute value_(Lubahn and Felgar, 1961). When plastic

strain rate effects are included, the equation

SNCOECON o

o (?)

where A, is a constant, and ¢, ° denotes the equivalent plastic strain rate,
and n is the strain hardening rate exponent, often is observed to fit the
experimental data quite accurately provided no metallurgical changes occur
and the test data is obtained at a fixed uniform temperature. Equation 23
provides the design engineer with one of the three equations needed to solve

problems where plastic deformation is occurring.
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The Second Plasticity "Law'' - The Constant Volume Condition
The second plasticity law is considerably simpler than the first law.

This law states that the volumetric plastic strain is zero, i.e.,
(») (») »)
€11 * e +€3(3 =0 . (24)
This law states that the volume of the material is not affected by plastic

deformation.

The Third Plasticity "Law' - The Lévy-Mises Condition
The third plasticity law, the Lévy-Mises condition states that the
principal plastic strains and the principal stresses satisfy the following
condition:
Oy1 = 033 013 = Opp Opp = Ugp

Gy _(®) (p)-eég)zeé")-e(")
2 33

€11 ~ €aa €11

. (25)

If ) is defined to equal [0,,-3(0,,+055)] /% (0;,-055), this law has been
found experimentally to be accurate only for values of )\ equal to -1.0, O,
or +1.0. The maximum error (approximately 20 percent) is found to occur

when A = + 0.50 (Lubahn and Felgar, 1961).

Summary
It must be understood that the above "laws' of classical plasticity
apply only to hbmogeneous, isotropic materials subjected to continuously
increasing loads in a manner so as to cause' the principal stress ratios to
remain constant, i.e., a state of proportional loading must exist. Situa-

tions wherein the principal stress ratios vary during plastic flow can be
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handled by a modification in which the '"laws' are applied only to small
increments of deformation, i.e., an incremental theory of flow should be
employed. Actually, the '"laws' of plasticity should always be written

in terms of strain increments rather than those shown by equation 21
through 31 which represent a total strain theory. However, when a state
of proportional loading prevails, the two theories (incremental and total

strain theories) are identical.

The Equations Governing the Behavior of Brittle Materials

Tntroduction

Brittleness is defined in this thesis to be a property of a material
where. it can be deformed continuously and permanently with no noticeable
plastic deformation during the application of stresses which exceed those
necessary to initiate microcracking within the material, Like ductile
materials, the final configuration of brittle materials depends on the
history of loading.

If equations governing fhe mechanical behavior of brittle materials
can be found, the problems confronting the design engineer would be some-
what lessened. Of course like the '"'laws' of classical plasticity, the
equations governing the behavior  brittle materials will be only approx-
imate and they will be somewhat empirical in their mathematical makeup.
This is a result of the compiexity of the microcracking process in brittle

materials.
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Once microcracking has been initiated within a brittle material, there
are three additional variables (over and above the six variables needed to
express the elastic behavior) necessary to describe the mechanical behavior
of the material. These additional variables are the microcrack components
of the three printipal total (elastic and nonelastic) strains. We now
need three additional equations to solve problems involving microcracking
in brittle materials.

Throughout the remainder of this section we shall assume for simplic-
ity that the cracks are uniformly distributed in the material and that the
primary cracks are all of equal length (i.e., the material is isotropic).

The First Equation Governing Brittle Behavior - The Constant Microcrack
Strain Criterion =~ =~ = =~ Tt ’ : :

We recall that there are two major failure initiation classes in
brittle materials, namely, the ''cls'" failure class and the "opt'' failure
class. The '"cls'" failure class is operative whenever the maximum principal
compressive stress, 0J,,, exceeds the critical value o{], where ¢§{] is the
value of the maximum principal compressive stress required to initiate a
microcrack of the "cls' class?. The "opt'" failure mode is operative when-
ever one or more of the principal stress are tensile and are greater than
or equal to the critical stress ¢, where o, is the value of the tensile

stress required to initiate a microcrack of the "opt' class,

7 The critical stress o} is known to vary linearily with the least prin-
cipal stress U,q4, i.e., 0f] = a+b 045, where a and b are constants
(McClintock and Walsh, 1962; the reader may refer to appendix G for a
derivation of this stress). The constants a and b can be measured by

. a procedure discussed later in the thesis
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The first equation we shall hypothesize to govern the behavior of
brittle materials is that the incremental principal strain due to micro-
cracking in the direction of the maximum principal stress (o,,) axis is
approximately zero for either the ''cls' failure mode or the "opt' fail-

ure mode, Mathematically, this equation is written

d(e?_f)ch :0 (011 ZUf{)
(26)

4(35)0pe T O . (055 < - 00)
This equation has been verified experimentally (Brace, 1964; Brace, et al.,

1966; Bieniawski, 1967).

The Second Equation Governing Brittle Behavior - The Constant Stress Difference -
Microcrack Strain Difference Ratio Criterion

The second rule we hypothesize to govern the behavior of brittle mate-
rials is that the principal microcrack strains and the principal stresses

satisfy the condition

1- N
d(eff) s ¥ d(e3g) s (1_2> 27)
for the "cls'" failure mode and
~ 1'ke M
U39 pe ¥ 43D pe (157 ) (28)

for the "opt' failure mode. The exponents N and M are constants which are to
be evaluated from the experimental data. To calculate the exponents N and M
in equations 27 and 28, Phe values of the microcrack strains must be deter-

mined in the general multiaxial (o,, #0,, #0,,) Stress state. The quantities

k, and k, are o0,,/0,, and 0z;/0,,, respectively. The similarity between
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“equations 27 and 28, and equation 25 is quite noticeable when the exponents
N and M are unity.

There are three reasons for choosing the functional relationships of
equations 27 and 28. (1) When the intermediate and least principal stresses
are equal, the microcrack strains (e3§ and €3§) must be equal. (2) When these
stresses are not equal, the microcrack strain, €l§, must be smaller than e3§
because there are fewer cracks suitably oriented for failure initiation in the
direction of the x, axis., (3) When the maximum and intermediate principal
stressés are equal (k,=1), equations 27 and 28 must reduce to equation 26.

It is unfortunate that there is an4absence of accurate experimental data
to check the above equations. However, it is reasonable to expect that equa-
tions 27 and 28 can provide a first approximation to the value of the inter;

mediate principal microcrack strain when a true state of triaxial stress

(0,1 F 05p +055) exists,

The Third Equation Governing Brittle Behavior - The Mechanical Equation of
State

Preface

The relationship between the principal stresses, the principal microcrack
strains, and the principal microcrack strain rates constitutes the mechanical
equation of state for brittlé materials deformed at constant temperature. To
determine the mechanical equation of state, we shall postulate that there isa
relationship between the stresses in the uniaxial test and the principal
stresses in the general multiaxial case. Therefore, there is a function for
each failure mode of the principal stresses F(0y,,055,055), and the volu-
metric microcrack strain rate such that

29
F(0y1,025,033) =G (€}§) (29)
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Two models of brittle materials are examined in detail to determine the
form of the mechanical equation of state for each failure mode. 1In the first
model, we -shall discuss the format of equation 29 governing failure of the
fcls'" class. In the second model, the format of equation 29 governing fail-
ure of the "opt'" class is discussed. For simplicity, we shall assume that

the principal stresses vary in a fixed ratio to each other, i.e., a state of

proportional loading exists.

The Mechanical Equation of State for the 'cls'' Failure Mode:

"c¢ls'" mode occurs whenever

Failure initiation of primary cracks in the
the quantity (r-poy) equals T., where T and o, are the shear and normal
stresses acting on the primary crack just undergoing failure initiation.

This criterion is known as the modified Griffith failure condition (McClintock
and Walsh, 1962). Figure 7 illustrates the angular range, (BfLs)knE;)_pg
(Bgis)(§:1), of primary cracks which have undergone failure initiation or are
suitably oriented for failure initiation under the applied maximum principal
compressive stress (011)(n_1) (208}). The subscript "(n-1)"" refers to the
increment levels (n=1,2,*--) of the applied stresses. For illustrative
purposes and for ease of calculation, we shall let k,=k, in this derivation.

As the stress (011)(n_1) is incremented by an amount Ac,, to the new
value of (011)@), twoeffectsoccurwithinthenaterials?ructure.(1)Thep1ansof
primary cracks oriented within the incremental angular range, [(BgLS)(n)-

(BfLs)(n)] _‘[(BéLS)(nnl) - (BgLS)(n_l)], become éuitably oriented for fail-

ure initiation (figure 7). (2) Further microcrack growth occurs from the
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primary cracks oriented within the angular range E(B§L3>(n~1)“ (Bl)(n*l)]'
Both effects (1) and (2) result in an addition of volumetric microcrack
strain due to void growth, However, the bulk of this additional volumetric
microcrack strain should come from the latter effect. We shall postulate this
to be the case. We shall further postulate that as the applied maximum prin-
cipal stress is increased from (011)(n_1) to (011)(n), the change in the
effective shear stress [(T-pop)] results in an increment in volumetric micro-
crack strain. If we neglect the volumetric microcrack strain rate, this con-

dition will be mathematically formulated as

L) oy W (1) T ey )T 27 0ADT (30)

where

(T)(n) = lé' [(011)(n) - (033)(n)]sin28
M(UN)(n) = %M{[011)(n)'F(033)(n)] - E(Oll)(n)"(638)(n)]°052é} 31)

betf = (D) = (D (oyy -

The angle B in equation 30 is to be evaluated at the maximum value (B§-®)
when the applied stresses are (611)(n_1) and (033)(n~1). This angle deline-
ates the boundary between the primary cracks suitably oriented for micro-
cracking and those not suitably oriented for microcracking. This angle is

derived in appendix G. The result is
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2 c+ [(0 Mo=1)+(054,) (n- ]
(B§LS)(n_1) [%anvl-i-+cos y e TH em )07 m )] 7 - (32)

A7 J
4 [ (011)(n—1)_' (Gss)(n—l)]
In equation 30, B{'® and p are constants. If we assume proportional loading,

(033)(n_1) = k(gll)(n-l)’ (033)(“) = k(°11)(n): and substitute equations 31

and 32 into equation 30, we find

(0y4),
Tc ?;—)—Q)—ngLS(AQ%f)p o (33)
117 (a~1) v
' N
me
If we now sum over all the strain increments, €j{ = E:(Aeii) (N is the
n =1

number of stress increments), then

(611) (n S
Z(BM> [ (Oii)((‘l)]’ . (34)

We shall define (o0,,) o¢i. 1If the stress increment Acll[A011=(011)(n)

() =

(071) (n-1)] is constant, we can write (011)(n) and (011)(n_1) as
(011)(n_1) = 0] + (n-1) Aoy,

(511)(n) =o0f] tn Aoy,

and equation 34 becomes

1+ n 1

T G T

Since €j{ is the total volumetric microcrack strain, then if the total volu-

metric microcrack strain in the uniaxial test is to equal the same value in

, Ao
the general multiaxial case, then the ratio Oi% in equation 35 must be an
11

invariant, i.e.,
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AT Ac
201 22
o1 G, o

where Ac is the stress increment in the uniaxial compression test and C,
is the stress required to initiate microcracking in the uniaxial compres-

sion test.

[ 4 "

Equation 35 represents the mechanical equation of state for the 'cls
failure mode when a condition of proportional loading exists and when both
the temperature and volumetric microcrack strain rate are constant. The
unknown constants B§'® and p are to be evaluated from the simple uniaxial
compression test.

When the functional relationship between the stress and volumetric

microcrack strain can be approximated by a simple power function, equation 35

can be approximated by the equation

1 1

o ~-(gJer ——

arx ()" [ 22 |0
i = clLs c
1 Gl

or 37)

This exponent n in equation 37 is a measure of the stress, over and above the
stress required to initiate microcracking, required to cause total failure of
the material. Accordingly, we shall define n to be the volumetric microcrack
strain "hardening'' exponent, The constant A$t® will be defined the brittle

strength coefficient,
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The criterion of total failure (see appendix J and K) i.e., strength
instability, is that total £failure occurs once the volumetric microcrack

strain attains a critical value, i.e., total failure occurs when

oty -3 1
— - 11791y
€f = & = Agtiger ]n ) (38)

where of, is the value of the maximum principal compressive stress at
failure ® .

When the effects of volumetric microcrack strain rate are considered,
an analysis similar to that above can be undertaken. This leads to the
postulate that the mechanical equation of state governing failure of the

cls™ class can be written as

g _Ocr ~
1111 = pels(gic)n (a1¢)e (39)
O-fx]’. 1 i1 il >
nc
de
: . : . 11N, .,
where HgLﬁ is a constant, Eif (};f = ¢ is the volumetric microcrack

strain rate, and the exponent m is a constant we shall define to represent
the volumetric microcrack strain hardening rate.

The extension of the above analysis to the situation where a condition
of true triaxial stress exists, while straightforward, is quite complex and
such a derivation serves no practical use at this time. The effect of the
intermediate principal stress (055) forthis class of failure initiation is
shown hnépp@ndixAItolxainsignificant. If this conclusion can be verified

.

experimentally, then equation 39 is suitable for engineering purposes.

8This failure criterion is shown in appendix J to be equivalent to the condition |
that total failure occurs when the total microcrack density attains a
critical value, i.e., total failure occurs when a sufficient number of
microcracks develop so that the probability is large of their joining up
to form a macroscopic fracture surface, ’
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The Mechanical Equation of State for the '"opt' Failure Mode:

We recall that fajlure initiation of primary cracks in the "oét” mode
occurs whenever the stress normal to the primary crack equals or exceeds
- 0, for failure initiation of the "opt' class. Figure 8

~0g f.e., opg

illustrates the angular range, - (ngt)(n~1) to + (ngt)(n_l), of primary
cracks which are suitably oriented for failure initiation in this class.

As the tensile stress (033)(n_1) is incremented by an amount Ao, to the

new value of (033)(n), the cofrésponding change in the normal stress results
in an increment of volumetric microcrack strain due to continued void growth
from primary cracks oriented within the above angular range. The procedure

leads to the relationship

(9a3) (a)

20, = B3Pt (A€if)® (40)

(053) (a—1)

where B§P* and s are constants and A}{ is the increment of volumetric micro-

crack strain occurring because of the increase of (033)( to the new value

n~1)

(033)(n). If we follow the approach used in deriving the equation of state

for the "cls' failure mode, the mechanical equation of state at constant tem-

perature for the "opt" failure mode can be written (proportional loading)

cr

933" %3 ~.
oSt = Agpt (éif)r
33

(41)

- o‘c)

~
Q

Wo

we
]
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for a fixed volumetric microcrack strain rate. We shall postulate that the .

general mechanical equation of state can be written

o _O'CT
250 Hgt () (N (42)
33

In equation 42, the exponents r and g have identical meanings as their

counterparts n and m in the "cls'" failure mode.

Summary:

The three equations we have proposed to specify the behavior of brittle

materials for the "cls' failure mode are

a5 T o
W
€35 §'<%?Eé> €55 (43)
3

g _O,cl'
11 11 ~ o
S C LN C Tl

and for the "opt" failure mode

mc';‘o

kN
= Q_k§> e (44)

Sl
o
I

= 0 a .
——— H] P (€1 ic r ( 1 1‘: 8 .
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In equation 43 and 44, the constants H{“®, HSP*, n, m, r, and s
are evaluated from the simple uniaxial compression and uniaxial tension
test. The following section will illustrate the procedure required to

measure these quantities.

THE MECHANICAL EQUATION OF STATE FOR WESTERLY GRANTTE
Synopsis

The Westerly granite is a low porosity, hard brittle rock known to
display brittle behavior over a wide range of conditions which include
confining pressures of at least 75,000 psi and a variety of strain rates
ranging from 10"®/sec to 10"8/sec (Brace, 1964; Brace, et al., 1966;
Byerlee, 1968; Scholz, 1968a,b). Because of the extensive amount of
experimental data available on the Westerly granite under confining com-
pression, it is appropriate to compare the predictions of mechanical equa-
tion of state governing the ''cls' failure mode to the experimental data of

this material,

ThéﬂEquation of State for the 'cls" Failure Mode

Figure 9a illustrates the variation of the volumetric microcrack strain,
eff, of the Westerly granite deformed at atmospheric pressure with a quantity
defined as the percent of fracture stress (after Scholz, 1968a). The axial

strain rate of this experiment was 1x1075 /sec. Figure 9b shows the func-

er .
0317044

tional relationship of €}§ and the quantity <: j) on a logarithmic ~

o—cl‘
11 or
. . ‘ 011707317\ . .
ordinate-abscissa scale. The graph of log &}§ and log ~—*——-—{> is linear
. o5}
although there.is a slight tendency for nonlinearity near structural insta-

bility (i.e., rupture) where the axial stress, o,,, becomes equal to 1.88 of].
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Recall that the equation of state (for a constant strain rate) for the "cls"
failure mode was given by the relation
O.:=gSt
117911 ~
T = Asts (efP)" . (45)

If we take logarithms of both sides of equation 45 and determine the best
fit of this equation to the data in figure 9b, the constants Af'® and n
are found to be approximately 6.28 and 0.29, respectively. The solid
curve connecting the data points in figure 9a was obtained from the equa-

tion

Oq4-05T
_}'}%'—:6'28 (925)0.29 s (46)
O11 2

where the percent of fracture stress is replaced by the term (0,,-0§})/c$y.
Table 1 shows the results of confined compression (0,,=0,,=P) tests on
the Westerly granite (Scholz, 1968a). The critical stress (of{]) required to

initiate microcracking, the fracture stress (of;), the value of the ratio of
’

the difference between the fracture stress and the critical stress to the

cr

0f,-0
critical stress ( —iiinl-), and the value. of the volumetric microcrack strain
1

(F) taken at 95 percent of the fracture stress are shown. The best straight
line fit of the critical stress (<o§} >) to initiate microcracking versus
Ulfl' <ofi>
confining pressure (P) and the ratio T_ogirs  are also shown for comparison.
11
Interpretation of this data suggests the following observations. (1) There is
little significant variation of the quantity F with confining pressure. (2)
The variation with confining pressure of the critical stress required to
initiate microcracking is linear to a first order approximation. (3) The varia-

tion of fracture stress (of,) with confining pressure is clearly nonlinear. How-
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ever, the magnitude of the nonlinearity tends to diminish as the confining
pressure increases,

This data suggests that the dilatancy at fracture is not appreciably
affected by the addition of confining pressure. Supporting this inter-
pretation, Brace, et al., (1966), found evidence that the dilatancy at the
fracture was not affected by confining pressure. Consequently, there may be
a critical void rafio or equivalently, a critical volumetric microcrack
strain, at fracture in the Westerly granite. Equation 38 is the analytical

representation of this failure criterion.

TABLE 1

Results of Compression Tests on the Westerly Granite
(after Scholz, 1968a)
(1 kb=15,000 psi)

Pressure (P) 0%} <o{i> ofy 0f1-0,9 0/ -<0%> . F

(kb) (kb) (kb) (kb) 0.% <0,%> (10-3)

0 1.44 2.81 0.78

0 1.50 1.50 2.82 0.88 0.88 0.88

0 1.56 2.84 0.89
1.00 5.34 3.90 8.90 0.66 1.28 1.66
2.00 7.00 6.20 13.40 0.91 1.16 1.13
3.00 8.16 8.50 16.60 1.03 0.95 1.96
4.00 9.70 10.80 19.80 1.04 0.91 0.98
5.00 12.40 13.20 21.80 0.76 - 0.65 1.20

[ <ogi> = 22,500 psi+2.40 P ]

For the Westerly granite, the uniaxial compressive (o) and the failure
initiation stress (of]) are found from table 1 to be approximately 42,000 psi
and 22,500 psi, respectively. Substituting these values into equatién 38
gives a calculated critical volumetric microcrack strain value at fracture

equal to 1.15x10°3,
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A typical uniaxial stress-strain curve of the Westerly granite is
shown in figure 10a (after Brace, et al., 1966). The compressive strength
for this rock at atmospheric pressure was found to be approximately
34,500 psi when the rock was deformed at an average axial strain rate of
10~8/sec. 1In the test reported in figure 10a, the axial stress was
increased at a rate of approximately 1500 psi/sec up to about one-half
the fracture strength. The load was then held constant for several minutes
at increments of a few hundred bars, giving the steps in both the axial
(efﬁ) and lateral (eéi) stress-strain curves. Figure 10b shows the exper-
imentally determined variation of the effective Poisson's ratio calculated
from figure 10a. The theoretical value of the effective Poisson's ratio

L .
(v") is determined from equations 12 and 46, The result is

3,45
E Oyq - 0511 ] )
% £ 11~ %11
viE Ve 20,, L 6.82 ogf - ’ (47)

where
E,
v, Tv+ 3 (1-2v) (1 - ) . (48)

Here v, and E, are the region II Poisson's ratio and Young's modulus, respec-
tively., The intrinsic (craék—fgee) values of Young's modulus and Poisson's
ratio are denoted by E and v;, respectively. The intrinsic values are known
to be 0.24 for Poisson's ratio and 12x10° psi for Young's modulus (see
Simmons and Brace, 1965). The region II values of the moduli are found from
the slopes of the axial and lateral stress-strain curves in figure 10a. The

results are approximately 0.31 and 8.5x10° psi for Poisson's ratio and
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Young's modulus, respectively. If we substitute the values for E,,E, andvv
into equation 48, the theoretical value for v, is 0.31. This value is in
agreement with the measured value.
The agreement between the theoretical and experimental variation of
v* during regions TIT and IV is good although there is the tendency for
the theoretical value to be somewhat less than the experimental value.
This discrepancy may be due in part to the influence of the axial strain
rate, i.e., the material constants used in equation 46 were obtained at
an axial strain rate of approximately 10~ 5/sec (Scholz, 1968a) while the
experimental data illustrated in figure 10a was obtained with an axial
strain rate value considerably less than 10~ 5/sec (Brace, et al., 1966).
Figure lla shows the observed stress dependence of creep (time depend-
ent deformation) for the Westerly granite deformed under uniaxial compres-
sion (after Scholz, 1968b). There are three values of the volumetric
microcrack strain rate reported; 0.5x1078/sec, 0.25x10~8/sec, and
0.10x10-8/sec. TFigure 11b shows the constant stress creep data obtained
from figure 1la on a log-log scale. Note that a linear relationship between
log €}§{ and log t (t =time) is indicated for a fixed value of the applied
stress. The functional relationship of the mechanical equation of state

(fcls'" failure mode) is hypothesized to be

© 0117077 o o
~—g§§—— = H§ e (eif)® (eis)m 49)
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where H{'® is a constant, é?f is the volumetric microcracﬁ strain raée,
and m is a constant defined to be the volumetric microcrack strain hard-
ening rate. If we take logarithms of both sides of equation 49 and
determine the best fit of this equation to the experimental data in
figure 11b, we find the constants H$Y®, n, and m to be approximately 544,
0.29, and 0.26, respectively. Notice that the exponent n determined
from figure 11b agrees closely with the value of 0.29 calculated from
figure 9b. The constant temperature mechanical equation of state for
the Westerly granite can then be expressed as

cr
C11-0711

oip ¥ 544 ()02 (G1)0-Re . (50)

| Q

Because the exponent m is large, the mechanical behavior and in partic-
ular the fracture stress is sensitive to the volumetric microcrack strain
rate. For example, a 100-fold increase or decrease in é?f results in a

C..,-gCf
. . . . 117911
corresponding 3-fold increase or decrease in the quantity <:-:;;r—-:> .
11
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TLLUSTRATIVE PROBLEM: STABILITY OF A CIRCULAR TUNNEL IN BRITTLE ROCK

Synopsis

In this section the equations derived earlier in the thesis are used
to solve the hypothetical problem of determining the collapse pressure for
a circular tunnel driven into a cohesive brittle rock which is subjected to
a uniform hydrostatic compressive stress field at a large radial distance
from the opening (figure 12). Only the "cls' fracture mode is operative in
this problem because all three principal stresses are compressive
(Timoshenko and Goodier, 1951). The techniques used to solve this problem

will also apply to problems where the "opt' failure mode is operative.

Statement of the Problem

In a certain region the ground stress is equal in all directions and
increases linearly with depth at a rate of 1.24 psi/ft. Find the maximum
safe depth at which an unsupported circular tunnel can be driven if the
rock is the Westerly granite. The maximum safe depth is taken to occur at
that depth where the pressure is large enough to result in the formation
of a rupture (i.e., total failure accompanying initiation of spalling) zone
in the rock mass. The factor of safety in this problem is unity.

In the statement of the problem, the term "safe' means that pieces of
rock will not spall off from the tunnel surface. Spalling constitutes an
instability that wili result in total collapse, because as spalling con-
tinues, the conditions for continued spalling, namely a circular tunnel in

the presence of a given ground stress, continue to exist. The hypothesis
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which is the basis for this thesis is that collapse occurs when the cal-
culated volumetric microcrack strain reaches a critical level which is
characteristic of the rock in question. Thus, the critical volumetric
microcrack strain is being regarded as a ''property" of the rock. In this
problem, the critical volumetric microcrack strain is determined from a
uniaxial compression test, and is then used to determine the tunnel col-
lapse pressure.

For the Westerly granite, rupture initiation occurs when the volu-
metric microcrack strain is 1,15x1073, as shown in figure 9b. To keep
the mathematics comparatively simple, the effects of time dependent defor-
mation (creep) and the additional strain components due to the deformation
of open cracks and closed cracks undergoing frictional sliding are neg-
‘lected. The errors due to neglecting the former effects are probably unac-
ceptably large for engineering purposes, while those due to neglecting the
latter effects might be acceptable. The hypothesis, however, does take these
effects into account, and this hypothetical problem could be solved with these
effects properly considered, if the numerical solution were properly modified

’

to do so.

Test Data
The intrinsic (crack-free) values of Young's modulus and Poisson's ratio

for the WEstérly granite are 12x 106 psi and 0.24, respectively. These values
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have been calculated by Simmons and Brace (1965)8, The constants for
the time independent mechanical equation of state are A{'*® = 6.28 and
n = 0,29, The critical value of the maximum principal stress required to
initiate the first microcrack is of] T 22,500 psi + 2.40 o,, (see table 1),

where o0,, is the value in psi of the least principal stress,

Analysis

We observe from the geometry of this problem that the radial, tangen-
tial, and axial directions are the principal directions. If the elastic
strains in the tangential, tradial, and axial directions are denoted by eee,
€.y, and g,,, respectively, then the intrinsic kcrack—free) elastic stress-
strain relations for the Westerly granite can be written

R S -
€80 = 12x108 ¥ 950 0.24(0, ,+0,,)]

1
€rp = W [ 0“.-0.24(0'66-}-0‘2:)] (1)

1
€2 = Toaior [ 0ee-0-26(0,,40, 0]

where o O..» and o,, are the tangential, radial, and axial stresses,

66’

respectively. 1In this problem the maximum, intermediate, and least

8The intrinsic values of Young's modulus (E) and Poisson's ratio (v) are
determined by measuring the velocities of longitudinal and shear waves
in a specimen subjected to a hydrostatic pressure which is large enough
to close most of the open cracks in the specimen. If p is the specimen
mass density and V, and V, denote the longitudinal and shear velocities
when most open cracks are closed, then E and v can be calculated from

elasticity theory to be
. Vp 2
0 (3V2-472) [(;,;—) 1]

2
12 ()

P
VS TTET VG
2|1-(; )]

E

]



T 1256 51

principal compressive stresses are denoted by Oug (oeezoll), 0,, (0,,=055),
and o, (0,,=0,,). The equations governing the material behavior when micro-
cracking of the "cls' failure mode is occurring were derived earlier in the
thesis (see equation 43). If e%é, €2¢, and €f denote the principal strains
due to microcracking in the rock structure near the tunnel, then the equa-
tions relating these strains to the principal stresses for the Westerly

granite were shown earlier to be

ne o~
€0 = 0
- cr o~ cr 0,29
Ogg - 9gp = 6-28 ogh (eff) (52)

]

-0, N
c —66 2=
egz Cee..gr r) el?’!? 2

where e}§ (e} f=ehS+els+elf) is the total volumetric strain due to micro-

e rr

cracking and 086 is the critical value of the tangential stress required

to initiate the first microcrack. For the Westerly granite this stress

is cég = 22,500+2.400,,. This stress can be determined from the tri-
axial compression test [where the intermediate and least principal stresses
are equal (0,5=05,)] by measuring the magnitude of the maximum principal
stress (01;) required to initiate the first microcrack. This testing tech-
nique has been described in detail by Brace, et al., (1966) as well as the
procedure required to measure this quantity. The approximation is made in

this problem that the exponent N in equation 52 is one. To calculate this

quantity, the values of the microcrack strains in the multiaxial test
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(0,,305,%0,5) must be known. Such test data for the Westerly granite, or
for that matter any brittle rock, does not exist at this time. However, the

exponent N might be close to unity, such as in metals (Lubahn and Felgar,

1961).

The length in the axial direction does not change since the total

change in axial strain due to driving the tunnel is zero:

M,, = be,, + g =0 (53)

where A),, and Aeg,, denote the changes in the total and intrinsic elastic
strains due to driving the tunnel.

Since there is cylindrical symmetry, the force equilibrium and strain
compatibility (for small strains) conditions in differential form are

(Lubahn and Felgar, 1961).

d(ro,.) ~

= 68 (54)
d(rxee)
BT

r

where xee (xee=eee+€%6§§eee) and A\;, (A,,=€,,.+elg) are the total tangential
and radial strains, respectively.

To calculate the stress distribution within the rock structure, the
calculations are begun at large radial distances from the tunnel wall where
the stress conditions are known. If a is the radius of the tunnel; then at
radial distances (r) into the rock equal to r, (3a or 4a, perhaps) the

stress distribution is given accurately by elasticity theory, i.e.,
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Q
I

86 P[1+<%>2]
rr P[1-<%>2] (r, <r<=) (55)

Q
]

where P is the hydrostatic pressure existing in the rock at a large radial
distance from the openingg. We now work toward the tunnel in small inter-
vals of radius until we come to the opening. At this point, the radial stress
is zero, Equation 54 can be applied to each interval of radius by expressing

these relations in finite difference form:

F20,:(2) “¥10:r (1)

ry -1, =3 ["ee(l) ”99(2)]
(56)
2A8(2) ~ T1106( ) _
ry -1, : "—]2:' [)\rr(l)+)\rr(2)] ’

where numerical subscripts , and 5 On the stresses and total strains refer to

their evaluation at r; and r, (r, <r;), respectively.

Conditions at all radial distances less than r =r_ can be determined by

‘iteration if it is recognized that a small change in radius will cause only
a small change in the stress or strain values. Therefore equation 56 provides

a good first approximation to o,, and )\, ., just below r_, if o__ and },, are

06 06

assumed to be uniform at their values at r, over a short distance below this

= e

solving equation 56 for the

06

point. Taking note of the fact that )\ 60

The radial distance (rc) is taken to be much larger than the radial distance
(ry) (see figure 13d), a location whére the radial stress (0,,) is large
enough to prohibit the formation of the first microcrack.
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subsurface conditions (subscript 2) in terms of the known conditions (sub-
script 1) gives

! A
Ier(2) T, Grr(l)'F2r2 [Gee(l)'kcee(e)J -
57

Iy A

669(2) = r, eee(l) +§r_2. [)\rr(l).+)\rr(2)]

where Ar (Ar=r,-r,) is the incremental change in radius. If we assume that
696 and },, are uniform between r, and r,, the first approximation to 0,,
and €60 can be found. We can now find the other stresses and strains at
r=r, by combining equations 51 and 52. In particular, we wish to find the
values of o_, and )., at r=r, so that these new values can be used again

66

in equation 57 to obtain still better values of o¢,, and ¢, , at r=r . With

86

these new values of o and ) still more accurate values of the stresses

66 re?
and total strains are possible. This iteration process is continued until
convergence of the stress and strain values to exact values is obtained.
Thus in the first cycle of the iteration procedure, the values of 088 and
Ay, at r=r, are used in equations 51, 52, and 57. In subsequent cycles,
values from the previous cycle are used.

The same procedure as discussed above can be used for successive radius
intervals r=r, to r=r,-Ar, r=r,-2Ar to r=r,-nAr, et cetera, starting with
the known conditions at the larger radius and calculating the unknown quan-
tities at the smaller radius. 1In this way the entire family of stress dis-

tributions for one value of the pressure (P) can be found. The curves for

other pressures can be obtained similarly by starting with other values of
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068 and 0,, at r=r_. In principal, the stresses and strains could be
determined by directly solving equations 51, 52, and 54, However, the.
procedurg is not simple because the relation between the volumetric micro-
crack strain and the tangential stress is not a simple algebraic expres-
sion. Therefore, a numerical procedhre to determine the stresses and
strains is required.

Figure 13 (a,b,c) shows the effect of microcracking on the tangential,
radial, and axial stress distributions for values of applied‘preSSure rang-
ing from 11,250 psi (at which microcracking begins at a=r) to 31,250 psi
(which is 1érger than the collapse pressure). Also shown adjacent to each
curve in figure 13a is the value of the volumetric microcrack strain com-
ponent at the tunnel wall. A CDC 3800 digital computing machine was used
to obtain these solutions'C. Notice that once microcracking is initiated
in the rock (P =11,250 psi), the tangential stress begins to increase near
the tunnel wall to values greater than would be predicted from elasticity
theory, i.e., T80 (r=a) >2P. For the range of pressure values studied, the
radial stress remained unaffected by microcracking, i.e., o,, :’P[}- (%)a]
for all values of r. The boundéry delineating the microcrack zone and the

purely elastic zone is clearly indicated in figure 13b.

1% or purposes of calculation, the radius of tunnel was 72 inches, the radius
width interval (Ar) was 2 inches, and the radius r_ (that radius where no
microcracking can occur) was taken to be ‘244 inches. A total of six itera-
tions for each radius interval was found adequate to ensure convergence of
the stresses and strains to their exact values.
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The value of the collapse pressure (pressure required to give a value
of the volumetric microcrack strain equal to 1.15x 10 ~8) is approximately
18,500 psi (obtained from figure 13a by crossplotting at r/a and reading
off P at ¢]§f=1.15x10"%). The depth corresponding to this pressure is
14,755 ft using a pressure gradient of 1.24 psi/ft. Therefore, the maxi-
mum safe depth at which an unsupported circular tunnel can be driven in
this rock structure is 14,755 ft. This depth is somewhat different from
the depth of 16,900 ft that would be found if one obtained the stress dis-
tribution by simple elasticity theory, instead of using the correct combina-
tion of elasticity theory and microcracking theory, but used the same fail-
ure criterion, namely that failure occurs at a critical value of the volu-
metric microcracking strain., In this case, equal values of critical volu-
metric microcracking strain in the compression test specimen and at the
tunnel wall also means equal values of longitudinal stress in the compres-
sion specimen and tangential stress at the tunnel wall, because of the
similarity of the state of stress and the fact that there is no effect of

the intermediate principal stress.

Summary

The material properties used in this problem were those for Westerly
granite. For this rock material, the tangential stresses at r =a required
for microcrack initiation and rupture correspond to 22,500 psi and 42,000 psi
) : P P s P s ps1,

respectively,
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It was shown that microcracking is initiated at the tunnel opening
at an applied pressure of 11,250 psi. This pressure corresponds to a tan-
gential stress value of 22{500 psi at the tunnel opening. Once microcracking
is initiated in the structure, both the tangential and axial stresses tend to
increase near the tunnel wall to values greater than the values predicted
by elasticity theory. The applied pressure required to initiate rupture
was shown to be approximately 18,500 psi. This pressure value results in
a maximum design depth for the tunnel of 14,755 ft for a region where the

pressure gradient is 1.24 psi/ft,

SUMMARY AND CONCLUSTIONS

The results of a theoretical study of the stress-strain behavior of
homogeneous brittle rocks up to and including total failure has been pre-
sented. To simulate the grain boundary cracks and microfractures commonly
found in natural brittle rock structures, it was assumed that brittle rock
can be mathematically modeled by an elastically isotropic continuum con-
taining a large number of narrow ellipsoidal-like cracks collectively
characterized by a statistical distribution function which specifies both
the geometry and the orientation of the cracks to a coordinate system fixed
with respect to the specimen. It was shown that this model of brittle rock
admitted an analytical representation of both the closure of open cracks
under compressive stress and the frictional sliding of closed cracks which
are favorably Orientéd with respect to the applied stress system. Analytical
expressions were presented for the stress-strain relationships of brittle

materials displaying these characteristics,
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Experimental data on the fracturing characteristics of brittle rock
has shown that when the applied stresses are large enough, failure .initia-
tiog or microcracking occurs within the rock structure. We considered two
models of microcracking_im this thesis. (1) Failure initiation from closed
cracks ('"cls'" failure class) was assumed to occur when the orientation of
the cracks satisfies the modified Griffith criterion which states that
closed crack failure initiation occurs when the difference between the
shear stress and the frictional shear stress acting along a crack surface
exceeds a critical value. (2) Failure initiation from open cracks (opt'
failure class) was assumed to occur once the applied temsile stress acting
normal to the crack surface exceeds a critical value,

Three relationships between the microcracking strains for either fail-
ure mode and the principal stresses were hypothesized to describe the behav-

ior of brittle materials undergoing failure. The three relationships are:

(1) The constant microcrack strain criterion. This rule states that the

principal microcrack strain in the direction of the maximum principal stress

axis is approximately zero for either failure mode. (2) The constant stress

difference-microcrack strain difference ratio criterion, This rule states

that there is a constant ratio between the difference of any two principal
stresses and the difference of the two corresponding principal microcrack

strains. (3) The mechanical equation of state_for brittle materials. This

rule states that the constant temperature behavior for either failure mode

of brittle materials can be described by an equation of the form S =H; (e}§)*®

(€}§)", where S, is an equivalent stress, H;, n, and m are material constants,
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€}§ is the volumetric microcrack strain, and égf is the volumetric micro-
crack strain rate. The quantities H,, n, and m are constants which can be
measured from the uniaxial stress-strain test; uniaxial compression test
for the ''cls' class, uniaxial tension test for the "opt' class. This rela-

tionship was applied to the uniaxial compression data of the Westerly gran-

-

ite. It was shown that the equation of state written as S, = glﬁggii g
544 (€}§)0+2° (&3§)C: 28, where o§] is the applied uniaxial stress required
to initiate microcracking, could accurately predict the observed stress-
strain behavior of this rock.

The three rules were applied to solve a hypothetical engineering design
problem in brittle rock. The problem was concerned with predicting the col-
lapse pressure of a circular tunnel in a brittle rock which is subject to a
uniform hydrostatic stress at large radial distances from the opening.

Let us note that.the need for further experimental work on the mechan-
ical behavior of brittle rock is apparent. While rules 1 and 3 governing
the ''cls" failure class appear to satisfactorily predict the observed depend-
ence of the stresses, microcrack strains, and microcrack strain rates of one
rock (the Westerly granite) deformed under uniaxial compression, rule 2 for
the "cls™ class and rules 1, 2, and 3 for the "opt" class cannot be checked
at the present time due to the absence of experimental observations on both
the stress-strain behavior of brittle rock under true triaxial stress condi-

tions and the stress-strain behavior of brittle rock under applied tension

stresses, . Further experimental work should be concentrated at first on
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determining the behavior of homogeneous monomineralic (single crystal
phase) rock structures. A monomineralic rock structure avo%ds some of
the problems involved in using polyphase structures, like granite, which
can exhibit a wide range in values of the friction coefficients along
crack surfaces. It has been shown that this additional variable consid-
erably complicates the detailed study of the experimental results (see

appendix X).
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APPENDIX A

EVALUATION OF &5 u,v,dA, (i = 1,3) FOR THE- CASE

OF AN ELLIPTICAL CRACK UNDER BIAXIAL STRESS

The displacement field of an inclined narrow elliptical flaw in a
body under the condition of plane stress or plane strain can be calcu-
lated by a technique established by Stevenson (1945). 1If the intermedi-
ate principal stress (0,,) is normal to the plane of the crack, the dis-
placements u; and u, at the crack boundary due to the biaxial stresses
0;, and 0455 (0,4 2055) can be evaluated by using Stevenson's complex
variable method. The displacements u,; and u, are related to stress func-

tions Q (z) and @ (z) by the equation
86 () = e M g 0e)-20 @ @ |, (A1)

where G is the shear modulus of the solid material, bars indicate com-
plex conjugate, primes signify derivatives with respect to the complex
variable z, B is the inclination of the crack major axis to the axis of

the maximum principal stress (o,,) and

1+6,) =41 +v) Plane Strain
(A2)
1+86,) =4/0+ ) Plane Stress )
v = Poisson's ratio .

The Cartesian coordinates (z=x, +ix,) are related to the elliptical
hyperbolic coordinates ({=E€+in) (figure Al) by the transformation

z = c(cosh() , (A3)
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where ¢ is the major semi-axis of the crack ellipse. For an elliptical

crack the stress functions Q(z) and w(z) are

I

Q(z) = c(Acosh{ + Bsinh()

(A4)

w(z) = c®(CC + Dcosh2( + Esinh2() ,
where A, B, C, D, E are complex constants which depend on the boundary
conditions (Timenshenko, 1951). 1If g (q;g, b and ¢ are the minor and

major axes half lengths, respectively) is the crack eccentricity and if

o = 0, then the substitution of equation A4 into equation Al gives

8G (uy -ug) = e Pait+in®) (A5)
where )
M" = (1+0,) ¢ (A cosn - Cyacosm - Bysint)
(A6)
N* = (148,) ¢ (A;gsinn+Bysinn+Byacosm) .
Equation A5 can be rewritten as
8G u, = M* cosp - N* sing
(A7)
8G uy = (M*sinB + N* cosB) 5
where the angle B is the inclination of the crack major axis to the

axis of the maximum principal stress, For an open crack, the coefficients

(A=A, +iA;) are (Timenshenko, 1951)

A;=N(1+20)cos2B8 C,=0

Ay=0 D= - %N(l+2a)c0328

B, =M-N (1+2¢) cos 2R D,= - %N(l+2cx)2asin23 (A8)
By,= -N(1+2a@)sin28 E,= %N({+2g)2qp0828

C,= - (M-Ncos28) E = %N(1+2a)sin26 >
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and for the closed crack (assuming that Amonton's law of dry friction is

valid) the coefficients are

Ay =M €, =0
A, =0 D, = %cos2p

B, =0 D, = $u(M-Ncos28) (A9)
B, = Nsin2B-y (M-Ncos2B) E, =0

C, =0 Bz = - 8,

where M = (0,,+05,) and N = (0,,-05,).

Following the procedure outlined by Walsh (1965b), the surface dis-
1A/

placement integrals are—

- 2nc®(1+6,) .

gﬂ;ulvldAc T % (20,,s5in3%B)
(A10)

v - 27c® (148,)

4ﬂ;u3v3dAc %’———EE;————- (203300528)

for the open crack and
- nc® (1+0,)
5ﬁ£ uvidA, o sinpcosRB [ (0,,-035) (sinpcosB-psin®p) -Aucssj

(A11)

P u v,da, T - [f 0, 7,dA,

for the closed sliding crack. When the least principal stress (0,5) is

zero, equations Al0 and All reduce to Walsh's (1965b) relationships.

= surface area of crack.

g
I

= normal to the surface in the jth direction.

<
[
I
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APPENDIX B

EVALUATION OF &5 u,v,dA_ (i=1,2,3) FOR THE CASE
OF AN ELLIPTICAL CRACK UNDER TRIAXTAL STRESS

For the case of open cracks under biaxial loading, it is shown in
Appendix A that the resulting strains can be derived by assuming that the
volumetric open stréin,component (deg}) is proportional to the stress nor-

18/ . o
mal to the plane of the crack—". 1If we assume that a similar condition

holds for the three-dimensional case, the ope n crack strain increments

in differential form are

1. — ~ mAe3 .,
(def}), = v {aéa;ulvldAc] =y sin®gdo,,
t. - o p
1 — ~ mAc3
(dess), = v {d£$ ueVedAc] p: 25 cos® BecosPepda,, (B81)
b R
— N:KAS .
(deg), = % [d§§ usvadAc]op= 25 cos®@sin®qpdog,

where A is a constant.
To estimate the strain due to frictional sliding on an arbitrarily

oriented crack under triaxial loading, we have

(degt®dn T 1,,1pg (degs®)y (82)

where (deft®), is the shearing strain (acting in the direction of T) resulting

2B/

from sliding on the nth crack surface™'. The magnitude of this strain is

ntAc3 :
(@est®), = 105 d(r-1,) (83)
%%/The superscript "op' refers to the open crack component.

The superscript "cls"refers to theclosed sliding crack component.
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by analogy with the two-dimensional case outlined in Appendix A. The
direction cosines (l,,,1,,) and the stresses (1,T,) are (Jaeger, 1962)

1,, =1 =sinB ; 1,, = m = cosBcosy ; 1,, = n = cos@sing
1, = a [1{(011'033) n® - (035-0y,) °] ]
lagg = a [m{(czz‘cll) 12 - (055-0p5) 07} ]
lgg = 2 [ﬁ{(css?cag) m® - (0,,-055) 12} ] (84)
T = uoy = p(1%0;4m® opp +02055)
T = V1203 40® oF+n® 055) - o)
The unknown quantity é is evaluated from the relation 15+ 3+1% =1 .

When ¢ = 90°, the two-dimensional equations result. For an axisymmetric

stress state (0,5 =04,), equation B2 gives

(degis), = sinp cosp (deﬁés N

(des5®), - sinB cosB cos2ep (de,‘jc‘;s)n (B5)

(degi®), = - sinB cosB sin®ep (deft®),

for the closed sliding crack("cls') strain components along the coordinate

axes. The strain (defl®), is defined to be

nAc®
(deﬁés)n = v [.(ll-k) (sinBcosB-uSinaB) - p,k)] doy;, . (B6)
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APPENDIX C

STRESS REQUIRED TO CLOSE AN ECCENTRIC ELLIPTICAL CRACK

The normal displacement (u,) of the crack boundary due to the principal

stress components (0;,,055) is
uy = u; sinB + u; cosg . (c1)

We shall consider that the crack has closed when u; = b at m = /2 (refer to

figure Al). From equations A6 and A7,
86 b = (L + 0,)c(A a+ By) (€2)
where the coefficients A, and Bl are defined as

A, = (0y, - 03501 + 20) cos28

(€3)
By = (0qq + 033) - (079 - 0533) (1 + 20) cos2B .
The critical stress required to close the crack is
. 4o /(1+8,) |
911 = §in®gtkcos?g ’ (C4)

where k = 055/0,;. If we solve equation C4 for the angular coordinate B,

then the angular limit of open cracks for values of gy, > 0§} is
b
..._[LE_:_. -k %__
s [ £0¥8)0 ]

il

BO l_k
5 ©5)

R - CO'll
ssiwr [ 2 To, >osD)

ol

4bG
1+0,

where the constant B is equal to
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APPENDIX D

A STATISTICAL ESTIMATE OF THE OPEN AND CLOSED CRACK
DENSITIES DURING A LOADING OR UNLCADING CYCLE

To develop general expressions for the crack densities, a knowledge
of the angular limits for open and closed sliding cracks under triaxial
loading is essential.

It is shown in Appendix C that crack closure occurs when the normal
stress to the crack surface attains a critical value, i,e., closure when

>0, = B/c where B is a constant. For values of o, ( > B/c), the

oy = 0.

angular limits of open cracks [(0, B,), (0,,)] are calculated by solving

= B/c for the angular coordinate B. The results are

.:

co

Bo = sin”? ‘- : ( 2 T
L 1 - {(kycos®ptkysin?ep)

the equation N

. - (kycos®ptkysinp) _L

(01)
B

cos™1 [ EEEZ"k4]%
]."k4 4

o o
where ky, = 2?/0,,, k; = 033/011 and k, = "33/0,,. Equation Dl reduces to

]

D

C5 when k, =1 .
The open crack density .is

Catn “/2 Bo

Pop = 4P, po]; J' Jr IP(C’ B, p)dpdepde (02)
Cpax P B,
P(C:'B; CP) = P(C; B, JI-Cp) 3 Pe = N /v >
I

where p o = "°P/N,. The closed crack density is p, = P ~Pop
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The density of closed cracks undergoing frictional sliding is
min chax Bmax
Pers = 8pe J [ I P (B, p)dBde
Chax Qtn Batn
(D3)

P(c, B = P(;:B:“'@) ’

where the angular limits can be determined by solving T-poy = 0
(equation B4) for B. -This calculation is quite lengthy and is not
presented here.
In the special case where P(c,B,p) = P(c)P(B)P(p), and where all cracks

are of equal length, equations D2 and D3 reduce to
_ I .
Pop = PePop SlnBo

PeLs™ (pe - pop)(Sinex;;ax - SinBra 111)
(D&)

Bm ax = l‘ rtan'l "l;-{-cos_l __.}-.L..(_].'_‘Ii(_)__ ]
. 1K)/ T

i 1 - (1+k)
= = |tan~1 = -cos~! —H=T2L
e w7 ey a k)/‘—]

when the cracks areuniformly distributed throughout the structure, i.e.,

cosB

P(B,p) = P(RP(y) =

dpdep .

A problem of some importance is concerned with the behavior of a
material containing a large number of closed cracks during an unloading cycle.
Walsh (1965b) showed that during the initial stages of unloading the direction

of the frictional shearing stress is reversed. Accordingly, work is done
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against friction as the crack proceeds to return along its "Minitial'' path.
If we follow the procedure outlined by Walsh, the reduction in applied stress
(A0$E) (0pn =0aa) Trequired to initiate reverse sliding is
(°)

_ 2u0y, (k+tan®g)
"~ (L-k)tanpty (k+tan®g)

Aoty
(D5)

(BmgnSBSBmaX) 4

where ofi)is the value of the principal compressive stress when unloading
begins. When k = 0, equation D5 reduces to Walsh's (1965b) value.
If we solve equation D5 for B, the angular limits of cracks undergoing

reverse frictional sliding are

fan~1 (A-KH/A-K)"EF -4k (1-yi)= ]

S 2 (L)

(D6)

Bmin = tan-1 r (l“k)H"\/(l‘k)gﬂz—lkk(l-'uH)e :]
3 ! ’

2(1"LLH)

(o)

g
where H = © 11/2u07y” and Aoy, = 05;)- 0,y is the stress drop. The reverse

'sliding crack density is (0,5 = Oz3)

C,qn 27 BE2*

Prs = 20c1 -,r Ur f P<C:B:°P)d3d®dc . (D7)

m 4 n
ngax o 8?3
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APPENDIX E

LOADING STRESS-STRAIN BEHAVIOR OF
BRITTLE ROCK DURING REGIONS T AND ITI

We shall rely on the basic assumption that crack interaction effects
can be neglected as a first-order approximation. Therefore, the total strain

energy density of an elastic material containing N, voids is (Hashin, 1959)

Ne
% 1 -
where the superscripts "% and "o'" refer to the effective and purely elas-

tic strains in the specimen respectively, u,; is the displacement of the
void surface in the G; direction,and?}dAcisthe cross sectional area of
the void normal to the :& direction. The latter expressions in equation El
are the additional strain energy density components resulting from the pres-

ence of the N, flaws in a specimen of volume V . The effective strains are

Ne
% 1 © -
deyy = defy + 5 Zd [ £8 u,Thda, ]
n=1 °
N,
* 1 —
dess =desy v 1 Y a [ £ a4, | (E2)
n=1 :
Ne
degy = defy + < Zd [ &6 uyadA, l :
=1



If the voids can be mathematically modeled by cylindrical ellipsoids,
the strain components and the effective elastic moduli can be calculated
for the cases where some of the N, flaws are open and where others are
both closed and undergoing frictional sliding (Appendix A). Unfortunately,
a major difficulty arises in calculating these integrals, namely, the
determination of the boundary conditions to be applied to the crack regions
(see Appendix A). For example, if the stress at the region boundary con-
taining a crack is assumed to equal the externally applied stress, then the
deformation of the region boundary is not uniform. In this case, strain
continuity cannot be maintained at the boundary of two regions containing
cracks of differing sizes and orientations. Similarly, if the strain at
the boundary of a region is assumed uniform and equal to that of the body
as a whole, the stress on the bounaary is not uniform and stress equilib-
rium between adjacent regions is not fulfilled. However, Hill (1952)
showed that the above approximations form lower and upper bounds on the
effective moduli, respectively. Walsh (1965a) considered both types of
boundary conditions in his analysis and established (for reasonable crack
concentrations) that the difference between the two bounds is not signif-
icant. Equations El and E2 express the assumption that the stress dis-
tribution throughout the specimen is uniform and equal to the externally
applied stresses.

As an example of the use of equation E2, assume for case of calcula-

tion that (1) the crack distribution function has the property that
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P(é, Byep) = P(IP(BIP(w), (2) P(c) = &(c-¢,) (i.e., all cracks are of equal
1ength~1—E'/), ’(3) the stress system is axisymmetric (o,, = 05;). The aver-

age values of the strain components are then (appendices B and C)

% 1-2kv, .
d<eyy> = —3 doy, + [Hl (k, 0y,) +Hy (k, 011)] doy,
o
o kev, (14K) sAc3
degy> = — 2 dog, + —22 EHs(k,011)~+H4(k?011)] do, , (E3)

o

% *
d<egz> = d<egp>

o

where A is a constant, p, (p, = Te) is the crack density, and k = Eaa. The
11
functions H,(k,0,,), Hy(k,0,,), Hy(k,0,,) and H,(k,0,,) are
21 B,
I .
Hy (k,0,1)=p,, [ [ 5in2BP(B,)dpdy
o ~Bo
27 B ax IZJI' Boax
1, (k, 0,,)=2p,5 [ [Pk, BP(B,odpdo+2p, [ [ Fluk, BIP(B, )dpdo
o Ll ] Bmin
27 B,
H, (k, 011)=2kp°Ip r F cosegcosecpP(B,Qp)nglcp; ;
e B4)
2“ Bmax 2:": Bmax (
H, (k,0,,)= épop J‘ rf(u,k, B)coschP(B,co)dBdcp-Ach f' rF(M, s B)cosRP (B, p)dpdop
o M1 o Mmin
-1_3_ -k_ 1
F(k, Ly B)= schosB[(l k) (sinBcosB-psin®g) - pk :l B,=sin~ 1l °l lkl _‘ (B=constant)
Bm_ax=-3§(tan"1 L4 cos2 —H—(-]iﬂ(l—}
- W V1+® (1K)
Bmin;‘%—[tan‘l L. cost *M———z—]
K 1+p2(1 -k)

1E X
/6(c -c ) is the Dirac delta function with the property that §(c-c,) = 0 for

c #c, and §(c-c,) = 1 for c = c, .
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where p;g = NOIP/Ne . The angle B, represents the angular limit of open
cracks (appendix C). The angles (Bmax, Bz 1) are derived by solving the
equation (T-pOsz) governing frictional sliding for 8. 1In equation E&,
the lower limit L, for Hy, and Hy is B, for B, > B4, and By, when
B, < ﬂésn . The quantities p;g and p;E represent the open and closed
crack "densities' under no external load.

Notice that we are assuming that A and B in equations E3 and E4 are
constants and that they can be evaluated from test data. In this manner,
we are postulating that the theory can be geared to fit the experimental
results. The resulting analysis is therefore an analytical-empirical
theory. The constants of the analysis must be evaluated for each rock type.

When the cracks are randomly distributed throughout the rock struc-
ture and are of equal length, the uniaxial Young's modulus and Poisson's

ratio during the initial stages of regions I (B8,=90°) and II (B,=0°) are

1 1 I 1
B E’+,A1Q=(%Pop‘*Bsch)
t
1 1
E, ~E T Am (B2)
(E5)
Vi oV I
EI =zt A1 0, (Bapor)
=V .
BTy tHue (B)
B@BX
where By = f F (y,0, B)cospdB , and Ay = ZmAc® . The "subscripts i’ and "f"
Bﬂin

refer to the initial stages of regions T and II, respectively.
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I
Equation E5 gives a relationship for the unknowns A;p, and p, .

They are

o= G- ) -3
(E6)
b =3[ (g D2 (-0 [ -+ 3D -

Therefore when the initial, final, and intrinsic Young's moduli and Poisson's
ratios are known, the complete stress-strain relations under any loading
strain can be determined provided the constant B (equation E4) is known.
An estimate of this quantity can be obtained by determining the stress and
total strain at an intermediate point between regions T and IT on the uni-
axial stress-strain curve and substituting these values into equation E3
and solving for B.

Equation E5 can be rearranged to give the initial and final (regions I

and II, respectively) Poisson's ratios. They are

E I VeV

- it S
v (E >+Q°LE1<Ef T E )

o) (-2
v o+ > 1-2v 1 5/ -

I
When p,, = 0, equation E7 reduces to Walsh's (1965c) relation between the

]

Vi

(E7)

il

Ve

initial and final values of Poisson's ratio.
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APPENDIX F

UNLOADING STRESS-STRAIN BEHAVIOR OF
BRITTLE ROCK DURING REGIONS I AND IT

During the initial stages of unloading, the direction of the fric-
tional shear stress is reversed (Walsh, 1965b,c). Accordingly, work must
be done against friction as the cracks proceed to return along the initial
paths. Therefore, during an unloading cyclé, there is an angular range of
closed cracks which are suitably oriented for frictional sliding in the
reverse sense. Following a procedure used by Walsh for analysizing the
reverse frictional sliding of cracks, the angular limits of closed cracks

undergoing reverse frictional sliding are (Appendix D).

(1-k)H +v (1-k)®H?-4k (1-yH)?
max _ -1 =
(Bz)gin = tan [ 2(L-pH) ] ’ (FL)
a
where H = ~é~ll—-and k = G‘33/011 . The stress cf°> is the stress level at
eIy 1

()

(]
- 0y, is the stress drop (0y, <0y .

which unloading begins, and Ac,;; = Gfi)
When the stresses are axisymmetric (0,,=05,) and the cracks are of equal
length and uniformly distributed over the angular coordinate ¢ the unloading

stress—strain‘relations can be written
- O11
o~ . — 3‘(
<€ i T <eGuu +'7f'AC§pe f , [H1(k’011)+H§L(k’cll)]dcll
(o

O11
N . O11
<€z = <€x> + - Acp, I [Hs(k:011)+H3L<k:011)Jd611 (F2)
5 (o)
11
% %

<€3z>yL T <€z
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‘where
| 2% gye® 21 gy
Byt (O, 00) =200 [ [ Flusk, B)P(.e,cp>d.8dvp+2pi,j [ F ik, BIP (B, ©)dBdeo
) 1 ° B?Bin
2m By°* 2% B3**
HIC(k, 000)= - 4ps [ [ Fusk,B)cos®e@ (B, @)dBde- 4oy [ [P B) cos2qP (B, ddpdy
o 1, oyt (F3)
L, =8 » B, > 83'"
=8t B, < 83*"

Figure F1 illustrates a typical loading and unloading stress-strain curve

specified by equations E3 and #8. Notice that when the specimen has been

- 40

completely stress relieved <:A011 = 011j>, some residual strain remains,

i.e.,
) Zﬁ Bm ax
§ <efy>=mac2p, [ [ [ FQuk, 8)P(B,¢)dedudo;y>0

z°) [ Hax
o B
11 3 (F4)

1
S <efo>= 8 <efy> = - 5 & <ePy> -

Therefore, not all the cracks which undergo frictional sliding during a
‘loading cycle return to their original positions at the end of an unload-
ing cycle. This may account for some of the residual axial and lateral
strain experimentally observed by Brace (1964)(refer to figure 6 in Walsh,

1965b).
The extension of the above equations to the general case of arbitrary
P(c,B,¢) and true triaxial loading (o,,>0,,>055) is straightforward (see

Appendices B and D). It can be shown that for true stress triaxiality, the

stress-strain relationships and accordingly, the effective elastic moduli,

are affected by the value of the intermediate principal stress,
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APPENDIX G

A STATISTICAL ESTIMATE OF THE MICROCRACK DENSITY

Permanent changes are occurring within the microscopic fabric of
brittle rock during regions IIT and IV, Brace et al. (1966) have dem-
onstrated that brittle rock is nogelastic at high stress, even at high
confining pressure. This effect, noticeable at stresses on the order
of half the compressive strength, is characterized by dilatancy, where
dilatancy refers to an increase in volumetric strain relative to the
increase, that would be expected if the material were linearly elastic.
The dilatancy was traced to the formation of small cracks (microcracks)
within the rock.

If a satisfactory theory describing these experimental results is
to be achieved, an analytical procedure must be developed which enables
both an estimate of the microcrack density for values of the applied
‘stress above the critical level to initiate a microcrack and the magni-
tude of the strains due to microcracking within the specimen.

‘The following assumptions are necessary to estimate the microcrack
dénsity,during regions IIT and IV, (1) The crack interaction effects can
be neglected. (2) Failure initiation of closed cracks ('"cls'' mode) occurs
only if the orientation of the cracks satisfies the modified Griffith con-
dition which governs the failure initiation of closed cracks suitably

oriented for frictional sliding, i.e., T-uUNZ T, (Brady, 1968a).
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{3) Failure initiation of open cracks ("opt" mode) occurs when the applied

tensile stress(es) acting normal to the crack surfaces exceeds o, (one. or
16/

more of the principal stresses must be tensile for this failure mode)
In three dimensions, the variation of the normal and shear stress with

orientation of a plane surface can be written in the form (Jaeger, 1962)

oy = % (a, + ay cos2B)
(G1)
2 -1 b b 2 2
T = 4 (by + by cos2P - GN s
where
ag = 20,,+(0pp+055)+(025-055)c0S200 )
by = 203 +(0%+05%)+(05-055)cos20

by = 208 +(0%+05)+(0-055)cos2y

where 0y, > 053 > 035 and B and ¢ are the angular specifications of the

plane surface with respect to a fixed coordinate system (figure Gl).

McClintock and Walsh (1962) have shown that when a closed Griffith
crack is subjected to a biaxial stress field the criterion for failure
initiation is simply

P @@ -

(n),

are the shear and frictional shear stress (Q’MUN

(n)

f

(n)

where T and T
respectively on the n*® crack surface. If we postulate that this rule is

valid for the three-dimensional casé, then by solving equation G3 for B, we

lg/The stress o represénts the magnitude of the applied tensile stress

@cting normal to a primary crack) required to initiate growth of micro-
crack (see figure 6).
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find that for values of 0,,>0f] (cf] =stress required for microcrack
initiation) —

Lol e E -
o - 1 [ A,-/AZ-GLA K, ]
2 T2 24,
(G4)
gele = 1 cos-1 "' —A24VA23—4A1A3 ]
1 2 L 24, ’
where
Ay = (I+P)ad
Ay = 2(1+y®lajaz+ 8T a5-4b; (G5)

Ay = (af-4by)+(uast4T,)® .

To determine the angular limits on ¢, equation G3 must be maximized
with respect to 8. This gives the orientation of the critically oriented

crack as a function of ¢ to be

1 -1 ‘%'*05“40&%

B, (©0) = 5 cos 2 s (G6)
where
@ = af (1+®)
0, = 2(1+pRla3(a,az-2by) (G7)
az = (2by-aya,)® - yRal (a§ - 4by)
-gg/The critical stress system required to initiate failure of the critically

oriented primary crack is obtained by maximizing equation G3 with respect
to B and letting ¢=90°. The result is

2T + 04y (/THuPty)
T+2-)

cr -
011 =
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N[

The angular limits on ¢ are (@f'%, 5 ). The angle ¢§'® is determined by

equating BS'S to ). TFor angles of o < "%, failure initiation is pro-
q g‘e ccP g CP__C\OI s P

hibited while for ¢f'® < @.S'g , failure initiation is theoretically possible.
The critically oriented "cls' crack occurs at ¢, = 90° and B, = % tan™? i and

the critical stress required to initiate failure of this crack is

~
27T, + 0554 <1+11‘2+Ua)
ViH® -

. (G8)

cr
0'11 =

When 0,5, = 045, there is no ¢ dependence and equation G4 becomes

27, + p(oy,+053)
Bst® = % [ tan-1 £ + cosml —= Bi11T7ss
. 14y (0y1-0g3)
2 + 04,10 :
BSte = % [ tan™? i - cos™? Te + 1(011¥055) (G9)

V144® (011-033)

Thus for values of o,, > of] and for cracks satisfying the conditions

Bft® < B < B5-® and 5t <o < , microcrack initiation is theoretically

N R

possible,
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1f P(c,B,®) describes the distribution of cracks in the specimen,

the density of cracks suitably oriented for microcrack initiation is

Ls lt_ cls
Cf ) 52

ot =p. [ [ [ P,8p)dpdpdc , (610)
Cgoax cprs B{:Ls

N, o . : - .
where p, = ©¢/V is the density of cracks within a specimen of volume

3G/

v =, te

are the maximum crack size and the

4G /

length of closed crack just undergoing failure initiation—'.

The quantities ¢ ,x and cJ

To estimate the tension failure initiation of open cracks, we shall

assume that microcrack initiation occurs whenever o, < - © Solving

c*

this equation for B gives the angular limits within which the "opt! fail-

ure occurs, namely

2Pt = 1 cos™1 r 4o, + (20, + 0'a:a)]
3 2 L (2011 - oaa)
(G11)
—4Cc~ 2(022 + 033)
2(035-033) ?

q%pt = % cos™1 r

where 0,, = (035 + 0gz3) + (052 - 033) cos2¢. When 0p5; = Ogzs, the

. 1 0. +(011+0535)
dependence vanishes and B3P! reduces to the value B3P*=Z cos 1[? < 1-—23
' 2. Lo (011-033)

g

Catn T/2 /2
36/ I I j'P(c,B,m)dBd¢dc=l. (cy1n= minimum crack in length in the

Chpax o 0
specimen.,
4G/ ~ ' . .
—'if T, = B, (B, = constant), then the length of crack just undergoing
Chax
failure initiation can be estimated from
chs ~ 16B,

T Gl

X > 4T = ~CT. el —
where 0,,2 o7y. When 0y,% 077, €7 "= Cuax .
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The "fopt'" microcrack density is
opt opt
€1 7f/2 BSP

et =2p, [ [ [ P, B pdpdpic , (G12)

opt
Cpax W3P° 4

where ¢, ,, and c{P? are the lengths of open cracks which have and are

currently undergoing failure initiation respectively. The upper limit

- !Bl .
Cyax

O, ~8

in equation G12 is c§?' & (:

Y

Oagz
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APPENDIX H

AN EMPI RIC Al, ESTIMATE OF THE MICROCRACKING
STRAINS IN BRITTLE ROCK DURING
REGIONS ITIT AND IV

The complexity of the problem of brittle rock behavior during
regions III and IV defies an exact analytical determination of the
microcracking strains. It is therefore essential to develop an
empirical approach to this problem which yields results consistent
with experimental observations, With this in mind, it is logical to
postulate that the empirical expressions for the microcracking strains
should be chosen so as to satisfy three essentiai conditions. (1) The
microcracking strains are proportional to the density of microcrackslg/
within the specimen. (2) Since the microcrack growth process is not
an instantaneous process, the volumetric microcrack strain vs. stress rela-
tions should be of a form such that the volume of the specimen tends to

increase as the applied stress is increased above the critical stress,

(3) Near incipient failure, the microcrack strain expressions should
\ P D) P :

11/

=—'We shall assume that oSt® and pa 2t are proportional to the actual

number of microcracks for either failure mode.
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express the result that microcracks are in the process of joining, 1i.e.,

at total failure, where the specimen ruptures into two or more parts, the

lateral strains and hence the volumetric strains tend to become quite large.
If crack interaction effects are neglected, the incremental stress-

strain relations, modified to include microcracking, can be written

& »)
Zd [zj‘gﬁ ul\)ldAcl

]
n=y

<=

~ *
de, =dg, +

* 1 v r »)
degg = d€22 + v Ed Lf%‘)UQVBdAc:l . (Hl)
n=1 E

(=)

Zd [%&ﬁusvadAcl, P)

<
n=)

s

degs T desg +

<|=

where M, is the total number of microcracks.

To obtain an estimate of the microcrack strains, we can use Paulding's
(1965) result that for the '"cls'" cracking mode the planes of the microcracks
tend to be inclined at relatively low angles.to the maximum principal stress
direction. He observed that for failure in compression there is little or
no permanent axial strain and that the volume change is almost entirely due
to a permanent increase in the cross-sectional area of the specimen.

By postulating that the microcracking process can be approximated by a
system in which voids whose major planes are inclined at a low angle to the

maximum principal stress direction are opening spontaneously as the applied
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stress increased above a certain critical level, Brady (1968a,b) presented
empirical expressions for the microcrack strains. For the 'cls' failure

mode, these strains are

rd SO d [ §§ ufn)vfn)dAgn) }::

n
o

o DN PNl L _dom
rde )l =Vd [fﬁ;ue vy dAg . = - B$LE g (q)cos”y 7 - (H2)
doy,

yjels cLs
[.des(g) < [deég) - B§L® g(q)sin®y - "
- m 8 - 3 011 0y1)

where o is the inclination of the plane of the microcrack to the x; axis,
Y is the angle between the microcrack normal projected onto the x,, Xj,
g(a) is an unknown function, and B§Ls and m are unknown constants. For

the "opt' failure mode (0z; < - T,), the strains are

opt
rde(n) =0
¢
pt do
r& (n) ° S’ngt f(o)cos?y ——?—~§§—~; (13)
O33-0z3)
- opt do
[deég) > B§Pt f(w)sin®y ’: 33 S
- ! O33-033)

where f(a), BgP*, and , are unknowns and (of,,cf;) are the stresses at total

failure for the !

cls" and "opt'f mode respectively. The unknown constants are
evaluated from the experimental data.

R . . 24 .
If we sum the individual microcrack stralns-and,average——/ the final

expressions with respect to ¢ and Yy, the microcrack strains become

gﬂ/For a system containing a large number of microcracks and for effects

large in comparison to the microcrack, the summation relatlonshlp can
be approximated by an integral relationship.



for the "cls'" mode

for the "opt" mode.
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I

pt
c

o
[
[
5

d0'33

(Uésfcsa)p
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— RcLs
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= RpaDpt
Bl

:Ls
Y3

)

-YfLS
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%

[
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mum and maximum angular orientations of the

aé:Ls
[ g(@)cos®y Py s (o Y)dady

G{:Ls

clLs

0z
[ s(@sin?y P, (o, V)dody

Ofl's
ag?*
f f(a)cos®y ngt(G,Y)dadY
afpt

0gP*
] £()sin®y Pypy (a, Y)dady

G'?.Pt

1"

90

(14)

(H5)

(H6)

where the (Y£U°,v5'®), (af'%,a8"®), (¥P!, ¥3P*) and (af®',c3?) are mini-

cls'" and "opt" microcracks.
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The P. s (0, Y) and P,uy (0, ¥Y) are their respective normalized distribution
functions. Figure Hl illustrates diagramatically the possible "cls' and
"opt'" microcrack distributions when 035 = 0a3.

Because of the complexity of determining the A;, coefficients in
equation H6, an additional approximation in estimating the influence of
Ogp on the microcrack strain is required. One possible mathematical

format of the microcrack strains for the case of true stress triaxiality

is
d<es> %0
d < &5 > Z‘--I-A,l 0’"23 -—-——(-1—6—1—1—-— (47)
22 Tets =27 11‘033/ (o) -0y, 2
~ 1 do
d < ens > ~ .= cts 711
33 “clLs 2 A Pre (Glfl—gll)g
for the '"cls' mode and
d <:E€f Zapt =0
’ N
~ 1 017 =022" t doss
d < 55 > =_A<c__— OPE H8
22 “opt 9 “2 11-0as Pre (O.st_o.ll)p ( )

]
J—=
>
[
2,
o'
-
i
e

" C
d < €45 >ypt

N
0y, =0
for the "opt" mode. The functions A, and A, are given by A , =-1-A1 \/—l—l————?—%>
2 011,—033
/011 ~Oz22

3
A2z = 2 Az 11-033

> Ag = 2 A, and Ay = —;- As. The quantity "N'f is an

unknown and must be determined by experiment.
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The total average volumetric microcrack strain can then be expressed

as
~1 017022 _doyy
-d<el > T=A °le——-1-1— > 1]
t1 “aec 2 1 Pu'¢ L \Oy 1033 (011'011)m (H9)

for values of 033 > - o, and

- do 10)
-d fiy cLsr( 1 22) ] = ept[< > 33 ,H
REYER 2Al e’ |\T); -0as/ T G "311)§ A2 011 =033 (ofs-0aaP

- cr
for 033 < - 0, and 0;; > o7;, and

022 dGSS
-d <ef > :—A °“[£f > J H
tirme 2 11033 (033-033)" (H11)

cr
for g, < o07;.
The total average strains for the case where o,, is compressional

(e 077) and 0zp = 033 (< -0, ) is tensional are

)
w

LS ~ ®
<&~ = <>

(H12)
‘733 d 011 4
<Eat> = > A oot ______EES__._ _ L rA cts 9911
<€22/ €33 \633 '{ 2 (Uafs‘dssﬁ’ 2 1pmc (O.lfl__gll)!@ b
o7y |

where the microcrack densities are specified by equation Hl. Figure H2
illustrates the stress-strain behavior predicted by equation H12,

It is essential to determine if the quantities A, and A, are affected
by the addition of confining pressure. Paulding's results suggest (at
least for the '"'cls'f 4mode) that the angles the microcracks make with o5,

are both small and little affected by the addition of confining pressure.
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Brace and Orange (1968) have shown that for the Westerly granite the
changes in volume due to microcracking are insensitive to the effec-
tive pressure. Their results suggest that total failure of the Westerly

granite occurs at a critical crack density and that this critical density

is pressure independent. This information suggests that A and A; are

little affected by the state of stress. Consequently, we shall postulate
that the final expressions for the microcrack strain components contain
unknown "'constants'" (A, and A;) which must be evaluated from experimental
data,

As an example of equations H9 through Hl2, consider the total average
strains resulting from (1) a pure uniaxial compression and (2) a pure

uniaxial tension., In the case of uniaxial compression,

oL

d<et, > T d<e; >

(H13)
t t o o~ % 1 cls doy,
d<€33>¢ = d<€22>c (=3 d<€33> - "2‘ Al pﬂ c (Olfl—:gll )m ’
while for uniaxial tension
~ % dO'
d<ey > = d<e ;> + L Aspont A
‘ 2 ) (0yy =0y, ) (114)

oL

«©

where the "*' strain components were derived in Part I. From equation H13

3H
and H14, the apparent—“/ "elastic' moduli are

E, T E
(H15)
% [
Ve TV + Ef A _*-f_:__
i 1o (o) -opy P

" 3H
21 y apparent moduli is meant that the moduli are measured with respect

to a fixed coordinate system--in this instance (x;, Xp, Xg).
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for compression and
o E
E, = oot
1 Pa e
1+zA,E, F 3
(011-011)
(H16)
B3 - Vi
Vy = p:pt
1"'%A2E1. ? - P
(011-011)
for pure tension. The E;, E,, v, and \, were derived earlier.
The "bulk" modulus ( <ef1> Vs, 0p; ) in compression and tension is
’k Ko
Kf = p,;l'a
c
1—A1K° - f T
(011-011)
(H17)
* Ky
1+3A,K, —5—

f
(011'011)3



T 1256
95
APPENDIX I

BRITTLE FRACTURE UNDER HOMCGENEOUS
AXISYMMETRIC STATES OF STRESS

A fundamental problem in developing a criterion of brittle fracture is
that the criterion must be general enough to predict the failure character-
istics under all states of stress, A criterion of this nature, should one
in fact exist, must imply that there is something in common with each fail-
ure mode, From our earlier comments, it is apparent that neither the magni-
tudes of the stresses nor the strains at total failure saisfy the above
requirement. However, the total volumetric strains at failure for each fail-
ure mode do have in common the fact that they express the result that micro-
cracking (i.e., local volume increases) is occurring within the structure.
Paulding's (1965) results indicate that in uniaxial .and confined compression
tests on the Westerly granite, the magnitudes of the volumetric microcrack
strains appear to group about a value of 100 x 10°% near structural instabil-
ity with no apparent increase or decrease as the confining pressure is
increased. This result suggests a critical volumetric microcrack strain
criterion may be operative.

We have shown that the total volumetric strain due to microcracking can

be expressed as
£ ?
O11 Oz3
~ - %
las |z [ A , + [ Ape2 ; (11)
8 f P
o3} (071-01,) 055 (035-033)°
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-where”thevresﬁrictioﬁs on the existence of the densities were dis-
cussed in appendix H. The stress oy, is the magnitude of the applied
stress at total failure. The total volumetric work due to microcracking
is
€qf
wesv [ oy lagf] , (12)
o
where-V is the total volume of the specimen. We shall assume that total
failure occurs when the total volumetric work expended in creating micro-
cracks attains a critical value, i.e., total failure occurs when
Wi ® = max . (13)

This criterion is equivalent to stating that total failure occurs when the
total volumetric strain due to microcracking attains a critical value, or
alternatively, total failure occurs when the total microcrack density

achieves a maximum value, i.e.,
elsy opt =
Cy (pmc max T Cs (p;_a?: aax = Ca (14)

where C,, C,, C, are unknown "constants" and the (PS5 )gax and (pPB%), 4y
are the values of the microcrack densities at incipient total failure,
Either form of the proposed failure criterion expresses the assum-
tion that total failure occurs when there are a sufficient number of
microcracks available sothat the probability of their joining up to form

a macroscopic fracture surface is quite large (T 1).
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As an example of the use of equation I4, assume for simplicity that
P(c) = 8(c-c,) (i.e., all flaws have a constant length). Equation I4
becomes
Cl (p,rgc‘::s )'_n_iax + Ce(p;!’%t )max 2403 * (IS)

If we further assume that P(B,¢) is uniformly distributed and independent

of ¢, equation I5 can be written as

Cyp, (sinB§-®-sinB$t®) + Cyp,sinB3P* = C; . (16)
When 05 > - o,, failure results from the pfL® component, i.e.,

2T, 4 055 (V14° cosM{“ )

o (17
(V1+u2costLB-u)
. Ca
where M3lt® = 2sin™? [ - 1 ] + Denoting the uniaxial com-
- 2C1pecos(%tan‘1 =)
B
pressive strength by c, gives
27, + pc
cosMSL® = —~£f——E—g . (18)
/14 e, '
When 0y, < 0f], failure occurs from the pP2* component, i.e.,
J(8) _29¢ + 0yy (L-cos2ME®*) (19)
- = 2
28 l+cos2MoP?
Ca %
where MP* = sin™!? c 2' . Denoting the biaxial tensile strength by t, gives
2Me
' 20,
1 + cos2uPt= = . (110)

]

Similarily, the uniaxial tensile strength (t;) of the aggregate can be

expressed as

o %
Fo “(1-sin Mget)? (1)
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\

Comparison of equations I10 and Ill shows

Eo - 1+sinMgpt

ket A | (112
t¥  1-sinM3P* ’ (112)

or simply, the uniaxial tensile strength of the aggregate is always larger

than the biaxial tensile strength. Obviously, since P(c) = &(c-c,), the

triaxial tensile strength is equal to -0..

Therefore, when P(c) = é(c—co), this analysis predicts that the stress

space fracture surface of the aggregate can be subdivided into three zones,

namely,
Zone 1:
Zone II:
Zone IIT1:

Failure results from the microcracking of open flaws

"opt“. The least principal stress satisfies the

inequality gg5.< - T, .

Failure occurs by microcracking of both open and "cls''
cLs

flaws. This region must terminate when the (B3 flaw

begins to open, i.e., when B, = B§'®, where

Failure takes place only by microcracking of the '"cls'

flaws. The least principal stress, 055, satisfies the

condition o445 + 0, 20,

Figure Il illustrates the fracture surface based upon this anadlysis.

There are.seven major conclusions which follow from the above critical

microcrack density criterion. (1) There is a smooth transition between pure
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compressional failure (all principal stresses are compressions), exten-
sional (one or two principal stresses are tensile) failure, and true
tensional failure (all principal stresses are tensile). (2) The stress-
space fracture surface is smooth because there is a smooth transition
between the above three types of failure. (3) The stress-space frac-
ture surface possesses a corner which occurs when all three principal
stresses are equal and tensile. (4) The stress-space failure envelope
is convex. (5) The biaxial tensile strength is always less than or
equal to the uniaxial tension strength. (6) The biaxial compressional
strength is\equal to the uniaxial compressional strength. (7) There
is a slight tendency for the tensional strength to increase with con-
fining pressure (see figure Il). With the exceptions of conclusions

3, 5, and 7, these observations have been substantiated experimentally
by Brace (1964). There is insufficient experimental data to test con-

clusions 3, 5, and 7.
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APPENDIX J

BRITTLE FRACTURE UNDER HOMOGENEOUS
TRIAXTAL STATES OF STRESS

Failure criteria for rock materials are currently based upon the
assumption that at constant temperature and strain rate, the failure char-
acteristics of rock are dependent only upon the stress state (0;,>055>033)
within the material. Under these conditions, failure under confined pres-
sure (two of the principal stresses equal) has been extensively studied
(Brace, 1964; Handin, 1957; Mogi, 1966). However in recent years, it has
become recognized (Brace, 1964; Mogi, 1967) that the intermediate prin-
cipal stress may be of importance in governing the fracturing character=-
istics of rock exhibiting either brittle or ductile behavior.

For common metals exhibiting ductile behavior, it is well-known
(Nadai, 1950) that the octahedral shear stress criterion fits the experi-
mental data better than the critical shear stress (Tesca) criterion
(figure J1). Figure Jl indicateés that the intermediate principal stress

has an influence (although not very significant) on the ductile behavior

of metals. It should be noted that the biaxial (o,,; = 0pp) and uniaxial
(0,1) ductile strength are equal and that there is no difference between
the extension (0;,=0,,>055) and the compression (0,,>0,,=055) Mohr envelope
for the octahedral shear stress criterion,

The basic question as to the effect of Oz, on the fracturing charac-

teristics of brittle materials has yet to be completely resolved although



101

recent experimenters (Handin, 1957; Mogi, 1967) report finding a discrep-
ancy between the Mohr envelopes for extension and compression. Brace (1964),
using a special test specimen design, found no detectable differences between
the two envelopes.

By assuming a relationship between the various failure modes in brittle
materials, it was stated in appendix I that one of the more fundamental
problems in developing a useful criterion of brittle failure is that the
criterion must be general enough so that it becomes possible to predict the
failure characteristics of brittle materials under any and all states of
stress., We shall again postulate that total failure occurs when the work
done in creating microcracks attains a critical value, or alternatively,
total failure occurs when the volumetric microcrack strain achieves a maxi-
mum value. We shall further postulate that this condition is completely
independent of whether the applied stress system is axisymmetric or tri-

axial, Therefore, total failure takes place when

las | =1 daf Lo - (31)

This criterion is equivalent to assuming that total failure occurs
whenever the total microcrack density attains a critical value, i.e., total

failure occurs when

I
@}

c1 (p;lés){q ax + Ce (pgogt)gsax_ (JZ)

where
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cgte at/, BSL’
(5t )pax =8 [ [ [ Ple,po)dpdyde
Cpax PFH° PSLC
max (J3)
c‘ipt “/2 ngt
(0228 )paxy =8 [ [ T Plc,Bp)dpdgde .
cmax cpgpt 0
The limits of intergration are evaluated at failure (appendix D) and
Te N3 ~N ' -2
cgte =4 <7;1F°;/ [(Vlﬁf"u/ -k <¢1+u +u>] Cpax
(J4)

opt
€1

i

<:0°:fc
£ nax *
011

Figure J2(a) shows the influence of the intermediate principal stress
on the biaxial compression fracturing characteristics of a hypothetical
brittle rock. The least principal stress (0g,) is equal to zero. For ease
of calculation, all cracks in the rock are taken to be of equal length. The
uniaxial compression strength (c,) is 34,500 psi. The value of tﬁe stress
required to initiate growth of the first microcrack under uniaxial compres-
sion (C,) is 17,250 psi. The coefficient of friction along the crack sur-
face is 0.70. We have assumed that the cracks are uniformly distributed
throughout the rock structure. There are three conclusions to be drawn
from figures J2(a) and J2(b). They are: (1) the uniaxial (0,1=C4, 0p2=05,=0)
and biaxial (011=022=c°,033=0) compressive strengths are equal; (2) there
is no effect of the intermediate principal stress for compressive values
of 0, in either the extension (0;;=0y,) or the compression (0,,=0,5) test
(figure J2[b1); (3) the maximum effect of O, on the failure strength only

amounts to approximately a 20 percent increase in strength over the uniaxial
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compressive strength. We also considered a similar problem but with a
friction coefficient equal to zero. In this case we found that the maxi-
mum strength increase (still approximately 20 percent) occurred at a value
of 0y, equal to one-half of the uniaxial compressive strength. This is a
location which would be expected if a distortional energy failure crite-
rion (or octahedral shear stress criterion) were operative. The first and
second conclusions are in agreement with Brace's (1964) experimental results.
Figure J2(b) shows the influence of o0,, on the extension and compres-
sion failure characteristics of the same hypothetical brittle rock. The
uniaxial tensile strength (t, ) is assumed to be 1500 psi. The value of the
critical stress (0.) required to initiate failure of the "opt' class is
1125 psi. 1If this data is substituted into equation J3 we find that there
is an effect of the intermediate principal stress when the least principal
stress (033) is tensile and that the maximum effect occurs under biaxial
tension when 029=033=-t?, where tf denotes the biaxial tensile strength
of the rock. The biaxial tensile strength (t_ ) for this rock is approxi-
mately 1150 psi. This amounts to a reduction from the uniaxial tensile
strength of only 23 percent. The triaxial tensile strength is 1125 psi
since all the cracks are assumed to be of equal length. As the maximum
principal stress (o,,) increases in compression, the percent deviation
between the extension and compression envelopes decreases as shown in

figure J2(b).
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APPENDIX K

EFFECT OF INHOMOGENEITY ON THE FRACTURE
CHARACTERISTICS OF BRITTLE ROCK

The pressure dependence of rock strength in the "brittle'* domain
(figure K1) has been graphicaily categorized into three zones by Mogi
(1966). These zones are: (1) B, . The strength vs. pressure curve is
nonlinear and concave downward. The breaking strength increases while
the rate of the increase decreases with the addition of confining pres-
sure. (2) B,. The strength increases lineariiy with pressure. (3) B,.
The slope of the strength vs. pressure curve is gradually decreasing.

This zone represents the transition between purely brittle and brittle-
ductile behavior,

While these zones are typical of brittle rocks, some rock types
such as quartzite consist primarily of B, (figure K1) and lack the B,
zone. Other rock types such as granite tend to change continuously from
B, to By. In carbonate rocks, the strength vs. pressure curves vary con-
tinuously from B, to B,. However, for small values of confining pressure,
carbonate rocks do display a linear strength-pressure relation (Mogi, 1966)
(figure K2).

There is a tendency in some brittle rocks for the anglevof the macro-
scopic fracture surface (the plane of which is measured with respect to
the maximum principal stress) to increase as the confining pressure is
increased. While there is no wealth of experimental information on this

subject, the available data suggest that this behavior is more pronounced
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in materials containiﬁg a number of different mineral phases, i.e., there
appears to be less of an angular increase in quartzite (Brace, 1964) and
carbonates (Mogi, 1966) than in granites (Brace, 1964; Mogi, 1966) (fig-
ures K1, K2 ) . These observations suggest that material inhomogeneity
may to some degree affect the failure characteristics of brittle rock.

In analyzing the possible effects of inhomogeneity on the fracturing of
brittle rock, we shall make the following assumptions: (1) The specimen
is optically isotropic in the sense tﬁat the grains of each phase are
randomly distributed throughout the material; (2) the volume is suffi-
ciently large 56 that the specimen will macroscopically behave as an
elastically isotropic unit; (3) the inter-and transgranular cracks can be
modeled by ellipsoidal-type cracks collectively characterized by a distribu-
tion function P(c,B,®). The inhomogeneity will be mathematically modeled
by asswmning a distribution of friction coefficients (uy, i=1,°°*,M) and
"tensile strengths' (T,,, i=l,--+,M) for the M possible types of contact
surfaces (figure K3); (4) there are sufficient numbers of each type crack
[N,y (ui,To¢)] so that a continuum approach to the gross mechanical
behavior is possible.

For the inhomogeneous case, equation 72 can be rewritten in the form

T T
Az Q;Lc“} + A5 p;”é) = Ay, (K1)
Bax nax

where
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M
= 8p, z‘i’z [ T [ »,8 pdpdue
1=1

cl s cls
Crax 01 Bl

N\
2,
o

w
m\/
A
»
!

T M cgrt “/2 A
<‘ogt> = 8p, zxyi [T [ P, pdpdpie (K2)
Bax 3 =1 Cpax cpgpt 0o

il

with ¥, = et/N,

. total number of primary cracks).

In the instance where Onp = Oggy, and the P cracks are randomly dis-
tributed and are of equal length, equation Kl for the '"cls'" mode can be
written as

b Gy ) ¥y (sinBgy?-singff®) = Cq (x3)

where

27g4 g (O11+054 )]'

1
Bs§e = 3 [tan"'-L — +cos™1?
K 1? (611 - 0a3)
2T e (04440
gSy® = & rtan‘l L cos? U TECEERLPTY (K4)
H ‘/1"'@% (0117033 )
B
Tey = Ei- . [P(e) = & (c-¢,)]

o

Figure K4 illustrates the stress-space compression field failure envelope
according to equation K3. The failure envelope is nonlinear and concave
downward., The rate of decrease of the envelope decreases as the confining
pressure increases. The physical reasoning for this decrease is that with
the addition of confining pressure, primary cracks with high frict.ion coef-

ficients tend not to satisfy the modified Griffith failure initiation theory.



Therefore, the failure of additional primary cracks possessing lower
friction coefficients are necessary for the development of a macroscopic
fracture surface.

While there is little question that these equations represent a con-
sidérable simplification of the actual problem, two points are evident;
namely, (1) the addition of confining pressure tends to inhibit sliding
of high friction coefficient primary cracks and (2) the formation of a
macroscopic fracture surface requifes the formation of additional micro-
cracks from the lower y primary cracks. For a material exhibiting these
properties, the failure envelope will be nonlinear in the compressive )
stress region and the degree of nonlinearity will tend to diminish as the
confining pressure increases,

Due to the complexity of the above equations, an empirical approach
is a necessity. The above model for nonhomogeneous materials indicates
that the apparent friction coefficient is dependent on pressure and as
the pressure increases, the apparent friction coefficient tends to decrease.
Therefore, as a first approximation, it is logical to use the equations
developed for the homogeneous case with the friction coefficient varying
with pressure, say u=ae-b033+c, where a, b, and ¢ are constants which must
be evaluated from experiﬁental data. This reduction in the effective fric-
tion coefficient has been discussed by several authors (Mogi, 1966; Byerlee,
1966). Finally, notice that this model suggests that the overall fracture
angle increases as the confining pressure increases, i.e., the critical
angle, L tan~1 1 of sliding tends to increase as the confining pressure

2 i

increases (see figure K2).
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FIGURE 1. -Typical Axial and Lateral Stress Strain Behavior of

Brittle Rock Under Uniaxial Loading.
(Conventional testing machine)



109

Axial Stress

Failure

% S ' =
€ii €5

FIGURE 2.-Typical Volumetric Strain Plot for Brittle Rock.
(Conventional testing machine)
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FIGURE 3.—lllustration of a Random Flaw Distribution
Characterized by the Distribution Function P(C,B,qs)
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FIGURE 5.-Two Types of Microcracking in o Granular Brittle Rock Subjected
to Compressive Loading.
a.-Intergranular Microcracking Model ("cls’ class), (T-T; > 7,)
b-Intergranular Microcracking Model ("cls” class), (T-7; 2 T¢,)
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FIGURE 6.~ Intergranular Microcracking in a Granular Brittle
- Rock Subjected to Tensile Loading {0y < -0¢).
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FIGURE 7-Nomenclature. Used to Specify the Angular Range of Closed
Cracks Undergoing Failure as the Applied Axial Stress ‘
Increases in Compression From (Oil)(n-l) to (O"“)(n)
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FIGURE 8.- Nomenclature Used to Specify the Angular Range of Closed
Cracks Undergoing Failure as the Applied Axial Stress
Increases in Compression From (033)(n-l) to (0'33)(n)~
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FIGURE 9.-(a) Variation of Volumetric Microcrack Strain of the Westerly

Granite with Percent of Fracture Stress.
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(b) Variation of Volumetric Microcrack Strain and (———C—R—-)
For the Westerly Granite 9
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VOLUMETRIC MICROCRACK STRAIN RATE, &i¢
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FIGURE 1l.-(a) The Observed Stress Dependence of Creep for Westerly:

Granite Under Uniaxial Compression. The Scales are as
Follows: (open circle) A at 9sec,0.5X 106 sec!; (square)
at 45 sec, 0.25 X 1078 sec-!; {solid triangle) at 90 sec,

0.1 X 10® sec’!(after Scholz, 1968).

(b) Constant Stress Creep Data for the Westerly Granite.
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FIGURE 13- Effect of Microcracking on the Stress Distribution Near a Cylindricol -Tunnel in @ Brittte Rock
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FIGURE Al - Coordinate Systems Used For Elliptical Crack
{after Ode,960)
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FIGURE Il.-—Stress-Space Failure Envelope Based upon a Critical

' Volumetric Microcrack Strain Criterion (section.shown
is the intersection of the plane o,,= T35 With the
three~dimensional surface).
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FIGURE J2.—Effect of the Intermediate Principal Stress on the Fracture

of Brittle. Rock. |
a.- Influence of oz, on the Biaxial Failure Choracteris’rics(cﬁ‘fRg 3 Cos

Co =34,500 psi, L =0.70)
b. - Influence of 03, on the Extension (o = G;,) and Compression
(032= Oy3)- Failure Characteristics of Brittie Rock(og=-1,125 psi,

t4=-1,500 psi, 52 -1,150 psi)
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FIGURE J3.—Effect of o,, Upon the Angular Spread and Distribution of
Uniformly Distributed Primary Cracks Suitably Oriented for
Failure (CLS Model) (Shoded area = equal area projection of the
normals to the primary cracks which are suitably oriented for
failure). (o§?= £ ¢y, co=2.50kb, ;£=0.70)
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FIGURE Ki(ag).—A Typical Strength-Pressure Curve of Dry Rocks at Room
Temperatures(after Mogi, 1966) A
(b).—Strength vs Pressure and Fracture Angle vs Pressure for the

Cheshire Quartzite (after Brace,l964)
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{ g} .~ Relction betwesn Comopressive Sirength and Confining Pressu
Dunham Dolomite
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{ £ ).- Relation between Compressive Strangth and {onfining Fressure in
Westerly Sranite

{ ¢ 1.~ Relation between Fracture Angle and Con Yining Prassure in Westeriy
Granite, [internal friction coafficient {u} colculeted from the Mohr
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