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ABSTRACT

A study was made of the mathematical theory of gas well drawdown
and buildup testing for the purpose of evaluating the effect of symmetric,
asymmetric fracture and real gas properties on gas weil testing.

The Iterative Alternating Direction Implicit Pkocedure (ADIP) was
used to solve the finite-difference equations for a two-dimensional model.
Anaiysis of numerical results from the computer model showed the

invalidity of buildup type curve analysis in evaluating gas reservoirs
because of the variation of real gas properties with time and the failure
of superposition because of the muiti-flow regimes.

It has been shown that the position with respect to the wellbore of
an infinite conductivity fracture has no effect on the flow solution during
the 1inear flow regime when uc is'evaluated at the time of the pressure
observation.

It has been shown that the formation flow capacity and the fracture
Tength can not be calculated from the "linear" flow period curve, but
must use data obtained from the "radial" flow period. Thisrmethod of
calculating formation flow capacity and fracture length is more accurate
than other methods which use gas properties at initial pressure. After
the end of the linear flow period the effect of fracture position starts
to affect the solution at different flow times which depend on the fracture
]ength.

The superposition principle was checked by buildup tests during

different stages of depletion and was found to be invalid for evaluating

iv
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fractured gas wells. This could be explained by the non-linearity of
flow equations written in terms of m(p) and that the flow regime is time

dependent.
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INTRODUCTION

Hydraulic fracturing has become a standard well completion practice in
lTow permeability reservoirs. As a result of a number of studies, an increase
in understanding of fractured-well behavior has been obtained.

Transient pressure tests on fractured wells can. overcome the objections
to stabilize flow tests by indicating when a stable pressure gradient is
reached.

The transient pressure test can be used to determine formation flow
capacity and effective wellbore radius.

The slope of well pressure-time curve during the linear flow period has

5,6

been used to determine the fracture length. Also, the slope and positicn

of the transient pressure-log time may be used to determine the flow
capacity and wellbore size after a sufficient lapse of time so that the
pressure gradient in the vicinity of the fractures becomes constant.
A11 studies of the flow behavior for a fractured well consider vertical
fractures which extend an equal distance on both sides of the wellbore.
The objectives of this study are:
1. Investigate possible effect of the practice of using a constant uc,
2. Investigate possible effect of the practice of using superposition,
3. Investigate possible effect of fracture not being symmetrical,
4. Effect of constant rate and constant mass boundary conditions.
A numerical simulator of a fully implicit finite difference was derived

to investigate this study.
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REVIEW OF LITERATURE

It was recognized early that intercepting fractures can strongly
affect the transient f]bw behavior of a well and as a consequence, the
application of a classical method to the analysis of transient pressure
data under this situation can produce erroneous resuits. Several methods
were proposed in the past to so]ve/thﬁs problem.

4

In 1968, Russel and Truitt’ presented a method to correct the resu]ts

obtained from application of Horner's method:}

to the analysis of pressure
build-up data. Tables of dimensionless wellbore pressure versus dimension-
less time were presented for different values of fracture penetration.

In 1968, C]arks4 presented a method for analysis for pressure fali-
off data in fractured injection wells. His work was based mainly on the
work of Russell and Truitt4 and consisted of a combination of two graphical

techniques: one based on linear flow theory (P.  vs ¥ t ), and the other

ws

based on radial theory (P__ vs log t).

'S

Also, in 1968, Millheim and Cichowicz 55 published a paper concerning
the analysis of pressure transient data for a fractured gas well produced
from a low permeability formation. They indicated that a well test duration
of at least 24 hours might be required in order to establish transient
radial flow conditions.

The effect of non-darcy flow on the behavior of fractured wells was
studied by Wattenbarger and Rameyg. It was assumed that the non-darcy

flow occurred in the formation, and it was found that the turbulence effect

did not stabilize during the linear flow period. These authors showed that
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the formation flow conductivity (Kh) may be underestimated if pressure
data are affected by non-Darcy flow.

56

Raghaven, Cady, and Ramey~ " presented a detailed study of the method

proposed by Russell and Truitt4. Furthermore, the applications of Miller,

12 9

-Dyes, and Hutchinson™®, Muskat”, and type-curve matching methods to the

analysis of pressure data for fractured wells were examined thoroughly.

Gringarten, Ramey, and Raghavens’30

published new infotmation con-
cerning the appTication of well test analysis to frgctured Qe]]s. Three
basic solutions were presented: namely, the infinite conduétivity for
vertical fractures and the uniform flux solution for vertical and hori-
zontal fractures. These authors concluded that the use of the type-curve
matching technique with classical methods allows a high confidence level
in the interpretation of pressure data.

A1l of this previous work has increased significantly our understand-
ing of transient fluid flow in hydraulically fractured welis. The Russell-

4 studies showed that conventional pressure build-up analysis cf data

Truitt
from these wells would yield, under certain circumstances, fairly good
estimates of reservoir permeability~thickness and average pressure. They
pointed out that the effect of a vertical fracture (in absence of other
effects such as formation damage by fracturing fluids) is to cause calcu-
lation of a negative pseudo-skin factor from pressure build-up analysis.
They also provide a means of estimating fracture half-length. Millheim and
Cichowiczss demonStratgd that reservoir effective permeability, turbulence
coefficient, effective fracture flow area, and fracture efficiency could

be obtaingd from constant rate drawdown testing of vertically fractured
5,30

low-permeability gas wells. The racent work of Gringarten et al.

has provided a sound basis for short-term analysis. Using type-curve
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procedures, it is possib]e to determine the end of the linear flow period

11

and start of the proper semilog straight 1ine on a Horner™~ plot.

Principle of Superbosition

When fluid flow is described by a linear differential equation and
boundary conditions, the principle of superposition and dimensionless
variables can bé used to reduce the number of solutjons required for
different magnitudes of the absolute physical parameters. Basically the
principle of superposition states that:

If F is the desired solution to a homogeneous,
Tinear, partial differential equation and c_f

1r

'c2f2 .. Cy fn are known particular solutions

then

Fro= oqfp+efy+ o ¢ fn

where Cqs> Cps « - . C are constants required to satisfy the boundary
conditions.

When the boundary conditions are time independent, constant production
rate case, the principle of superposition shows that the presence of one
boundary condition does not affect the response as long as the initial
conditions and other boundary conditions are of the same type.

Therefore, there are no interactions among the various responses. The
total effect and the solution for the new boundary condition is the sum»
of the individual effects.

When the boundary conditions are time dependent, variable production

rate, an extension of the principle of superposition, known as Duhamel's
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theorem car be used.
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MATHEMATICAL -DEVELOPMENT

The mathematical representation of the fundamental flow equations
which describe the flow of fluids through porous media is based upon three
basic laws. These three fundamental relationships are the law of conser-

~vation of matter, the Taw of motion as stated by Dafcy's Law, and the
equation of state which defines the thermodynamic behavior of the system.
The forthcoming development of the equations describing the flow in a
natural gas reservoir is based upon the following assumptions:

(1) Real gas of constant composition;

(2) Reservoir thickness is constant;

(3) Flow is single-phase, two-dimensional, and isothermal;

(4) Reservoir roék properties are independent of time, pressure,

and spatial location.

Appendix A contains a complete derivation of the governing flow equation.

Continuity Equation

Mathematical equations describing the single-phase flow of gas must
be based on the principle of the conservation of matter, that is, mass
can neither be created nor destroyed. Matter can be conserved or accounted

for by the relationship (Figure A-1 of Appendix A)

mass in - mass out = mass change .. (1)

The mathematical expression for this statement of the conservation of
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matter is the familiar continuity equation

v (ov) = - Aed) .. (@)
3t
Where

o = fluid density,
V= flow velocity,
¢ = porosity,
t = time, and
V = divergence operator.

Darcy's Law

For the conditions of laminar flow the velocity term in Equation (2)

is defined by Darcy's law as (for negligible inertia forces)

--K
V=~ 2w, .. (3)

Where
K = reservoir permeability,
u = fluid viscosity, a function of pressure only for
isothermal flow, and
P = pressure.
Permeability is considered independent of gas pressure.
Making use of Darcy's law in rewriting the continuity equation and
assuming porosity to be independent of pressure, that is, neglecting rock

compressibility, gives

7 (e Lo, . (8)
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Equation of State

For ease in handling Equation (4), it is necessary to express density,
p, in terms of pressure. The relationship between density and pressure

can be derived from the gas law for real gas, which is
PV = 1InRT, . . (5)

Where
V= volume of gas,
Z = gas compressibility factor,
n = moles of gas,
R = universal gas constant, and

T = absolute temperature.

If the gas density is expressed in terms of the equation of state, as

shown in Appendix A, Equation (4) can be rewritten as

v (KTRy -, AR .. (6)

Real-Gas Pseudo-Pressure

For the development of a rigorous diffusivity equation which is not
based on the assumptions of small pressure gradients or small changes in
gas viscosity and deviation factor, an Equation presented by Al-Hussainy
et al 59 converts pressure to the real-gas pseudo-pressure by defining

(excluding their factor of two)

P')
- P
m = é i dpr* , .. (7)
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Where

3
it

real-gas pseudo-pressure,

0
L

1 the Tower pressure at which m is evaluated, and

R}
n

9 the upper pressure at which m is evaluated.

From the definition given in Equation (7) it follows that

2RZ) - el .. (8)
Where

c = %-— %- %%- = gas compressibility
Also,

ym = PLP (9)

Diffusivity Equation ~—

Rewriting Equation (6) in terms of equations (8) and (9) results in

v(Vm)=%c-§-"tl~ . . (10)

It is important to note that the development of Equation (10), the diffus-
ivity equation in terms of the real-gas pseudo-pressure, involved no
simplified assumptions of small pressure gradients or small changes in
gas viscosity and deviation factor.

Equation (10) is a second-order non-linear partial differential
equation; non-linear because the coefficients u and ¢ are functions of
the real-gas pseudo-pressure m. Analytic solution of this equation is
impossible with existing methods, therefore, an apporoximation to the

solution is made using numerical finite-difference techniques.
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Finite Difference

Figure (A-2) in Appendix A shows a schematic of the flow system
divided into rectangular blocks. When Equation (10) is discretized in
time and space and written in finite-difference form for any block (i,j)
(for the two dimensional case on the assumption that nc source or sink

exists), it appears as Equation (11).

n* n* n* n*
M+1,d "™, ML T Mi-1,j
Y01 = % i - %0
xi+1/2 - X1_1/2
n* n* n* n*
Mi,3+1 = ™,3 M3~ M4m0
Y - Y, Y. - Y,
. j+1 j J YJ-I
Vius ~ Vioy
n+l n
* m. . - . .
= o(uc), Mg "M (11)
K 1,J At vl

The time level n* at which to evaluate the m's in the left-hand
side and the 'uc' product on the right-hand side of Equation (11) must
be specified. The simplest choice is to set n* = n in both sides of
Equation (11). The equation would then be explicit and easily evaluated,
but it would be restricted by the time-step size 1imitation required for
solution. This time-step size limitation required for stability can be
removed if the m's on the left-hand side of Equation (11) are evaluated
at n+tl. If the time level for the coefficient 'uc' is also set at n+l,
then Equation (11) would be fully implicit, which is desirable for several

reascns. The primary one is to obtain unconditional stability.

10
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With the time level n+l for evaluating both the m's on the left-
hand side and the coefficient 'uc' on the right-hand side, Equation (11)

can be rewritten as

F-}+1 n+l n+1 n+1
Tir1,5 " Mg Mg T M-
King = % i =%
Xjagy = Koy
n+l n+l n+l n+l
i S T T I T I 5
Y, - Y,
+ Yir1 = Y Y5754 K
Vine ™ Vi
n+l n ,
m, = = M, .
- n+tl 3,3 i,J ’
¢ (uc)i,j S .. (12)

Equation (12) is the finite-difference equation used in this study
to describe the flow of a real gas, subject to the conditions stated

throughout the preceding development.

Where
i = spatial index in X - direction,
j = spatial index in Y - direction,
i+%,j = the representative value between blocks (i,j) and
(i+1,3),
i,j*% = the representative value between blocks (i,j) and
(i,3+1) ,
Xig, = X+ X1+12' %,
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_ i i-1

Yy = K- — >
IR 2 -
j+s J 2 ’
R A Bl &
i-% J 2 ’

n- = time level at beginning of time step,
ntl = time level at end of time stebn,

n* = time level where n* = n or

n* =n+ %— fora>1, and

ntl _ .n

At = size of time step, t t

Appendix A presents the steps between Equations (10) and (11).

Finite-Difference Equation in its Application Form

Equation (12) must be worked into a more usable form to facilitate
its handling and solution within the computer. The approach taken here
is to represent both sides of the equation in units of million standard
cubic feet per day, MMSCF/D**.

The pore volume of any block (i,j) is

v = LAY, ..
i LX;4 j h ¢ (13)

Since ¢ already appears on the right-hand side of Equation (12),
then multiplying both sides by AXi AYj n gives

n+l ntl n
1 (ue)y s [(m,5 - ™y, 5)
AXiAYth (LHS) = Vpi ; - X . .. {(18)

** Standard conditions are 60°F and 14.7 Psia.
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The right-hand side of Equation (14) can be converted to units of

MMSCF/D by multiplying through by the factor

T

FA = -?fﬁl-—— , . . (15)

10 TPSc

Where

TSc = absolute temperature at standard conditions, °R,

T = absolute temperature at reservoir conditions, 0R,
and
PSC = pressure at standard conditions, psia.

The Teft-hand side of Equation (14) can be expressed in units of
MMSCF/D if an addifional factor of 0.006328 is applied to the permeability

terms. Equation (14) can now be writteﬂ‘in units of MMSC?/D as

n+1 n+1 n+l _ _n+l
M5 T Mg ML T Mg
(FA) (0.006328) (AX;AY;h)K Xis1 = %5 G- Xia
Xim = Koy
o pntl n+1 n+1
1,d#¢1 ~ 1,3 i,] i,j-1
"1 Y Y5 - Y5
Ti0s T Vg
n+l n+1
- (FA (“C)i,j Fhi’j ms 5], .
Py j L At .
Where

K = permeability, md,
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V_. = pore volume, cu. ft.,

= gas viscosity,\cp ’

¢ = gas compressibility, 1/psia ,
At = time-step size, days ,
m = real-gas pseudo-pressure, psiaz/cp,

FA = constant, 1/psia ,

h = vreservoir thickness, ft.,
' Xoiq = X,
' Lo _ i+1 i-1
Ax_i = Xi+1/2 - X1_1/2 = 2 2 and
Y. - Y.
= - = _J_+l_.__._\]_-_1.
My T T Yy 2

For simplification in writing these Equations, Tet

AY.
A- ., = J X s
R
AYj
B. . = [y
1sd i = X0
AX
C = ’
i, Yj+1 YJ
AXi
D. . = o——v— , and
T5J Yj YJ.__1
o AX.AY. h
G. . = _..___._1—\1._
i, 0.006328 K

Substitution of Equations (17), (18), (19), (20), (21), (22), and

(23) into (16) and rearrangement gives

n+l ntly n+l
Ay (Mieng ~ M) Bigy (Mg

n+l
i-1,]

. (17)

. (18)

.. (19)

. (20)

. (21)

. {(22)

.. (23)

14
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(ol ntly ntl _  n+l
oGy my e oMLy Dy (mpy e My
n+l
uc ntl _ n
Gi,j it (mi,j mi,j) . . . (24)

Equation (24) is the finite-difference equation in the two dimensional
form with unequally spaced intervals describing the flow among blocks in
MMSCF/D.

Equation (24) can be written as

B. .) n+l + B n+l

n+l
A - (B3 By gImy 5t By My s

1,371+1,

SURAC I TS Wb T IS T P B B T L PR DS |
+1
(pe)¥s
- isJ ntl _ n
Gi’j At (mi’j mi’j) . . - (25)

Boundary Conditions

Ih addition to the non-linear partial differential equation for flow
of real gas through porous media, boundary conditions have to be considered

in order to complete the mathematical formulation.

1. Boundary condition at the wellbore

A constant mass rate was established by specifying an initial rate in
MMSCF at time zero and holding it unchanged throughout the flowing period
of the well. This results in a constant mass flow rate at the inner
boundary of the reservoir and a constant flow rate at surface conditions.

This can be expressed mathematically as:
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L.
2KhT f
sC ; om .
q = r (.._ dx . o . (26-&)
scC PSC T 0 oy y=0

The constant flow rate at the sand face can be expressed mathematically as:

L
f
q = 2k (Logh dx . .. (26-b)
0 y=0'

2. Boundary condition at the reservoir outer boundary:

The condition of no flow across the outer boundary was considered,

which can be expressed as:

@) = 0, and .. (27)
xe

(f) =0 (28)
ye

3. Boundary condition at the reservoir fracture:

.

The condition of no pressure gradient within the fracture was con-

sidered, which can be expressed mathematically as:

m{x,0,t) = m(t) 0 2x<le t>0.

wellbore

Initial Condition

For all boundary conditions discussed above an initial condition of

constant pressure was assumed throughout the reservoir, i.e.

m(x,y,0) = m, . . (29)

-1’

Where

m, = initial real-gas pseudo-pressure, psiaz/cp.
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COMPUTER MODEL

A single-phase, two-dimensional reservoir simulator was used in this
research. The reservoir was divided into a system of grid blocks and a
differential equation for each cell was written which describes the fluid
flow in that celi. The equations for each cell form a set of simula-
taneous partial differential equations which can be solved for based on
pressure at the wellbore. These differential equations are approximated
by a finite difference tecﬁﬁique. To determine the desired element size for
the model, solutions were made with decreasing element size until further
decreases in size had essentially no affect on the calculated pressure.
Increasing the number of elements beyond 36 x 15 resulted in a maximum
change in the calculated pressure values of less than 0.1 percent.

The revised alternating directional implicit method was used without
an iteration parameter. The computation time was superior to the

41

Peaceman and Rachford ~ method of using half time steps, and the revised

ADIP method was stable.
Flow charts for the two-dimensional computer model are shown in

Figures C-1, -2, C-3, and C-4, (see Appendix C).

Assumptions

For the model under consideration, the following assumptions are
made about the rock and fluid properties and the flow:
1. Flow of real gas.

2. Isotropic rock properties.
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3. Horizontal flow, no gravity effect.

4. No Kh’nkenberg60 effect.

5. Gas saturation = 100% of pore volume.
6.

The effects of pressure drop within the fracture and
production into the wellbore other than from the fracture
are neglected.

7. The drainage area of the well is assumed to take

the form of a square as shown in Figure.1l..

Grid System

To achieve results of acceptable precision it is necessary to use
small dimensions in the vicinity of any discontinuity such as the edge
or end of the fracture. Larger dimensions were acceptable at greater

distances from these discontinuities.

The length of each successive element was increased exponentially
in the direction of the reservoir boundary. The pattern of the grid in

Figure (2) illustrates the configuration used in this study.

Method of Solution

Because of poor stability, explicit défference methods
are rarely used to solve initial boundary vaiue problems in two or more
space dimensions. The use of implicit difference equations is motivated
by several desires. The primary one is to obtain unconditional stability
with less computer time. However, as a practical matter, it is
highly desirable that the resulting simultaneous equations for a single
space variable satisfy these wishes reasonably well, the implicit equations

so far considered for two or more space variables yield systems of equations
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that are quite difficult to solve.

Some iterative methods, particularly the alternating-direction
imp]icit methods, are restricted primarily to parabolic-type problems
having constant grid cell dimensions and flow coefficients. For problems
~of variable element dimensions and flow coefficients the alternating-
ﬂ'direction emplicit method becomes unstable. Several techniques were tried
for solving the matrix equation. The revised alternating-direction implicit
- procedure (ADIP) method was found to be stable and effective.

This method has been ﬁsed extensively for flow in rectangles, such
as in the x, y plane. The method consists of solving the matrix by first
solving implicitly in the x-direction and then re-solving implicitly in
the y-direction. That is, it is first assumed that the second derivative
in the y-direction is known (from the previous iteration) and the resulting
tri-diagonal matrix is solved by the Thomas algorithm. Then it is assumed
that the second derivative in the x-direction is known. The matrix is
re-arranged and the resulting tri-diagonal matrix is solved by the Thomas

algorithm. This procedure can be written for Equation (25) as follows:

— 7 (K+k)
n+l n+l n+1 (K+s
Af M+l P Baagdme, 3 + By Moy *
P n+1 o1 10
Ci 3™, 541 = (C4,5%D4,50m5 ¢ 4M,5-1 :
(K) (K+s)

n+tl 1 [ n+1 n
Gi’j(uc)i,j "AT (m_i’j - mi’j) ] o e (30-3)
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[ 1 (K+1)
n+l n+l n+1 (
AiMied,g - Ry + B e0m5 * By 3mieg,; *
- S (k)
n+l n+tl . . n+l _
CiLa™i,+1 - (G5 % Dy 50mi 5 * By 3™, 51 y
(K) (K+1) —
n+tl 1 n+l n
Gi,j(“c)i,j X3 (mi,j - m'i,j) ’ . . (30-b)

Where K and K+1 refer to successive iterations.

The K+4 is an intermediate solution. Equations (30-a) and (30-b)
are solved alternately until a successive solution of Equation (30-b)
varies less than 0.001% at every mesh point.

The ADIP method of Equations (30) is similar to that presented by
Douglas, Peaceman and Rachford34 in 1959. This is a revision of the

41

original Peaceman and Rachford ™ technique.

Validity of the Model

Although no analytical solution exists for the flow of real gas, a
solution does exist if the coefficients viscosity (u)and compressibility

(c) are considered to be independent of pressure. Al-Hussainy and. Ramev {1966)

present an analytical solution for this assumption of constant coefficients.

28,960 q_ TP
- n— sc sc( log (0:000264Kt,

m = m,
wf i Kh' T 2
©'sc ¢“icirw
+ .3513) R . . (31)
Where
My T viscosity at initial reservoir pressure,
c: = compressibility at initial reservoir pressure.
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With the model treating the coefficients as constants and considering a

well that has not been fractured, the wellbore is treated as a fracture

extending an equal distance of 0.33 feet on both sides of the well axis.

Table 1 shows the close agreement between the computer solution in this

study and the solution computed from Eguation (31).

When a fracture extends an equal distance on both sides of the well

axis, the model §o1ution using My and C; in the coefficient was compared

to numerical solutions published by Russell and Truitt4 for the flow of

T1iquid into a vertical fracture. Figure 3 shows the close agreement between

the two solutions. These checks give confidence in the computer programs

and in the method of soiution.

From the numerical model the following observations were made:

1. The fully implicit. difference equation is stable in all cases.
When the coefficient (uc) is evaluated at the beginning of each
time step so that the equation is not fully implicit the solution
is stable only for extremely small time steps, approximately 10'8

hours;

2. The fully implicit 'equation has lower truncation error than the
implicit -explicit equation, permitting larger time steps to be
taken;

3. The computation time for the fully implicit equation is three to
four times that of the mixed equation per time step solution;

4. The fully implicit equation permitted the time step size to be
108 greater than the time step size for the expnlicit equation; and

5. Successively small elements around the fracture and fully imp]icit¥
difference equation are recommended to simulate fractured gas

reservoirs.

21
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TABLE 1

Comparison between Computer Solution
and Solution Obtained from Equation 31

Pf = 5000 Psia, T= 6600R, rw = 0.33 ft., 9 = 0.01 MMSCF/D/ft,
K=1.0md, p, = 14.7 Psia, T = 520°R.
Solution Obtained
Eime Compute5 Solu ion From quat19n231
ours m(p), 107 Psia%/cp m(p), 107 Psia%/cp
1.0 0.63823 0.637122
3.0 0.63565 0.630956
5.0 0.63445 0.630121
9.0 0.63308 0.628791
11.0 0.63760 0.625682
15.0 0.63188 0.623219
25.0 0.63068 0.621284
29.0 0.63033 0.619327
35.0 0.62976 0.617216
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RESULTS

The numerical model was run under two wellbore boundary conditions:

1. Constant mass rate at the sand face,

2. Constant flow rate at the sand face.

Model properties common to all runs are Tisted‘in Table 2.

For various cases listed in Table 3 the model wés solved with viscosity
and compressibility varying as a function of pressure in the m(p) function
and held constant at the initial condition in the time coefficient.

Other cases were solved with the viscosity and compressibility varying
as a function of pressure in both the time coefficient and the m(p)
function.

Tables 4 and 5 represent a model solution for two different cases.

TABLE 2

Input data which were held constant

Well Spacing 160 acres
Gas Gravity 0.7 (air = 1.0)
Original Reservoir

Pressure 2000 and 5000 psia
Net Porosity 14%
Bottom Hole Temperature 2000F

Total Fracture length, Lf 200, 690, 1200 and 1320 ft.
R 0.0, 0.5 and 1.0 (see Figure 1
for definition of Rf)

f
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Data
Set

P

W 0 N OV G & W N

O S
N = O

13*
14*
15%
16*
17
18
19*
20
21
22
23**
24

sc MMSCF/D/ft

Data Sets used by Numerical Model

O O O O O O O O O O O O O O O O O O o L o o o o
N

.01
.01
01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.2

.01
.01
01
.01
.02

TABLE 3

K md

n N = N
O = O O == O O
= O O O H O O O O O OO OO O 0O OO O OO OO oo o o

N
o

e S S S S T O T Y
. . .

O = s = O i~
L I e )

P psia

5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
5000
2000
5000
5000
2000

R-
f

200
200
200
600
600
600
1200

1200 °

1200
1320
1320
1320
1320
1320

1320

1320
1320
1320
1320
200
200
200
200
200

—t — [ S - — — () — [y s e pd pd pd — - O O D O == O O
. . . . . . . ° . . . . . . . o ° ° .

O O O O O O O O O O O O OO O O O o O O o1 O o o O
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Table 3 (continued)

Data
Set

25%%

26
27
28**

I MMSCF/D/ft

0.01
0.05
0.05
0.02

K md

1.0
0.1
1.0
1.0

* Constant (uc) within the model,

** Constant flow rate at the sand face.

Pi Psia

2000
2000
5000
5000

Lf'ft

200
200
200
200

Re

1.0
1.0
1.0
1.0

28
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TABLE 4

Szmple of Computer Solution

Constant Mass Rate at the Sand Face

200 ft.,

sc - C.01 MMSCF/D/ft., K= 1.0 md, Lf
£ = 1.0, P,i = 5000 Psia
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TABLE &

Sample of Comauter Soluticn
Constan: Flow Retz at the Sand Face
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DISCUSSION OF RESULTS

A. Real-Gas Pseudo-Pressure Function

The variation of the product (uc) with the m{p) function, Figure
(B-5) Appendix B, prevents the m(p) function substitution from linearizing
the diffusivity equation. It has been a common practice to treat (uc)
as a constant in the time coefficient in order to linearize the equation
and permit solution by integration.

Figure 4 illustrates the computed results when the quantity (uc) is
held constant in the time coefficient and when it is permitted to vary
in .the time coefficient with pressure.

The solution when the coefficient (uc) in the time coefficient is
constant results in a higher sand face pressure at any time than the
solution with a varying time coefficient.

The reason for this divergence is becaﬁse the quantity'(uc/uici)

gets much greater than one as the pressure decreases with time.

B. Theory of Dimensionless Variables

Dimensionless variables have been introduced to the theory of
differential equations in order to make the solution independent of the
actual values of the various parameters of which constitute a real system.

To achieve this for the flow of real gas in porous media, a suitable
definition of three dimensionless variap]es, mp & and qD,fhas bezn

introduced such that the dimensionless differential equation and the

33
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relevant boundary conditions can be solved once in terms of dimensionless

variabies for all possible values of the actual parameters. The dimen-

5

sionless variables defined in the literature™ for the flow of real gas

in porous media are presented in Equations 32-36.

1 - M
S L T RS
D Pschsc ap
q. P T
sc sc
qy = T . ... (33)
D TscmiKh
tDw = —-‘ﬁ‘——z— s e .. (38)
¢(uc) %%,
. X .
X5 x R o .. (35)
Ty = YT
Yy v ..« . (36)

The general differential equation for the flow of real gas is:

2 2
3°m . 3’m _ ucé  3m .. (37)

Substituting Equations 32, 33, 34, 35 and 36 into Equation 37 results in:

3%m,  9°m uc -9
ZD’+ ZD= D ... . (38)
ax’p  3y’p  (wc); dtp,

Because the quantity (uc) varies with M, a functional relationship

exists between the time coefficient and mpy this leads to a non-linear

diffusivity equation in terms of the given dimensionless variables which
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means Equation 38 can not be solved independent of the actual parameters
in the definition of my i.e. ap-

Based on solutions, when uc in the time coefficient is permitted
to vary, the values of wellbore pressure are not independent of the

values of the parameters used to define t_, qp and m

D D

The deviation because of changes in permeability are illustrated
in Figure 5, itvis noted that the effect of the variation in (uc)
decreases as the permeability increases. At value of permeability of
1 md the permeability calculated based on (uc)/(uc)ﬁ =1 is 10% 1cwer than
the real value. At value of permeability of 10 md the calculated per-
meability for (uc)/(uc)i = 1 is 9% lower and for a permeability of 20 md
the calculated permeability for (uc)/(uc)i = 1 is 7% lower than the real
value.

The deviation in the calculated model performance because of changes
in flow rate are illustrated in Figure 6, it is noted that the effect
of not considering the variation in (uc) decreases as the flow rate
decreases. At value of flow rate of 0.2 MMSCF/D/ft. the calculated
permeabiiity for‘(uc)/(uc)i = 1 is 10% lower than the real va]ue. At value
of flow rate of 0.01 MMSCF/D/ft. the caiculated permeability for
(uc)/(uc)i = 1 is 8% lower than the value of permeability in the model.

The dimensionless time was modified and defined as:

Kt
= q
tDN (b(UC;X . . . . (3..)

where the quantity (uc) is evaluated at the we]]bore'pressure at time t
rather than at the initial pressure.
Substituting Equations 32, 33, 39, 35 and 36 into Equation 37

results in:

35
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3%m 9%m _ om
D D _ ;4 _t 3 D
5}75-+ §§?B = (1 e ot (uc) ) gfa; ... . (40)

It is clear from Equation 40 that the diffusivity equation can not
be linearized with the new definition of the dimensionless time variable.
However, the data used in Figures 5 and 6 are re-plotted in Figure 7

against the new definition of dimensionless time, T, It is noted that

DL’
for all values of permeability and flow rate, the data plots nearly as

one line and results in calculated values of permeabilities within an

error of only 0.1 percent. It is suspected, as will be shown later, that
the use of the new definition of dimensionless time can not be used over the

total pressure range to depletion.
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Pressure psia

37

Figure 4. Effect of Holding the Quantity (uc) in the Time Coefficient
Constant at the Initial Pressure on the Drawdown Solution.
)
g
2 -
A - Model Solution at Variable
(uc) with pressure,
. B -~ Model Solution at Constant
(uc).
=]
g
A
o \
8 T T T
“0.0 45.6 91.2

Time - Hours
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C. Type Curve Analysis for Pressure Buiidup Data

Available type curves give drawdown soiutions and are used for the
analysis of buildup data. These curves were derived for constant viscosity,
compressibility fluid.

Figure 8 is a theoretiéa] plot of a wellbore pressure as a function
E of time. TYpe curves claim that a log-log plot of curves B, C, D and A,

5 Figure 8, are identical. .

Figures 9 through 14 are log-log plots of dimensionless pressure

rise PDs’ which is defined as:

-5 . _
- i 1.987 x.10 '(m(Pws) - m(Pwf at At = 0))’
Ds '

.. (a1
0.5P5c0cT

as a function of the modified dimensionless shut in time Eb , which is

defined as:

_ 0.000264 KAt |, N ()
D o(uc) xc*

+

For various flow times, tf, prior to shut in for the pressure build-up
period.

The top curve (A) in each figure is the drawdown solution, in
this case the dimensionless pressure drop is defined as:

-5 - 5
_ 1,987 x 1077 T Kh ljn(Pi) - m(P¢) | .

P . (43)

D
O'5_PscqscT

These figures show that the build-up sd]ution closely coincides with the
drawdown solution at the early build-up data when the flow time preceding
the build-up is much longer than the build-up times. This early pericd

is primarily controlled by the linear flow characteristics caused by the
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hydraulic fracture.

As build-up time 1ncrease§9the build-up solution diverges farther
from the converted drawdown solution and is considerably greater than the
divergence at smaller producing times.

The deviation between the converted drawdown solution and the build-
up solution because of changes in permeability are illustrated in Figures
13 and 14.zit is noted that the separation between the two solutions
decrease as the permeability increases, which could be explained as a
result of less pressure drop at high permeability.

The separation because of changes in flow rate are illustrated
in Figures 10 and 11. It is noted that the separation decreases as the
flow rate decreases because of less pressure drop per unit fime at low
flow rate.

Figures 11 and 12 illustrate the effect of the initial reservoir
pressure on the deviation of the build-up data from the converted draw-
down solutions. It is noted that the deviation decreases as the initial
pressure increaﬁes.This could be explained as a result of the high
variation of the quantity (nc) with m(p) at low pressure.

If Figures 9 through 14 are plotted in terms of dimensionless time

tD rather than modified dimensionless pressure th a greater deviation
between the drawdown solution and buildup so]utions will be observed be-
cause the value of dimensionless time tD_ is greater than the value of the
modified dimensionless time Eb because (uc/uc){ > 1. Figures 9 and

10 show the invalidity of the modified dimensioniess time Tb at low

pressure and large values of time. At low values of pressure the quantity

§%~§$%%l > 1, because of the large variation of (uc) with pressure.
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D. Superposition and Pressure Buildup

Buildup theory has been based on the principle of superposition for
constant fluid compressibility and viscosity. This theory leads to the
use of the Horner plot for buildup curve analysis. The slope of the curve
is used to calculate a well's flow capacity, Kh.

For constant flow rate at the surface, constant mass rate at the sand
face, Figures 15 through 19 show the buildup so]utjon based on super-
position theory and the actual buildup solution generated by the model.
It is noted that the two solutions are in close agreement when the flow
time prior to the buildup is two hours.

It is also noted that the two solutions are in close agreeménf only
at the early time of buildup when the flow times prior to the buildup are
48 and 480 hours. As the flow time preceding the buildup becomes larger,
the length of the time of close agreement increases.

As the buildup time fncreases, the two solutions separate with the
actua]lsolution Tower than the superposition solution.

The deviation in the two solutions because of changes in permeability
are illustrated in Figures 15 through 18. It is noted that as the per-
meability decreases, the magnitude of the deviation between the two solutions
increases with time because of the lower sand face pressure for lower
permeability.

The deviation because of changes in flow rate are illustrated in
Figures 16 and 18. It is noted that as the flow rate increases,the magnitude
of the deviation between the two solutions increases because of the higher
pressure drop caused by higher flow rates.

Figures 18 and 20 illustrate the effect of the initial reservoir
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pressure on the separation between the two solutions. It is noted that the
magnitude of the separation between the two solutions decreases as the
initial reservoir pressure increases,which can be attributed to the Targer
variation of the time coefficient (uc) with m(p) at low pressure.

For constant flow rate at the sand face Figures 21 through 23 show
the difference between the two solutions, buildup solution based on
superposition and the actual buildup solution. It is noted that the two
solutions in close agreement during the early buildup time. Figures 21
and 22 illustrate the effect of changes in the initial sand face flow rate.
As the initial flow rate increases,the magnitude of the separation between
the two solutions increases because of less pressure drop at lower flow
rates. Figures 19 and 21 illustrate the effect of the flow rate being
constant at the sand face rather than beina constant at the surface. It
is noted that the magnitude of the separation between the two so]utibns is
less in the case of constant flow rate at the sand face because of the
higher observed pressure at the sand face. This higher pressure is the
result of removing less mass from the reservoir in any time period when
using constant rate at the sand face as compared to a constant rate at
the surface.

At high initial reservoir pressure, Figures 16 and 23, less sep-
aration between the two solutions was observed in the case of constant flow
rate at the sand face because of the higher observed pressure at the sand
face.

Figures 24 through 35 present the pressure buildup data generated
by the model using a variable (uc) in the time coefficient for both constant

flow rate at the sand face and constant mass rate at the sand face as a

tf+At

function of log
At
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In each case the suspected straight 1ine does not appear because of
the variation in fluid properties with pressure and the changing of flow
regime with time.

A straight line has been drawn for these figufes and the formation
flow capacity has been calculated from that straight line. It is noted
‘that for all cases,the calculated formation flow capacity Kh is greater
than the real. value by more than 10 percent. The error is because of the
variation‘of the quantity (uc) with pressure and the attempted super-
position of two flow regimes.

Figures 24 through 28 show a semilog plot of Pyf @S @ function of
tf + At
At
300 percent was found in the calculated value of Kh when using the standard

when tf =.2.0 hours. It is noted that an error of greater than

Horner method. This error could be explained as a result of a non-radial
flow in the system at the early times and the variation of fluid properties
with pressure.

Figures 29 through 35 are semilog plots of Pyf 8 2 function of

tf + At when tf = 48 hOUY‘S and tf = 480 hours‘

At
It is noted that an error of greater than 50 percent was found in the

calculation of the formation flow capacity Kh because of the non-radial
flow in the system and the variation of fluid properties with time.

It is also noted that as the flow time prior to the buildup increases,
the error in the calculation of Kh decreases because of the apparent
radial flow begins to show in the system at the same time as the flow time
increases the effect of the quantity (uc) on the calculation of Kh

increases.
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E. Short Time Solution

A short time solution for fluid flow into a vertical fracture of
infinite conductivity was presented by Russel and Truitt4 when fluid
compressibility and viscosity were held constant. At early times the
system behaves as though all flow were normal to the face of the fracture,
such that this period has been referred to as the linear flow period.

So]utions'similar to those presented by Russel and Truitt, were made
wherein the value of (uc) in the time coefficient was permitted to vary
with pressure. The results of these solutions are presented in Figures
36 through 38 as a function of dimensionless vakiab]es for the flow of
a real gas. The straight line portion of the curves in these figures

was. found to be fitted by Equation (44).

mD = 1.772 vaL L « o . -(40’)

Equation 44 can be rearranged such that:

1.772 q_.p_ T

m - M= 3L, \/l/kisz Vire « . . .(45)
2(1.987 x 1077) T_ h ¢,

« HsH

A plot of (mi - mwf) as a function of \/t/uc during the linear flow period

will result in a straight line of a slope which could be used to estimate
the quantity (Ksz).

From the computer so]utionfit is noted that the end of linear flow
period, in terms of the new definition of dimensionless time, is rot a
constant which indicates the invalidity of type curve analysis during the
linear flow period.

The guantity (KLZf) was calculated from the slope of the straight
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1ine of Figures 36, 37 and 38;using Equation 45, and was found to be within
1 percent of the réa] value It is noted that the fracture orientation

does not affect the linear flow period because of the infinite conductivity
- of the fracture and the lack of any outer boundary effects.

Figures 37 and 38 illustrate the effect of the fracture orientation
after the end of the Tinear flow period. It is noted that a lower pressure
drop was observed when the fracture is symmetric around the wellbore.

This behavior could be explained as the effect of the boundary on the flow
behavior, which will be observed earlier in the case of an asymmetric

fracture.
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F. Basic Drawdown Solution

For both constant mass rate at the sand face and constant flow rate
at the sand face, semilog plots of the observed sand face pressure and the
flowing time are presented in Figures 39 through 47.

It is noted from these figures that the desired straight 1ine which
is supposed to represent radial flow in the system does not exist. However,
a line has been'drawn to the extended time poihts which closely approach
a straight line and the formation flow capacity determined from the slope
of that line.

For constant mass rate at the sand face the formation flow capacity,

Kh, was calculated using the following equation:s

57927 q.. P_. T
h = sc ' sc , ... . (47)

where b is the slope of the straight 1ine seament of‘pwf as a function

of flowing time in terms of the m(p) function. The m{p) values were
calculated by taking two values of pressures on the straight 1ine and cal-
culating the two values of m(p). The value of Kh is then calculated using
Equation 47. This method of Kh determination has been used because it is
observed from Figure (B-4) that a plot of the m(p) function as a function

of pressure can be represented by a straight line:
m(p) = a + bP, when P > 3000 psia

It is also noted that the m(p) function as a function of pressure can be

represented by a straight line within a Timited range of pressure drop:
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m(p) = a + bP, when P, <'P <P

and P2 - P1 < 400 psia

Figure 43 represents a case where the pressure drop is greater than 400
Psia and hence this method cannot be used. In which case, both m(pwf) as
a function of flowing time and Pyf 25 2 function of flowing time have been
plotted and the formation flow capacity was calculated from both Figures.
43 and 44. It is noted that a lower error was found in estimating~the
quantify (Kh) utilizing the plot of m(pwf) as a function of flowing time
rather than utilizing the plot of P,f S function of flowing time because
of the non-linearity of m(p) function with pressure at low pressure. It
is noted-that in all cases, the calculated Kh is within 9 percent error
from the real value when the pressuré drop was less than 400 psi. This error
could be explained as a result of the variation of the quantity (uc)
with pressure and the non-radial flow in the system. It is also noted that
an error of 68 percent in the estimation of Kh when the pressure drop
is high. The effect of changes in permeability is illustrated in Figures
40 and 41. It is noted that as the permeability increases the effect of
(uc) on the evaluation of Kh decreases because of the smaller pressure drops
observed at high permeability.

The effect of changes in flow rate is illustrated in Figures"39 and ar.
It is noted that as the flow rate decreases the effect of (uc) on the
evaluation if Kh decreases because of the high sand face pressure at Tow
flow rate.

The effect of initial reservoir pressure is illustrated in ngures 40

and 42. It is noted that as the initial reservoir pressure decreases, the
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effect of the quantity (uc) on the evaluation of Kh increases because of
high variation of (uc) with m(p) at Tow pressure.

Figure 43 presents a case of high flow rate with low reservoir perme-
ability and 2000 Psia initial reservoir pressure. It is noted that a 68
percent error was found in the calculation of Kh utilizing m(pwf) vs. te
plot because of the variation of (uc) with m(p) at Tow pressure and the non-
"~ radial flow in the system. It is noted that a 73 percenf error was found in the
calculation of Kh utilizing the Puf VS+ tffp1ot because of the lower ob-
served pressure at the sand face which will increase the effect of (uc)
on the calculation of Kh because of the high variation of (uc) with m(p)
at Tow pressure and the non-linearity of m(p) with pressure at low pressure.

For constant flow rate at the sand face the formation flow capacity,

Kh, was evaluated using the following equation:5
57927 q_. p_. TZ
Kh = -SC_SC . N 1)
2b Puf Tsc
95¢cPse Tz ' :
where the quantity (———=——) 1is constant equal to the flow rate at the
P T
wf sc

sand face and b in this case is the slope of a semilog plot of sand face
nressure as a function of flow time, psi/hrs.

It is noted that in all cases of constant flow rate at the sand face
the calculated Kh are within’7 percent error from the real value when the
viscosity (u), in Equation 48, is evaluated at the average pressure of the
apparent straight line.

The effect of changes in flow rate for constant flow rate at the sand
face is illustrated in Figures 45"and 46l It is noted that as the flow
rate increases, the effect of (uc) on the evaluation of Kh increases be-

cause of the low observed sand face pressure at high flow rate.
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Figures_45 and 47 show the effect of the initial reservoir pressure.
It is noted that as the initial reservoir pressure increases the effect of
(uc) on the evaluation of Kh decreases because of the low variation of (uc)
with m(p) at high pressure.

Figures 40 and 42 represent a constant flow rate at the surface, were
compared with Figures 45 and 47 which represent a constant flow rate at
the sand face. It is noted that a better estimate of Kh was found in the

case of constant flow rate at the sand face because of less preésure drop

which decreased the effect of (uc) on the apparent straight line.
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G. Calculation of Fracture Length

Type curve analysis5 by assuming that the "1linear" portion of the
curve always terminated at the same dimensiqn]ess time, has been used to
calculate the formation flow capacity and the hydraulic fracture length.
As a result of this study, which indicates that the "linear" portion does
not terminate at the same dimensionless time, the standard or the modified
definition, thﬁs preventing the use of type curve analysis for fractured
gas reservoirs. Hence,it is suggested that the fo]]owing procedures be
used to calculate fracture length and formation permeability from a
pressure drawdown test:

(1) Calculate the quantity (KLZf) using "linear" flow period data

as explained in section E;

(2) Calculate the formation flow capacity (Kh) using "radial" flow

period data as explained in section F; and

(3) Having the values of (Ksz) and (Kh) the value of Les fracture

Tenath, can be cﬁ]cu]ated.

Table 5 shows the calculated values of Le using the above steps. It

is noted that in all cases the calculated values of Le are within 1.0

percent of the actual values.

At‘the completion of this study, a preliminary report was published
on a government contract, ET-78-C-08-1557, by Intercomp Resource Develop-
ment Engineering Inc. The tentative results published in this report are

in complete agreement with the results of this study.
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CONCLUSIONS

As a result of the data generated by the model and its evaluation,

the following is concluded:

1.

The m(p) function fails to linearize the flow equation of.real
gas in porous media;

Type curve analysis appears to be invalid for fractured gas

94

reservoirs because the dimensionless quantities are not independent

of the variation of fluid properties with pressure :and the flow
regimes with time;
The "linear" flow period can be evaluated for a good estimate

of KLZ

£ by plotting m.f OF P,r @S 2 function of VFE7;E—where

(uc) is evaluated at Pyt -

A reasonable value of Kh can be obtained from the apparent
straight 1ine section of a plot of m.f OF Pyf against log t,

thus permitting the value of Lf to be calculated;

For a given fracture length the fracture position does not affect
the slope obtained during the "linear" flow period because of the
infinite conductivity of the fracture and the infinite acting

of the system;

The superposition principle was found to be invalid in fractured
gas wells because of the multiple flow regimes with different
physical behavior. With larger pressure drops the variation in

fluid properties also invalidates the principle of superposition;

Type curve analysis for buildup data on fractured gas reservoirs
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10.

11.

95

is invalid because of the failure of supernosition;

Thé_Horner plot is an invalid method of evaluating buildup test
data in fractured gas wells because it is based on superposition;
The pressure obtained during an initial drawdown test on a
fractured gas well is the only data that gives reasonable values
of flow capacity and fracture Tength;

The fracture length cannot be calculated from the "linear" flow
period curve alone, but must be combined with data obtained from
"radial" flow period.

The "linear" flow period obtained during a pressure buildup
test, after an extended flow period, is approximately correct,

but the "radial" portion of the buildup curve is incorrect.
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RECOMMENDATIONS FOR FURTHER RESEARCH

Areas for further research are recommended below as topics of research

into the field of fractured gas reservoirs:

(1)
(2)

(3)
(4)

Asymmetric fracture with finite conductivity;

Asymmetric fracture.wifh finite and infinite conductivity with
turbulent flow into and/or around the frécture;

Asymmetric fracture with partial penetration;

Asymmetric fracture with the above conditions with

inclined fractures.
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NOMENCLATURE

Arbitrary defined term, see Equation (19) for definition

Arbitrary defined term,
Arbifrary defined term,
Arbitrény defined-term,
Arbitrary defined term,

Arbitrary defined term,
Slope

Gas Compressibility
Arbitrary defined term,
Total derivative
Arbitrary defined term,

Arbitrary defined term,

see

see

see

see

see

see

see

see

Gas specific gravity (Air =

Reservoir thickness

Natural logarithm, base e

Common logarithm, base 10

Equation
Equation
Equation
Equation

Equation

Equation

Equation
Equation

1.0)

Total vertical fracture length

Right length of the fracture

Left length of the fracture

Real-gas pseudo-pre;sure

(20) for definition
(21) for definition
(22) for definition
(23) for definition

(15) for definition

(B-11) for definition

(B-12) for definition
(B-13) for definition

Bottom-hole real-gas pseudo-pressure, general

97
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m.f Bottom-hole real-gas pseudo-pressure flowing
Mos Bottom-hole real-gas pseudo-pressure static
m, Initial real-gas pseudo-pressure

My Dimensionless real-gas pseudo-pressure

M Gas molecular weight

MSCF/D/ft Thousand standard cubic feet per day per ft.

n Total number of moles

P Pressure

PD Dimensionless pressure

PC Pseudo-critical pressure

Pr Pseudo-reduced pressure

Pec Pressure at standard condition (14.7 psia)
P1 Pressure, lower limit of integration for m
P2 Pressure, upper limit of integration for m
q Volumetric production rate

Asci Initial flow rate

ap Dimensionless flow rate

R Universal gas constant (10.72)

Rf Ratio of two fracture lengths

RHS Right-hand side of equation
r Hellbore radius
L Time

tD Dimensionless time
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tD Modified dimensionless time

T Temperature of reservoir

TSC Temperature at standard condition (szd“F)
Te Pseudo-critical temperature

Tr Pseudo-reduced temperature

v Velocity

Vp Pore volume

W Mass Production

XY Cartesian space coordinates
X,Y Cartesian space coordinates

Xg One-half fracture length, Lf/2
yA Gas deviation factor

v Divergence operator

A Finite-difference increment

u Gas viscosity

o Gas density

) Porosity

3 Partial derivative

o) Flow potential

‘Subscripts and Superscripts

o Critical
D Dimensionless

e External
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sc

X5y

Fracture

Initial condition

Discrete index of x-direction
Discrete index of y-direction
Index of iterations at a time step
Discrete index of time-step level
Pseudo-reduced

Surface, standard conditions
Wellbore

Direction in Cartesian coordinates

Time

100
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APPENDICES

APPENDIX A

MATHEMATICAL DEVELOPMENT

In studying flow of any kind -- heat flow, f1gid flow, or electric
fiow -- the mathematics describing the process are obtained by applying
a conservation principle which states that some physical quantity is

neither created nor destroyed.

Continuity Equation

The Continuity Equation is the mathematical expfession of the law
of conservation of mass. The equation can be develobed by considering
the mass flow of fluid through a cubic element of space having dimensions
Ax, Ay and unit height with itsredges parallel toAthe X, Y axes, Figure

(A-1). For this cube, a mass balance may be written in the form

mass in - mass out = mass change . . (A-1)

At thex(x) face of the cube, the fluid velocity and density are Vx and
Oy s respectively. At the (x + Ax) face of the cube, the velocity and

density are VX+A and p , respectively.

X X+AX
The fluid velocity and density at the (y) face can be similarly

defined as Yy,py_ and at the (y + Ay) face, the velocity and density are

Vv+Ay and py¢.+Ay.Furthermore, let the amount of mass released be (W)

expressed in mass per unit time per unit volume.

101
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This is the equation of continuity in rectangular coordinates, including
a generation term.

Equation (A-1) can be used to formulate differential equations
which describe fluid movement within pordus media. To do this it is
necessary to have a law of flow which can be used to evaluate the velocity
terms in Equation (A-2) and an equation of state which describes the

dependence of fluid density on pressure.

Darcy's Law

Darcy's law can be used to define the velocities as

-
]}

: 2o
« —(Kx/u)§; , and

<
1}

- 22
(Ky/“)ay

‘Where K is the permeability which may be different in the
two coordinate directions,
u is the fluid viscosity, and
® is the flow potential.
The flow potential may be expressed as

& = P+ pgh,

where g is the acceleration due to gravity,
P is the pressure,
h is the vertical distance, and

p is the fluid density.

Since the x-y plane is horizontal, the only potential which will

contain the gravitational term will be the one in the z direction.
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with these definitions, the conservation of mass can be stated from
Equation (A-1) as follows:
The amount of mass entering the element during a time interval,

At, is

prxAyAt + pyVyAxAt

The amount of mass leaving the element during this time is

v AxAt

Vxeax BYAE T PyinyVysny

Px+ax ' x+Ax

During this time an amount of mass

W(x,y) AxAyAt

is released from the element.

The amount of excess of in-flow over out-flow and the release of

mass from the element, accumulation of mass, is

((bx ’y’t+Ath oy s tHAt - (bx Yt pSX Y ’t) Axdydt

where ¢ is the porosity.

Substituting these expressions into Equation (A-1), dividing through
by AxAyAt, and taking the 1imits as Ax, Ay and At are allowed to approach

zero gives

3

Sy (V) - Hy.t) = - g (e0) . . (A-2)

3
X (OV)X +
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Therefore, the velocities may be defined as

<<
"

-(Kx/u)gg-, and

<<
]

- P
(Ky/“)ay
Substituting these expressions for velocity into Equation (A-2) gives

) K 3P
3X (=) + =

T - HGy.t) = 2 (e0)r .. (A-3)

This equation has two dependent variables, pressure and density. It
is necessary to eliminate one of the variables to obtain a soiution to
the equation. To do this,we must have a relationship between density
and pressure, provided by an equation of state. The equation of state
which is chosen will depend upon the type of fluid under consideration.
As a result, the differential equation resulting from substitution of
the equation of state in Equation (A-3) will have a different form,

depending upon the type of fluid.

Equation of State

The density of a real gas can be expressed as

_ M
= Y P
where
M is the molecular weight,
R is the gas constant,
T is the absolute temperature, and

Z is the gas deviation factor.
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Substituting into Equation (A-3), neglecting the source term,

gives:

PPy . gz . L(A8)

S
X N ot

==
Ni'o

oP 2
5x) * 3y

==

The right-hand side of Equation (A-4) can be simplified by assuming
that the porosity ¢ is independent of time, in which case the result

would be

BP)

P 3(P/1)
oy

= ¢ 3t . .(A-5)

Q)Q)
e

D)+ 2 (

I
X 3y

=|x

P L4
Z Z

g =3 P

Real Gas Potential

1

Al-Hussainy et al (1966) have defined the real-gas pseudo-pressure

as (excluding their factor of two)

2
P |
——-Z . . . (A-6)

P
m = |

P1
then

am am 9P P3P
X op 9x  uZ 3x ° . (A-7)

oy op dy uZ 3y o . . (A-8)

and 9m om 3P _ P3P
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The right-hand side of Equatibn (A-5) can be written as

2(P/Z) . 4 (L2, 3(1/2))
¢ 5t 75t "

- o er 2y
- Pl 1 dry oP
R A A U T . . (A-10)

Substituting Equations (A-7), (A-8), (A-9), (A-10), and (A-11) into

Equation (A-5) and using the definition of the isothermal gas compress-

ibility, ¢ = (5 - 7 (35)); one obtains

K om 9 K amy _ am
w50 Tay Ugy) = owe g . .(A-11)

This equation can be written as
Cc om

= %uc om
vivm = S oo . (A-12)

which is Equation 10 of the text.

Finite Differences

By definitioq,as Ax approaches zero the derivative of a function

g(x) can be approximated by

dg(x) - glx+ax) - 9(x) 4 oa(y) .

dx A X .(A-13)

where oA(x) represents the truncation error.

For practical application the term oA(x) is omitted and the derivative
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of a function is approximated by

da(x) =~ a(x*Ax) - g(x)
dx AX ’ . .(A-14)

Use of the definition given by Equation (A?14) permits Equation (A-11)
to be converted to finite-difference form for unequally spaced intervals
in the following manner:

The first application of Equation (A-14) to Equation (A-11) yields,
for block (i,j) (see Figure (A-3) ): |

Mir1, 7 Mg Mg 7 M- 44
S I |
X,i+1/2 - X.i"’/z
B P N T T P I
, Y Y5 7 Y1
Yies ™ Vi
ntl _ n
. ¢ A PR L
k()i —m f . .(A-15)

The time level at which to evaluate the m's on the left-hand side and
(uc) on the right-hand side of Equation (A-15) is set at n* for now,
resulting in

ntl o n

m. m, .
n* 1, 1,

. n* _
(Left —hand side) = ¢ (“C)1,j x: . (A-16)

where

i spatial index in x direction,

J spatial index in y direction,
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i+s,]

1,3+

n+1

n*

At

108

the representative value between blocks i,j and i+1,j
the representative value between biocks i,j and i,j+1

Xirq = X
i+l i
At =

Xi - X1

Xy = —=2—

+ ——————-—-——Yj-l — Yj >
J 2
Yu - Yj_l

Y, - 4 J=2 |

time level at beginning of time step,
time level at end of time step,

time lTevel where n* = n or n* = n+%—for a>1, and

ntl _.n

size of time step, t t.
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VX | Vx+Ax.
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0 | px+Ax .
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Figure (A-1)
Cubic Elemental Volume of Flow System
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Figure (&-2)

Schematic of Reservoir Model

i
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/i,j+’=l',‘n+l

i-1,j,n+l =

i-1,3,n =

. ard
"Lfy“
 i+1,5,n+l
/ . .
i,j+1,n
i,3-1,n+1 ST
/
/
/
- i+1,3,n
i,j,n
i,j=-1,n

Figure (A-3;

Space-Time Grid Index System
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APPENDIX B

HANDLING OF PRESSURE AND TEMPERATURE DEPENDENT VARIABLES

Pseudo-Critical Pressure and Temperature

Experimental results on abundant research formed the basis for a
37
chart (Katz et al, 1959, p. 112) relating pseudo-critical temperature and

pressure to gas specific gravity G, from which was derived the relations

T. = 170.2513+313.21386 G . . (B-1)
P. = 701.9310-49.28498 G . . (B-2)
Where
Tc = pseudo-critical temperature
degrees R,
PC = pseudo-critical pressure, psia,
G = gas specific gravity (air = 1.0).

Gas Deviation Factor

Although the Standing-Katz deviation factor charts are easy to use in
manual computations, digital computer programming involving compressibility
factocs requires tedious programming and storage of tabulated compress-
ibility data. This difficulty can be avoided by use of the Beneg;ct,
Rubin, Webb equation of state fitted by Dranchuk and Abou-Kassem (1975).
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Where

B je]
1] ]]

A

A
A
A
A
A

1

O ~N O W

i1

reduced density

reduced pressure

A, A A A
= 1+(A +_2_+__3. +.__4L +_5_) o
17T, 73 74775 Pr
r r r
A, A
7 g 2
(AG tet ) P
r T
r
A, A
7 Mg 5
Ag ( Tt ) Py
r
2
A~ (1+ A 2)»Ef—ex (-A,.0.%)
10 11°r T3 P 1=A11Py
r
_ 0.27 Pr
"Tf‘f;"
= 0.3265 A, = -1.0700
= -0.5339 A, = 0.01569
= -0.05165 Ag = 0.5475
= -0.7361 Ag = 0.1844
= 0.1056 Ajp = 0.6134
= 0.7210
T, =

[[]

Gas Compressibility

The iosthermal compressibility of a real gas is defined as:

C

1 1,32
R At

113

. . (B-3)

. . (B-4)

reduced temperature

gas compressibility factor

. (B-5)

Since Z is usually expressed as a function of pseudo-reduced pressure,
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it is convenient to define a pseudo-reduced compressibility, thus

1 1,97
c. = ¢cP. = 5—-3%(z) . . (B-6)
r c Pr Z aPr Tr

using Equations (B-3) and (8-4) along with Equation (B-6) gives:

.027 (BZ/Bpr)Tr

1l . -
v = P " T2 Tp /I (3% . (B-7)
’ r T
r
Where
A, A A A
YA 2 3 4 5
(=== = (A +=5+ =+ — +—=)
30T 17T, Tr3 Tr4 Trs
A, A
v 2B,
r Tr
A, A
7 .78
r T
r
2
Ao (1 + A ) 2 exp(-A.0.2)
11710y 11Pr 73 PL-A11Py
r
2, 20 A0 2 prz
+ eXp(-Alle‘ ) ( T 3 ) (1+A11pY‘ + '_}—ﬁ' (ZAllpr)" (8'8)
r r

Equations (B-6), (B-7) and (B-8) were used to calculate c.

Where
¢ = isothermal gas compressibi]ity,.psia'l .
T, = reduced temperature,
Pr = reduced pressure,
op = reduced density,

Z = gas compressibility factor,
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Gas Viscosfty

58
Lee et al (1966) reported the following empirically derived equations

for calculating gas viscosity (u, cp)

M = 28.9666G . . (B-9)
o = 0.0160184MP . (8-10)
( IRT ) 1.5
_ (7.77 to .063M) T°°
D= ma T+ -+ (B-11)
e = 2.57 + 22142 4 0.0095M .. (B-12)
= 1.11 + 0.04E . . (B-13)
CEof
p = pe-Pf . . (B-14)
1000
Where
M = gas Molecular Weight, Ib/mole,
o-- =-gas density, Ib/cu.ft.,
D,E,F = intermediate values,
u = gas viscosity, cp.

Numerical Integration of Real-Gas Pseudo-Pressure

Al-Hussainy et al (1966) have defined the real-gas pseudo-pressure

as (excluding their factor of two)

2 P
m = | 7 P . . (B-15)
P1
Where
m = real-gas pseudo-pressure,
P, = the lower pressure at which m(p) is evaluated,
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P2 = the upper pressure at which m(p) is evaluated,
u = gas viscosity, cp,

Z = gas compressibility factor,

P = pressure, psia.

Romberg's method of numerical integration was used to integrate Equation

(B-15).

Interpolaticn Technique

The numerical model interpolated linearly between table values for
pressure and rea]-gas pseudo-pressure and also between table values for

real-gas pseudo-pressure and (uc).
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Go to 2

APPENDIX C

FLOW DIAGRAM OF NUMERICAL MODEL

Figure C-1-Flow Chart of Numerical Model

Read all given
data ¢,X,c

*sc’

Assume

mi,J for all 1,3
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Sub. ADIP

v

Calculate (pc) at
&ll mesh points

Go to‘<:::>

Calculate matrix /
| coefficiernt for x~-direction Go ok 38

Assunme

nev Pwel 1 ; @

Calculate matrix

' coefficient for y-direction"‘“ﬂ’ Go te *’\\iﬂ/}'
//if\\
¥

Calculate the }

flow rate %eal

Figure C-2-Flow Chart of Numerical Model (con't)
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Solve tri-diagonal
system having
coefficients a,,b,,c.,

S T {
di' i=0, 1,2, . .,%W
using Thomas algorithm

Figure C-3-Flow Chart of Numerical Model (con't)
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<(> Outout j)

'~

Print out

time step solution

Is

the condition

)]
O
ct
O
d=

yes ——p-

Figure C-4-Flow Chart of Numerical Model (con't)



T-2116 126

BIBLIOGRAPHY

1. Bass, D.M.: A Study of the chtors Which Affect the Results of
Short-Term Multi-Rate Gas Well Tests: Ph.D. Dissertation, Texas
A & M University (1971).

2. McGuire, W;J. and Sikora, V.Jd.: "The Effect of Vertical Fractures
on Well Productivity", Trans. AIME (1960) 218, 401.

3. Prats, M.: "Effect of Vertical Fractures on Reservoir Behavior-
Incompressible Fluid Case", Trans. AIME (1961) 222, 105.

4, Russell, D.G. and Truitt, N.E.: "Transient Pressure Behavior in
Vertically Fractured Reservoirs", Trans. AIME (1964) 231, 1159.

5. Gringarten, A.C., Ramey, H.J., Jr. and Raghaven; R.: "Unsteady-
State Pressure Districutions Created by a Well with a Single Infinite -
Conductivity Vertical Fracture", Soc. Pet. Eng. J. (Aug. 1974)
347-360.

6. Wattenbarger, R.A. and Ramey, H.J., Jr.: "Well Test Interpretation
in Vertically Fractured Gas Wells", J. Pet. Tech. (May, 1969) 625-632.

7. Al-Hussainy, R., Ramey, H.J., Jr., and Crawford, P.B.: "The Flow
of Real Gases Through Porous Media", Trans., AIME (1966) Vol. 237, 624.
8. Al-Hussainy, R., and Ramey, H.J., Jr.: "Application of Real Gas Flow
Theory to Well Testing and Deliverability Forecasting", Trans., AIME
{1966) Vol. 237, 637.

9. Muskat, M.: The Flow of Homogeneous Fluids Through Porous Media,

McGraw-Hi11 Book Co., Inc., New York (1937).



T-2116 127

10. Mueller, T.D., and Witherspoon, P.A.: “Rressure Interference Effects
Within Reservoirs and Aquifers", Trans., AIME (1965) Vol. 234, 471.

11. Horner, D.R.: "Pressure Buiid-up in Wells", Proceedings of the

Third World Petroleum Congress (II), (1951), The Hague, 503.

12. Miller, C.C., Dyes, A.B., and Hutchinson, C.A., Jr.: "The Estimation
of Permeability and Reservoir Pressure from Bottom Hole Pressure
Build-up Characteristics", Trans., AIME (1950) Vol. 189, 91.

13. van Everdingen, A.F. and Hurst, W.: "The Application of the LaPlace
Transformation to Flow Problems in Reservoirs", Trans., AIME (1949)
Vol. 186, 305.

14, van Everdingen, A.F.: "The Skin Effect and Its Influence on the
Productive Capacity of a Well", Trans., AIME (1953) Vol. 198, 171.

15. Hurst, W.: "Establishment of the Skin Effect and Its Impediment to

Fluid Flow Into a Well Bore", The Petroleum Engineer, October, 1953,

B-6.

16. Matthews, C.S., Brons, F., and Hazebroek, P.: "A Method for Deter-
mination of Average Pressure in a Bounded Reservoir", Trans. AIME
(1954) Vol. 204, 35.

17. Matthews, C.S.: "Analysis of Pressure Build-up and Flow Test Data",

Journal of Petroleum Technology, September, 1961, 862.

18. Matthews, C.S., and Russell, D.G.: "Pressure Build-up and Flow Tests

in Wells", S.P.E. Monograph Series, Vol. 1, Society of Petroleum

Engineers, Dallas, Texas (1967).
19. Prats, M., Hazebroek, P., and Strickler, W.R.: "Effect of Vertical
Fractures on Reservoir Behavior - Compressible Fluid Case", Trans.,

AIME (1962) Vol. 225, 87.



T-2116 128

20.

21.

22.

23.
24,

25.

26.

27.

28.

Prats, M., and Levine, J.S.: "Effect of Vertical Fractures on
Reservoir Behavior - Results on 0il and Gas Flow", Trans., AIME

(1965) Vol. 228, 1119.

Scott, J.0.: "The Effect of Vertical Fractures on Transient Pressure
Behavior of Wells", Trans., AIME (1963) Vol. 228, 1365.

Rawlins, E.L., and Schellhardt, M.A.: "Back-Pressure Data on Natural
Gas Wells and Their Application to Production Practices", Monograph 7,
U.S. Bureau of Mines (1935).

Hetherington, C.R., MacRcberts, D.T., Huntington, R.L.: "Unsteady
Flow of Gas Through Porous Media", Trans., AIME (1942) Vol. 146, 166.

MacRoberts, D.T.: "Effects of Transient Conditions in Gas Reservoirs",

~Trans., AIME (1949) Vol. 186, 36.

Bruce, D.G., Peaceman, D.W., Rachford, H.H. and Rice, J.: "Cal-
culations of Unsteady-State Gas Flow Through Porous Media", Trans.,
AIME (1953) Vol. 198, 79.

Van Kirk, C.W.: "Effect of Pressure-Dependent Variables in Gas-Well
Numerical Simulation and Gas-Well Testing" Doctor of Philosophy
Thesis, Colorado School of Mines, (1972).

Van Poollen, H.K., Breitenbach, E.A. and Thurnau, D.H.: "Treatment

of Individual Wells and Grids in Reservoir Modeling$ Soc. Pet. Eng. J.

(Dec., 1968) 341-346.

Breitenbach, E.A., Thurnau, D.H. and Van Poollen, H.K.: "The Fluid
Flow Simulation Equations", SPE paper 2020 presented at the Symposium
on Numerical Simulation of Reservoir Performance in Dallas, Texas,

April 22-23, 1968.



T-2116 129

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

McKinley, R.M.: "Wellbore Transmissibility from Afterflow - Dominated

- Pressure Build-up Data", J. Pet. Tech. (July, 1971) 863-872.

Gringarten, A.C., Ramey, H.J., Jr. and Raghaven, R.: "Applied
Pressure Analysis for Fractured Wells", J. Pet. Tech. (July, 1975)

887-892.
Ramey, H.J., Jr.: "Short-Time Well Test Data Interpretation in the

Presence of Skin Effect and Wellbore Storage", J. Pet. Tech. (Jan.,

1970} 97-104.
Aronofsky, J.S. and Porter, J.D.: "Unsteady Radial Flow of Gas
Through Porous Media: Variable Viscosity and Compressibility",

Journal of Applied Mechanics (1956) Vol. 23, 128.

Cykstra, H.: "Calculated Pressure Build-up for a Low Permeability
Gas-Condensate Well", Trans., AIME (1961) Vol. 222,'1131.

Douglas, J., Peaceman, D.W., and Rachford, H.H., Jr.: "Calculation
of Unsteady-State Gas Flow Within a Square Drainage Area", Trans.,
AIME (1955) Vol. 204, 190.

Smith, R.V.: "Unsteady-State Gas Flow into Gas Wells", Trans., AIME
(1961) Vol. 222, 1i51.

Swift, F.W. and Kiel, 0.G.: "The Prediction of Performance Including
the Effect of Non-Darcy Flow", Trans., AIME (1962) Vol. 225, 791.
Katz, D.L., Cornell, D., Kobayashi, R., Poettman, F.H., Vary, J.A.,

Elenbaas, J.R., and Weinaug, C.F.: Handbook of Natural Gas Engineering,

McGraw-Hi11 Book Co., Inc., New York (1959).
Bird, R.B., Stewart, W.E., and Lightfoot, E.N.: Transport Phenomena,

John Wiley and Sons, Inc., New York (1960).

Carslaw, H.S. and Jaeger, J.C.: Conduction of Heat in Solids, 2nd

Ed., .Oxford U. Press, London (1959).



T-2116 130

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

Richtmeyer, R.D.: Difference Methods for Initial Value Problems,

Interscience Publishers, New York, NY (1957).
Peaceman, D.W. and Rachford, H.H., Jdr.: "The Numerical Solution of

Parabolic and Elliptic Differential Equations", J. Soc. Ind. Appl.

Math. (1955) Vol. 3, 28.

Fox, L.: Numerical Solution of Ordinary and Partial Differential
Equations, -Addison-Wesley Publishing Co., London (1962).
Forsythe, F.E. and Wasow, W.R.: Finite-Difference Methods for Partial

Differential Equations, John Wiley and Sons, Inc., New York, NY (1960).

Coats, K.H., Tek, M.R., and Katz, D.L.: "Unsteady-State Liquid Flow
Through Porous Media E]]iptic Boundaries", Trans., AIME (1959) Vol.
216, 460.

Handbook of Mathematical Functions, National Bureau of Standards.

Washington, D.C. (1964).

Douglas, J., Jr., Peaceman, D.W., and Rachford, H.H., Jr.: "A
Method for Calculating Multi-Dimensional Immiscible Displacement",
Trans., AIME (1959) Vol. 216, 297.

Nicol, L.R.: "Gas Turbulence Factor in a Microvugular Carbonaté",

paper submitted to Journal of Canadian Petroleum Technology (1966).

Lee, A;L., Gonzolez, M.H., and Eakin, B.E.: "The Viscosity of Natural
Gases", Trans., AIME (1966) Vol. 237, 997.

Craft, B.C., and Hawkins, M.F.: Applied Petroleum Reservoir Engineering,

Prentice-Hall, Inc., Englewood Cliffs, NY (1959).
Gladfelter, R.E., Tracy, G.W., and Wilsey, L.E.: "Selecting Wells
Which Will Respond to Production Stimulation Treatment", Drill. and

Prod. Prac., API (1955) 117.



T-2116 131

51. Collins, R.W.: Flow of Fluids Through Porous Materials, Reinhold
Publishing Corp., New York (1961).
52. Walsh, J.A., Ahlberg, J.H., and Nilson, E.N.: "Best Approximation

Properties of the Spline Fit", Journal of Mathematics and Mechanics

(1962) Vol. 11, No. 2, 225.

53. Carr, N.L., Kobayashi, R., and Burrows, D.: "Viscosity of Hydrocarbon
Gases Under Pressure", Irgggi, AIME (1954) Vol. 201, 270.

54. Clark, K.K.: "Transient Pfé;sure Testing of Water Injectish Wells",

J. Pet. Tech. (June 1968), 693.

55. Millheim, K.K. and Cichowicz: "Testing and Analyzing Low-Permeability

Fractured Gas Wells", J. Pet. Tech. (Feb., 1968), 193.

56. Raghavan, R., Cady, G.V., and Ramey, H.J., Jr.: "Well Test Analysis
for Vertically Fractured Wells", J. Pet. Tech. (Aug., 1972), 1014,

57. Dranchuk, P.M., and Abou-Kassem, J.H.: "Calculation of Z Factor for

Natural Gases Using Equations of State", The Journal of Canadian

Petroleum Technology, (July-September, 1975), Montreal.

58. Lee, A.L. and Gonzalez, M.H.: "The Viscosity of Natural Gases",

J. Pet. Tech. (August 1966), 997-1000.

59. Al-Hussainy, R., Ramey, H.J., Jr., and Crawford, P.B.: "The Flow of
real gas in porous media", J. Pet. Tech. (May 1966), 624.

60. Klinkenberg, L.J.: The permeability of porous media to liquid and
gases, Drilling and Production, p. 200, American Petroleum Institute,

1941.



T-2116

NAME :

BORN:

PERMANENT ADDRESS:

EDUCATION:

VITA

MAHMOUD AHMED SHAGRONI

July 20, 1952, Jefren, Libya

Tripoli, Libya Tel. (37051)

Public schools in Jefren, Libya

B.SC. in Petroleum Engineering,
Al-Fatah University, 1975.

M.SC. in Petroleum Engine€ering,
Colorado School of Mines, 1977.

Doctor of Philosophy in Petroleum
Engineering, Colorado School of Mines,
1979.

This dissertation was typed by: Patricia Jewett &

Kathy Houlihan

132



