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Abstract

A laboratory model was constructed to observe the effect
of an 1idealized fracture on the amplitude of the particle
displacement due to a shear wave at grazing incidence on the
fracture. Particle displacements due to shear waves incident
on stress free and linear slip Dboundaries were then
calculated. The empirical amplitudes more closely
approximated the stress free case. It was also ‘found, from
the theoretical results, that the empirical model did not
meet the grazing incidence condition as for this case true
grazing occurs at between one to zero degrees and the model

was constructed at eighteen degrees.
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I. Introduction

Fracture detection and or characterization is a problem
which has application in a wide variety of fields. Some
common areas of interest are geothermal resources, under-
ground waste disposal, hydrocarbon recovery and non-
destructive testing of materials. Numerous authors have
described a variety of theoretical and empirical work
treating the subject as it relates to their particular field.
Within this body of work a few themes are dominant. These
deal primarily with the measurement of the amplitude of some
wavefield after contact with a fracture zone. We will be
consistent with this trend. Our study focuses on the
interaction of shear wave energy with a fracture plane in
terms of reflection amplitude versus position relative to the
fracture.

In 1973 the Geophysical Society of Houston sponsored a
symposium on bright spots. Several papers were presented
which illustrated ways of relating seismic amplitude changes
to lithology and or structure. Hilterman (1975) developed a
method which allowed for the estimation of: a) lateral
variations in reflection amplitude due to boundary curvature,
b) diffraction and reflection interference at pinchouts, and

c) amplitude effects due to diffractions from fault edges.
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Trorey (1970) studied the effect of various reflector
geometries on the generation of diffractions. He found that
the response from a laterally discontinuous edge (fault) is
laterally continuous. The diffractions behave in such a way
as to add to the «continuity of the total response.
Van der Hijden and Neerhoff (1984) investigated the
diffraction of elastic waves by a sub-surface crack. Their
work related incident waveform angle to a normalized mode
power conversion factor. Aki, et. al (1982) interpreted
seismic data from fracturing experiments in terms of
scattered wavefields.

In dealing with the more specific problem of detecting
fractures within the earth many authors have turned to the
zone surrounding or within the borehole. Leary and Henyey
(1985) described a method of locating a fracture zone using
P-wave velocity profiles. A borehole sensor and an array of
shotpoints distributed azimuthally and radially were used.
Fehler, et. al (1982) used a compressional and shear wave
VSP study to detect the presence of a hydrofrac zone. They
concluded that only the shear wave energy was affected by the
fractures.

Paillet and White (1982) studied the relationship
between acoustic waves and rock properties in the borehole.
They constructed amplitude logs which were sensitive to

variations in the presence of fluid filled fractures 1in the
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borehole wall and concluded that the simplest measure of
fracture properties is given by studying tube wave amplitude.
Cheng, Toksdz and Willis (1982) looked at fracture detection
in terms of wave attenuation from the study of full waveform
acoustic logs. Beydoun, Cheng and Toksdz (1985)
theoretically treated the problem of tube wave generation by
a non-normally incident compressional wave for an inclined
borehole intersecting a tilted parallel wall fracture. They
found that tube wave amplitude was dependent upon the
permeability and length of the fracture as well as waveform
frequency. Crampin (1985) evaluated the orientation of
fractures by wusing a polarized shear source and three
component downhole detectors.

In this study we examine the effect of a fracture on the
amplitude of a reflected SV wavefield. SV waves were chosen
because for the specific problem geometry used, these waves
are attenuated by the presence of a fracture. By contrast,
SH waves would give near perfect reflection at grazing
incidence. The difference is due to the orientation of the
particle displacements of the two wavefields with respect to
the fracture plane.

First, we empirically demonstrate the presence of a
fracture in an elastic solid using shear wave energy. A
theoretical treatment of shear wave reflection from a stress

free boundary follows, in an attempt to numerically reproduce
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the empirical results. We then turn to a model which more
accurately describes a fracture within the earth. The basis
for this begins with Schoenberg's (1980) description of a
linear slip interface. The theory is expanded to allow for
study of energy incident upon a fracture beyond the critical
angle. We then compare these results with that of the stress

free case.
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II. Description of Specific Problem

The objective of this study is to physically and
numerically model the situation whereby a shear wavefield
encounters a fracture during ©propagation. Figure 2-1
graphically describes the specific problem modeled. A
borehole exists in the vicinity of a high angle (nearly
vertical) fracture. Shear waves (SV) are generated at the
surface and are eventually reflected off the interface
created by the fracture. Measurements of the particle
displacement due to the reflections are made by detectors in
the borehole. If we can 1imagine a series of boreholes,
evenly spaced, in line, and extending for some distance away
from the fracture it would be possible to construct a profile
of reflection amplitude vs. distance from the fracture.
Obviously this is not a practical configuration to actually
implement, however in the lab and numerically it is gquite
simple.

In order to simplify the problem the case studied will
be that of a single layered earth. The fracture will then be
a discontinuity within this layer and must be characterized
in some manner. This characterization of the fracture 1is
what results in two distinct cases. The first is the stress

free case and the second, the 1linear slip case. Each of
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these is developed numerically and the lab model's design is

such that it more closely describes the stress free case.



T-3315 8

"III. Physical Model
III.1 Theory

Figure 3-1 is a simple schematic of the main components
of the lab apparatus. A single layered earth is modeled by a
piece of plexiglas. The energy source consists of a
compressional wave transducer bonded to the end of an
aluminum bar to which the plexiglas 1is attached. A pulse
generator excites the transducer sending compressional waves
down the length of the bar. Huygen's principle states that
points along the bar will act as new point sources and
radiate energy into the plexiglas. This energy will
propagate normal to wavefronts which are at an angle
6 = sin-l(Vs/Vp) with the bar, where Vs = shear velocity in
plexiglas and Vp = compressional velocity in aluminum. Since
& 1is relatively small and the compressional motion 1is
parallel to the 1length of the bar, the principal particle
motion in the plexiglas will be parallel to the wavefronts,
resulting in shear waves within the plexiglas.

The wavefronts are now assumed to represent a parallel
to the earth's surface. Knowing 6 then allows the
positioning of a fracture at the desired angle. This angle

is chosen such that it results in a high angle fracture with
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respect to the wavefronts (earth surface) within the
plexiglas.

After fracturing, measurements of particle displacement
are made, within the plexiglas. Downhole shear detectors are
represented by a mono-phonograph cartridge. This cartridge
is sensitive to horizontal (shear) motion only, which is
precisely what exists in the plexiglas. The cartridge
translates particle motion into an output voltage which 1is
then filtered and amplified. A digital oscilloscope displays
the final waveform, allowing for measurement of amplitude and
arrival time of the first break energy. These measurements
are distributed spatially so as to represent downhole
measurements at various depths and distances from the
fracture. Amplitude profiles of the reflection energy as a
function of distance from the fracture can then be

constructed.
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II1.2 Model Materials and Construction

Figure 3-1 illustrates some of the main components of
the model. A 4' x 7' sheet of 1/8" plexiglas is the single
layered earth in which the wave behavior will be studied.
This sheet was joined to a 3/4" X 3/4" x 8' aluminum bar by
means of a 1/8" x 1/4" x 7' slot machined into the bar. The
slot was filled with epoxy cement and the plexiglas inserted
into it. This procedure provided an excellent bond between
these components, therefore allowing waveform changes to be
attributed solely to the fracture.

Attached to one end of the bar, by epoxy cement, 1is a
crystal compressional wave transducer. The transducer is
wired with coaxial <cable which connects it to a pulse
generator. The generator will output a square wave pulse
which can be adjusted for length of duty cycle and amplitude,
as well as trigger position.

To receive the transmitted energy, a mono-phonograph
cartridge was used. The cartridge translates the detected
motion into a small output voltage, which is then routed into
a stereo amplifier, wired for one channel. The amplifier
provides needed gain to the output voltage. After gain, the
signal is passed through an adjustable dual electronic filter

configured to function as a bandpass filter.
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The final waveform is then displayed on a digital
oscilloscope, from which amplitude and arrival time can be
measured. Full waveform plots can also be made by an X-Y pen

plotter connected to the oscilloscope.
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III.3 Set-up and Testing

Construction and set-up of materials which dealt with
the transmitted signal was trivial. However, this was not
the case with those components dealing with the received
signal. Considerable signal to noise ratio problems were
encountered which had to be overcome before any data could be
recorded.

Assembly of the model components was done 1in the
basement of the Cecil & Ida Green Center at the Colorado
School of Mines. The room used was next to a room containing
a large amount of computer hardware and 1its associated
cooling system. This situation led to the transmission of a
large amount of low-frequency noise through the floor which
was picked up by the model receiver. An attempt to attenuate
this energy was made by placing 1" thick acoustic dampening
foam between the model and the table. Significant S/N im-
provement was made, however more work was required.

Numerous attempts at building R-C bandpass filters were
made with varying degrees of success. Significant S/N
improvement was made upon acquisition of an adjustable dual
electronic filter from the CSM Physics Department. This
device consists of two separate filters which were run in
series, one as a high pass, one as a low pass giving the

effect of a bandpass filter. Pass frequency adjustment is
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accomplished by simply turning a couple of dials, and
therefore allowed for quick and precise fine tuning of the
received signal. After extensive testing, a few of the noise
sources were identified as:
1) Very low frequency physical vibration, probably due
to adjacent cooling equipment.
2) High levels of 60 Hz noise due to large amounts of
electrical equipment and lighting in area.
3) Significant amounts of very high frequency (above
5000 Hz) noise. This led to the signal having a
chattered appearance and therefore being very
difficult to get reliable amplitude measurements.
The source of this noise was not identified.
It was finally determined that a bandpass filter with
100% corner frequencies of 300 and 5000 Hz resulted in an
optimum signal. (Appendix 1 lists all electronic components

and final settings.)



T-3315 15

II1.4 Experimental Procedure

The procedure for the experiment was as follows:

1) Determine angle wavefront makes with bar.

2) Use wavefront orientation to determine fracture

position.

3) Set up appropriate coordinate system.

4) Collect data, unfractured case.

5) Fracture plexiglas.

6) Collect data, fractured case.

The wavefront angle 6 1is given by 6 = sin-l(Vs/Vp).
Therefore to numerically determine 6 one needs velocity
measurements in both the aluminum and plexiglas.

Compressional velocity measurement in the aluminum was
simple. First break times were recorded at several positions
along the bar's length. Dividing the difference in position
of two points by the difference in arrival time gives the
velocity. Times were recorded at three positions, and the
velocities calculated were averaged to give a velocity of
15984 feet per second. This compares favorably with a
handbook value of 16000 feet per second.

Velocity measurement in the plexiglas is not as trivial
as in the aluminum. Propagation direction, in the bar, was
already known, we measured along its length which represents

a ray, normal to the compressional wavefronts. Orientation
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of wavefronts in the plexiglas 1is unknown, therefore
impossible to measure along a raypath.

An initial attempt to determine 6 was made by using a
handbook wvalue for the shear velocity. The wavefront angle
calculated to be 20°. If this 1s correct, arrival times
along a line 20° from the bar should be equal. To test this,
measurements were made along such a 1line, Figure 3-2.
Repeated attempts failed to yield a situation where more than
two points could be placed along any straight line.
Suspicion developed that the plexiglas was dispersive for the
bandwidth of energy being used. Another approach was tried.

A grid was laid out by sliding a large piece of graph
paper between the plexiglas and the foam (partially shown 1in
Figure 3-2). Arrival times were recorded over the entire
sheet at 4" intervals in both directions. An isochron map
was then constructed, Figure 3-3. The contours of the map
represent shear wavefronts. It is obvious that some irregu-
larities exist, especially near the model edges. It was
decided that attempts to measure shear velocity be stopped
and to accept thevisochron as an accurate representation of
energy propagation within the sheet. Fracture location was
determined by selecting an area that had reasonably flat,
parallel contours and was far from model edges. Fracture
orientation was chosen so that the model would represent a

case whereby shear energy was at grazing incidence. A value
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of 72° (90° represents fracture normal to wavefront) was
arbitrarily chosen. The dashed line, Figure 3-3, illustrates
future fracture position.

With fracture location determined, a coordinate system
oriented with respect to the fracture was set up. A piece of
graph paper was inserted between the plexiglas and foam such
that the grid was square with a 1line representing the
fracture. The grid extended 24" on one side of the fracture
and 40" along its length, with the x and y directions labeled
as normal and tangential to the fracture, respectively,
Figure 3-4.

Data collection for the unfractured case could now
begin. Measurements of the waveform in the unfractured
plexiglas were necessary to provide control against which the
effect of the fracture on the waveform could be measured.
Amplitude and arrival time were recorded for the component of
motion normal to the fracture line. Rotation of the receiver
cartridge allowed for detection of the appropriate component
of particle motion. Data were collected over the entire grid
at 2" increments with the exception of the region within 4"
of the fracture. In this region sampling was done at 1"
increments in the x direction.

A fracture was then put in the plexiglas sheet. This
was done by cutting a slit along the line on the sheet with a

jig saw. Data collection, as described above, was repeated
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with one exception. Along the profile Y = 12 sampling was

done at a .2 inch increment in X within two inches of the

fracture.
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II1.4 Preliminary Analysis

In order to be certain that any waveform amplitude
changes detected are induced solely by the fracture, certain
factors which can also induce amplitude anomalies must be
dealt with effectively.

One such factor is the coupling between the plexiglas
and the bar. It is obvious that if this joint does not
remain constant the transfer of energy from bar to plexiglas
will change and a corresponding waveform change may result.
We believe that- this problem was effectively dealt with by
first, ensuring a tight fit between plexiglas and bar through
use of a precision machined slot and secondly, not moving the
model once the joint was made, therefore eliminating the
possibility of breakage.

Another factor that will influence the amplitude of
first break energy is reflection interference off model edges
or the rebound of compressional energy at the bar end,
resulting in another shear wave traveling in the opposite
direction as the first, Figure 3-5. These additional wave-
fields could result in positive or negative adjustments in
measured first break energy. It is then clear that an area
be determined which wili allow for first arrival energy to be

measured exclusively.
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Calculation of such a zone requires that the shear wave
velocity be known. To determine shear speed, tangents were
drawn to the 1isochron curves, Figure 3-3, to represent
wavefronts. Arrival time was measured along normals to the
wavefront 1lines. From these measurements an average shear
speed of 3608 feet/second was calculated.

Ray theory was then applied to calculate arrival times
for the reflection off the back plexiglas edge and the bar
rebound, for points at which first break amplitude and
arrival time had been recorded. If secondary waves arrived
at any point before one cycle of the first arrival was
complete the data recorded for this point was discarded.
(Compare Figures 3-6 and 3-7.) From these calculations it
was determined that all data having coordinates X = 0-12 and
Y = 0-30 are unaffected by reflected wavefields.

Four profiles along lines normal to the fracture were
then constructed, Figures 3-8 to 3-11. These plots 1illus-
trate the change 1in recorded first break amplitude vs.
distance in feet from the fracture. Amplitude values were
normalized by dividing post fracture amplitudes by pre-
fracture amplitudes which were taken to represent the ampli-
tude of the incoming wave. Distance in all plots is in feet.

From these plots the expected drop in amplitude near the

fracture zone 1is not seen, in fact the opposite effect 1is
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Figure 3-6
Recorded wWaveform Illustrating Interference of Reflected

Waveforms with First Break Energy

25



T-3315
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Figure 3-7
Recorded Waveform Illustrating Point Where Reflected
Wavefields Do Not Interfere With First Break Energy.

A = Measured First Break Amplitude.
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observed. On each profile amplitude increases as one nears
the fracture. Clearly a more complicated phenomenon 1is
occurring than was expected. Several attempts to explain

this anomaly were made without avail and it wasn't until
mathematical development of the stress free case was complete
that a satisfactory explanation of this phenomenon was
developed. It is therefore prudent to delay addressing this

problem until a later time.
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IV. Stress Free Case

In the physical model the fracture was created by
cutting a slot in the plexiglas with a jig saw. The fracture
which resulted had no points of contact along its length.
Therefore it 1s practical to model this situation numerically

as a stress free boundary.

IV.1 Mathematical Development of Stress Boundary Case.

Displacement Due to Shear Waves

Figure 4-1 illustrates the case we investigate. An
incoming shear wave B; 1is incident on a stress free boundary
which lies in the yz plane, with incident angle Yoo Az and
B, represent the reflected compressional and shear wave,
respectively. If we constrain B; to traveling in the xz
plane the compressional and shear waves generated upon
reflection at the boundary allow us to consider solutions
independent of Y and for which Uy = 0. Since we consider
cases of near grazing incidence it 1s appropriate to start
with White's (1983) second case treatment of reflection from

a stress free boundary, specified by the condition:
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Figure 4-1

wavefields Studied at Stress Free Boundary.
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where B = shear speed, o = compressional speed and
c = apparent shear speed along the z axis. In terms of B8,

the apparent velocities along the z and X axes are:

c = B/sinys (4-1)

Bx = p/cosyg (4-2)

If we consider this velocity range the potential for an

incoming shear wave modified from White (1983) equation

(2-40) 1is:
4y = (1/21) ITmBI eikx e—iwz/c eiwtduj (4-3)
where K = w(l/B2 - 1/c2)% (4-4)

Substitution in k for ¢ in terms of B gives:
kK = w/Bx (4-5)

and the incident shear potential becomes:

by = (1/2n) SO B, eMWX/BE gmiuz/c luty, (4-6)
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Now let,
B; = Ba[d(w = wg) + 6(w + wg)] (4-7)

Upon substitution and integration, the shear potential

is:

¢i - %B[elon/BX e-lwoz/c elwot +

e-lwox/Bx e+1woz/c e—lwot] (4-8)
and simplifying:
wi = Bcos(woX/BX - wpgz/Cc + wpt). (4-9)

From this expression the displacement 1in the x and =z
directions due to the incident shear wave can be computed.

From White (1983) equation (2-22):

U, = -94,/92 (4-10)

U,; = 9%,/9% (4-11)

UXl = woB/C Sinth (4:"12)
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Uzi = -wyB/BxX sinwgt (4-13)

and therefore the total displacement due to the incoming

shear wave 1is:

i
U; = [U,.42 + U,5217% = woB/B (4-14)

1 1

To compute total shear displacement in the media we must

include the reflected shear wave. White (1983) expressed
this as:
by = (1/2r)f% (B, e KX + B e 1KE]e W2/ Collily, (415

Again substitution for k, B;, and noting that from White

(1983) eq (2-40),

B, = B,elfeSImW (4-16)

(see (4-24) for 64 definition)

we have upon integration:

Y. = %B{[eiw0X/BXe—iee/2 + e—iw0X/BX ei86/2]
Y

eiwo(t-z/C)eiBG/Z —iw0X/BXei66/2

+ [e

+ eiwox/Bxe-ieg/Z]e-iwo(t-Z/C)e-iee/Z }o(4-17)
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wy = 2Bcos(woX/BX = 06g5/2) coslwg(t-z/c) +

6e/2] (4-18)

Now since we are only interested in the displacement
normal to the boundary, computation of Uy is all that 1is

required. Using equation (2-22) from White (1983),

st = -8¢y/8z (4-19)
and at z = 0
UXS = =2B wg/Cc cos(wox/BX = 8¢/2)

Sin(wot + 66/2)

If we normalize this expression with the incident

displacement at, z = O:
st/Ui = —281nyscos(w0x/sx - 08g/2)
sin(wet + 6¢/2) (4-20)

To simplify, from White (1983) equation (2-41),

el®s - _(a + ib)/(a - ib) (4-21)
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where a = (1/sin2yS -2)2 (4-22)
1 . L
and b=4(1-B2/a2sin2y_)*(1/sin2y_ -1)* (4-23)

therefore:

8g/2 = tan ! b/a + n/2 (4-24)

Letting Q = tan ! b/a (4-25)

and using -n/2, the final expression for normalized displace-
ment due to shear waves at z=0 1is:
st/Ui = -Zsinyssin(wox/ﬁx - Q)cos(wot + Q) (4-26)
In the limit of Yo —> n/2 (4-23) 1is rearranged as:
1 . L
b = 4(sin2yS - B2/a2)? (1 - 51n2ys)2 (4-27)

and we see that b is proportional to Y itself. Therefore Q

is also dependent on Yg alone. At x = 0 (4-26) then becomes:

st/Ui = -Zsinyssin(—Q)cos(wot + Q) (4-28)
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and from this we conclude that in the 1limit of grazing
incidence, the amplitude at the boundary is dependent only on

the incident angle.

Displacement Due to Compressional Waves

Upon reflection of the incident shear wave at the
boundary some mode conversion will occur resulting 1n the
generation of a reflected compressional wave. By symmetry
this wave will also have its displacement in the xz plane.
Therefore in order to develop a complete expression for the
displacement we must consider the contribution from the
compressional energy.

As with the reflected shear potential (4-16), White
(1983) showed the reflected compressional potential could be
expressed in terms of the incident shear energy as:

16 5sgnw

A, = B;Kse (4-29)

(See 4-36) for 85 definition)

Upon elimination of the incident compressional potential
in equation (2-40) White (1983), along with substitution of
(4-27) and (4-7) into this expression, integration yields the

compressional potential as:
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¢ = KsBe ™ cos(wg(t-z/c) + 65] (4-30)

Application of (2-22) White (1983) then vyields
displacement:

Ugp = 90,/9% (4-31)
at z=0

Upp = -mKsBe ™cos (wot + 05) (4-32)

Normalizing to the incident shear wave then gives:

Upp/Us = ~Ks mB/wy e "Fcos(wet + 05) (4-33)
To simplify, from White (1983):
1
Ks = d/(a2 + b2)? (4-34)
where
. i .
d = 4(1/s1n2yS —1)2(1/51n2yS -2) (4-35)

and

40
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Therefore the final expression

compressional displacement at z = 0 is:
1
= in2 - B2/q2)2
Uyp/Us = Ks(sin2y - B2/a?)

W (sin2y_ - §2/a2)% x/p

cos(wot + Q)

for

41
(4-36)
(4-37)
normalized
(4-38)



T-3315 42

IV.2 Application of Stress Free Formulation

Combining (4-38) and (4-26) gives an expression for
total normalized displacement due to a shear wave incident
upon a stress free boundary. This expression was implemented
on the coméuter and run for various values of Yoo using the
center frequency of the passband, 2650 Hz, required in the
lab. All media parameters used were those of the physical
model, allowing for direct comparison of the two results.

Fortran 77 code for this case is given in Appendix 2.
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IV.3 Numerical Stress Free Results

72° to 90° Angle of Incidence

Normalized displacements were calculated for angles of
incidence starting at 72°, which represents the physical
model, to perfect grazing. Calculations were carried out to
a large distance from the fracture to guarantee steady state
conditions were reached. The results are shown 1in
Figures 4-2 to 4-5.

A few simple tests can be applied to these plots to
check their wvalidity. First, no amplitude can be greater
than two. The incoming wave was set to have unit amplitude,
therefore even 1f perfect reflection and constructive
interference occurred an amplitude of two cannot be
surpassed. Second, an increase 1in apparent wavelength with
increasing incident angle should be observed. It is obvious
that all figures satisfy these criteria.

Comparison of figures (4-2) and (4-3) with (4-4) and
(4-5) leads to the conclusion that 72° and 85° do not repre-
sent a case of grazing incidence. The amplitude of the dis-
placement at the fracture should be zero or nearly so, if
grazing is achieved. The results for 89° and 90° illustrate

this phenomenon. It should be noted that for perfect
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Figure 4-2
Numerical Normalized Displacement Amplitude, Stress

Free Boundary. Angle of Incidence = 72°.
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Figure 4-3
Numerical Normalized Displacement Amplitude, Stress

Free Boundary. Angle of Incidence = 85°.
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Figure 4-4
Numerical Normalized Displacement Amplitude, Stress

Free Boundary. Angle of Incidence = 89°.
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grazing, 90°, the amplitudes of figure (4-5) have to be
scaled by a factor of 10000. Ideally this plot should remain
at zero, however, deviation results due to computer rounding

error.

Comparison to Physical Experiment

The purpose of numerically investigating the case of
reflection from a stress free boundary is twofold. First, a
check was required which would allow for the setting of some
standard against which the experimental results could be
compared and second, we will later compare the stress free
case to a more realistic theory.

Figures (4-6) through (4-9) provide the means through
which comparison of the two cases 1s most clear. The
experimental curves, represented by the heavier lines, are
identical to those presented earlier. Flattening has
occurred simply because the vertical axis has been expanded
to allow for inclusion of all numerical data. Thin lines
represent the theoretical curves which have only been plotted
out to 1.0 feet, and have been rectified.

Cursory examination of Figures (4-6) through (4-9) might
lead to the conclusion that there is no agreement between the
data sets. However, qualitative agreement is evident after

more detailed comparison.
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Figure 4-6
Numerical Stress Free Data for Incident Angle of 72°

and Experimental Data at Y=2.
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Figure 4-7
Numerical Stress Free Data for Incident Angle of 72°

and Experimental Data at Y=12.
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Figure 4-8
Numerical Stress Free Data for Incident Angle of 72°

and Experimental Data at Y=20.
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The most important characteristic the data sets share is
the general trend of the curves, all maxima and minima occur
in approximately the same spatial position. This observation
leads us to conclude that the empirical data is a rough
scaled version of the mathematical.

Differences in the curves are the result of very basic
variances in the way each data set was generated. Clearly,
any empirical data is expected to be more noisy than a
computer generated curve, but the differences go beyond
noise. The experimental curves are much more broad and flat.
This is primarily due to summation of many frequency
components resulting in the waveform which was measured on
the scope. In contrast, the numerical curves were generated
by considering one frequency, which represented the center of
the pass-band used in filtering the recorded waveforms.
Compensation for this difference would occur through
displacement amplitude calculations and summation for a
number of frequencies at each point along the profile.
(Refer to figures 5-14 and 5-15 for comparison of
computations at different frequencies.)

Diffractions are generated when a wavefield encounters a
surface or discontinuity that 1is small compared to the
wavelength of the energy. This occurs in the plexiglas at
the beginning of the fracture. Interference by scattered

waves can result in amplitude changes of measured first break
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enerqgy. Diffraction theory was not incorporated into the
mathematical model.

The comparison of these two data sets lead to some
interesting conclusions. First, the geometry which was built
into the lab model does not allow for examination of the
problem in question, at near grazing incidence. The
numerical results bear this out. Second, even though the lab
model did not achieve 1its 1intent, the results that were
acquired are confirmed by the mathematical theory indicating

that the exercise has some validity.
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V. Linear Slip Boundary

Schoenberg (1980) developed theory which investigated
elastic wave behavior across a linear slip interface. Such
an interface is imperfectly bonded, which is taken to mean
that the stress is continuous across the boundary, while the
displacement 1is not. The vector difference in the
displacement is assumed to be linearly dependent upon the
stress. This condition is termed "linear slip" and replaces
the requirement of continuous displacement that represents a
perfectly bonded interface.

The linear slip condition is a more realistic model cof a
buried fracture. In the earth it is not difficult to imagine
points of contact along the length of a fracture. This
situation is not likely to be modeled well by the stress free
case developed earlier, but requires theory to account for
this contact.

Our specific problem investigates reflection phenomena
resulting from high incidence angles. Schoenberg's (1980)
work did not consider angles of incidence beyond the critical
angle, which is precisely what grazing or near grazing
requires. Therefore we develop our theory from White's
(1983) work and incorporate the linear slip through one of

the required boundary conditions.
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V.1l Mathematical Development

Figure 5-1 illustrates the situation we consider. An
interface exists in the yz plane in a uniform medium at
X = 0. Shear energy is incident upon the boundary with angle

Y setting up reflected and transmitted wavefields.

S
Potentials can be written describing these fields whose

amplitudes can be solved for by imposing the linear slip
boundary conditions. The potentials taken from White (1983)
equation (2-40), where primed values represented transmitted

energy and non-primed represent reflected energy are:

Compressional:

b = Aze—mxellzelwt (5-1)
b = A{emxellzelwt (5-2)
Shear:

y = (Blelkx + Bze—lkx)ellzelwt (5-3)
6= Bielkxellzelwt (5-4)

Now the stated boundary conditions require continuity of

stress at x = 0,
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Figure 5-1

wWavefields Studied at Linear Slip Boundary.
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Py = Prp= O (5-5)
P._ -P =0 (5-6)
ZX ZX

U -U; =0 (5-7)

Q(u, - U;) =P, (5-8)
where the second condition satisfies the 1linear slip
requirement. The value Q 1is what describes the response the
fracture has to the wavefield. It can be viewed as the
stiffness of the fracture. A very stiff fracture would
result in essentially no interface being present, therefore
no reflection would occur. On the other hand a much less
stiff or very compliant boundary would represent a case where
a large amount of energy is reflected.

Imposing the boundary conditions through use of equation
(2-22) White (1983) allows construction of a system of four
equations in four unknowns, since B;, the incoming wave 1is
again set to have unit amplitude. If we express 1, k and m

in terms of Y, as:
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1l = -w/c = -wsinys/B (5-9)
k = wcosyS/B (5-10)
- .2 2 2.1

m = w(sin y, - B /o )=/B (5-11)

and suppress t dependence, the system of equations is:

a a ib -ib A, -ib

lo -C -sin2ys -sin2ys ol Al = sin2yS B,
2iab 2iab -C c B, c
2iab+bd -bd dcosys-c dcosyS Bq c+dcosyS

where
1

a = (sinZyS - B2/a) (5-12)
b = sinyS (5-13)
c = cosZys (5-14)
d = Qi/pup (5-13)

Solution of this system by Gaussian elimination gives
the values of the amplitude vector. These values can then be

used to compute the displacement amplitude resulting from
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the incident and reflected wavefields, normal to

fracture. From White (1983) equation (2-22),

Ux = 9¢/9x - 9Yy/dz (5-16)

at x = z = 0, with time suppressed,

U, = -mA, - ilB; - ilB, . (5-17)

60

the

If m and 1 are again expressed in terms of Yoo all

quantities are known and solution for U, 1s possible.
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V.2 Application of Linear Slip Formulation

The preceding mathematical expressions were encoded
(Appendix 3)- and implemented on the digital computer.
Parameters used were those of the physical model. Numerical
runs were made using the center frequency of the lab pass
band, 2650Hz, as 1in the stress free case. Angles of
incidence of 85° and 72° were investigated. A few cases were
also run at approximately the 100% corners of the 1lab
bandwidth 265Hz and 5000Hz for comparison.

The stiffness parameter Q, is one value which had to be
determined empirically. The question which had to be
answered was: how stiff is a stiff fracture or the converse,
how stiff is a compliant fracture? The mathematical theory
provides the answer. A very stiff fracture is one that does
not provide enough of a boundary for reflection to take
place, in essence no fracture at all. Mathematically we then
expect an amplitude for Ux of one, this being the result of
the presence of the incoming wave. A very compliant fracture
is exactly opposite. Much of the incident energy 1is
reflected, therefore Ux amplitudes approach two when incident
and reflected waves are in phase, dropping to zero when they
are 180° out of phase.

Many values of Q were used to empirically answer the

questions stated above. The plots presented in the next
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section illustrate the change in waveform amplitude with Q
for a given incidence angle. From these results we are able
to determine what value of Q is indeed stiff or compliant for

this specific case.
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V.3 Linear Slip Results

Figures 5-2 through 5-7 illustrate numerical results
obtained from application of the linear slip theory to. a
model with 72° angle of incidence. This directly simulates
the geometry of the 1lab experiment. These plots were
generated by using the middle frequency of the lab pass-band,
2650Hz, and have been rectified. The stiffness, Q, was
varied over a wide range, providing some interesting results.

Grazing incidence is again not modeled well by 72°. The
amplitudes on all the plots are large enough at the boundary
to conclude this. Therefore we have agreement between all
three cases, lab, stress free, and linear slip, on this
point.

The most interesting comparison is between individual
curves of this set. Comparing these curves with.each other
allows for noting the change in wavefield amplitude with Q.
Q, the stiffness, was varied by 11 orders of magnitude in
creating these plots. Over this range we go from very stiff,
resulting in almost no reflection, to extremely compliant,
resulting in almost complete reflection.

Comparison of Figures 5-2 and 5-3 demonstrate that the
limit of high compliance has been reached. A change of five
orders of magnitude has produced almost no change at all in

the curves.
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Figure 5-2

Numerical Linear Slip Data, f=2650Hz.
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Figure 5-3

Numerical Linear Slip Data, f=2650Hz.
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Figure 5-4

Numerical Linear Slip Data, f=2650Hz.
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Figure 5-5

Numerical Linear Slip Data, £f=2650Hz.
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Figure 5-6

Numerical Linear Slip Data, f=2650Hz.
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Figure 5-7

Numerical Linear Slip Data, f=2650Hz.
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These two runs would represent the case of a very
compliant fracture, amplitudes approach two where reflected
and incident energy are in phase, and drop to zero when out
of phase. Note that although Figure 5-3 does not appear to
go completely to 2zero this is due to spatial sampling
density, not waveform amplitude.

In moving from Figure 5-3 to 5-7 the increase 1in
stiffness is seen to reduce displacement amplitude. As Q
increases more energy is transmitted through the interface,
than reflected. Figure 5-7 represents a situation where the
fracture is so stiff it really provides no interface at all
and reflection does not take place. The calculated
displacement is then equal to one and is the result of the
presence of the incoming wave. Figures 5-3 and 5-7 allow for
determination of what Q value represents a stiff or compliant
fracture for this model.

Figures 5-8 through 5-13 are identical to the previous
set of plots with the exception that the incident angle has
been changed to 85°. In addition to the obvious change in
apparent wavelength, we should also expect some amplitude
reduction at the interface for a very compliant fracture as
85° 1is closer to grazing than 1is 72°. Comparison of
Figures 5-8 with 5-2 confirms this phenomenon.

Figures 5-14 and 5-15 were created to illustrate the

effect of a change in incident wavefield frequency. Both
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plots were created using 72° as an incident angle and a Q
which represents high compliance. As expected, both runs
result in significant amplitude at the boundary and differ
only 1in the wavelength of the energy. Again note that
Figure 5-15 should should go to zero, but spatial sampling

was insufficient to illustrate this.
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Figure 5-8

Numerical Linear Slip Data, £f=2650Hz.
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Figure 5-9

Numerical Linear Slip Data, f=2650Hz.
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Figure 5-10

Numerical Linear Slip Data, f=2650Hz.
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Figure 5-11

Numerical Linear Slip Data, f=2650Hz.
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Figure 5-12

Numerical Linear Slip Data, f=2650Hz.
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Figure 5-13

Numerical Linear Slip Data, f=2650Hz.
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Figure 5-14
Numerical Linear Slip Data, f=265Hz,

Incident Angle of 72°.
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Figure 5-15
Numerical Linear Slip Data, f=5000Hz,

Incident Angle of 72°.
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VI. Conclusions

In this study we have attempted to demonstrate that an

amplitude anomaly is induced upon a reflected SV wavefield by

a fracture 2zone. From the empirical and theoretical work

done we can conclude that:

1)

2)

3)

4)

Lab model geometry did not actually allow for

investigation of grazing incidence case.

From mathematical treatment of stress free
boundary, we see that at the boundary the amplitude

is totally a function of incident angle.

The major difference between the numerical stress
free results and empirical lab results 1is due to
the number of frequency components contributing to

the individual curves.

Numerical results indicate that 1in order to see
amplitude reduction at fracture 1interface, the
fracture must be very compliant and incident angle

must be within 1°-2° of true grazing.
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5) Linear slip theory allows characterization of a

'fracture through the use of the stiffness value Q.

6) For the model parameters and geometry used in this
study a value of Q = -9.60 x 10 '° represents a
very compliant fracture and Q = -9.60 x 10 ¢

represents a very stiff fracture.

F

7) The stiffness parameter @ 1is independent of the

incident angle.
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APPENDIX 1

Electronic Components and Final Settings

Kenwood Stereo Amplifier

Full Gain

Nicolet Digital Oscilloscope

1 microsecond time per point
(£1lv) x 1 sensitivity

Trigger - Normal, Act., External
Vertical Expansion x 64

SKL 302 Dual Electronic filter

Filter 1 (low pass)
(x1K) (x5)
Filter 2 (high pass)
(x100) (x3)

Pulse Generator

Trigger Mode Internal
Int. Rep. Rate (.01 - .1)
Pulse Position (0-1), Vernier (10)

Pulse Delay

Pulse width (1k-10k), Vernier (10)
Pulse Amplitude (100), Vernier (Full)
Pulse Output (=)

Trigger Output (=)
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QO O QOO Q0Q *

APPENDIX 2
Fortran Code of Program "SFB"
Xk k kK k k kK k kX kK kX k k kX Kk k k k k k Kk k %k k k k k k Xk *x
THIS PROGRAM WILL COMPUTE THE AMPLITUDE
OF THE PARTICLE DISPLACEMENT NORMAL TO
A STRESS FREE BOUNDARY DUE TO A
SHEAR WAVE INCIDENT AT AN ARBITRARY
ANGLE UPON THE BOUNDARY.
WRITTEN BY RICHARD G. WEBER, AUGUST
1986
XKk k k k k k %k %k Kk Kk k Kk %k %k k* X Xk k X* Kk Xk k Xk Kk Kk % % %k

VARIABLE DECLARATIONS AND DEFINITIONS
SPEED OF COMPRESSIONAL WAVES IN MEDIUM
REAL ALPﬁA
SPEED OF SHEAR WAVES IN MEDIUM
REAL BETA
INCIDENT ANGLE OF INCOMING SHEAR WAVE
REAL PHI1
FREQUENCY OF INCOMING SHEAR WAVE
REAL w
SPATIAL POSITION WHERE DISPLACEMENT IS CALCULATED
REAL X
SHEAR WAVE CONTRIBUTION OF DISPLACEMENT
REAL Uxs

COMPRESSIONAL WAVE CONTRIBUTION OF DISPLACEMENT

b S S R B . S R S D R I M S
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REAL Uxc
c TOTAL DISPLACEMENT AMPLITUDE NORMAL TO STRESS
FREE BOUNDARY
REAL Ux
c PHASE ANGLE OF INCOMING SHEAR WAVE
REAL PHZ
C ALL COMPUTATIONS ARE AT Z=0
c MODEL PARAMETERS

ALPHA = 8793.0

BETA = 3608.0
PHI1 = 72.0 * 3.14159265/180.0
w = 2.0 * 3.14159265 * 2650
C COMPUTATION OF REQUIRED CONSTANTS
Z1 = BETA**2/ALPHA**2
Z = SIN(PHI1)**2
A= ((1./2)-2.)**2)
B = 4.*SQRT(1.-(21/2))*SQRT((1./2)=1.)
PHZ = ATAN(B/A)
BX = BETA/COS(PHI1)
D = ABS(4.*SQRT((1./2)-1.)*((1./2)=2.))
E = D/SQRT(A**2+B**2)
c NOW COMPUTE DISPLACEMENTS FOR A GIVEN X
DO 5 X = 0.0, 1.00, .01
C DISPLACEMENT DUE TO SHEAR WAVES

Uxs = =-2.*SIN(PHI1)*SIN((w*X/BX)=-PHZ)
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c DISPLACEMENT DUE TO COMPRESSIONAL WAVES

Uxc = E*SQRT(Z2-Z1)*EXP(-w*SQRT(Z2-Z1)**/BETA)
C NOW COMPUTE TOTAL DISPLACEMENT

Ux = ABS(Uxs+Uxc)

WRITE(10,*) X, Ux
5 CONTINUE

END

87
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APPENDIX 3
Fortran Code of Program "LSLP"

Ak k %k Kk Kk k k Kk %k Xk Kk k Xk kx %k k k k k Xk k k*x k k k* k k %k %k
THIS PROGRAM COMPUTES PARTICLE DISPLACEMENT
AMPLITUDES DUE TO A SHEAR WAVE INCIDENT
UPON A LINEAR SLIP INTERFACE IN A
SINGLE MEDIUM. THE PROGRAM TAKES
REFLECTION, TRANSMISSION AND MODE
CONVERSION EFFECTS INTO ACCOUNT AND
CALCULATES AMPLITUDE VALUES IN THE MEDIUM
IN A PROFILE NORMAL TO THE INTERFACE

X kR kX k k* k% * % k k% % Xk k% k kX k *x k k kx k k k k Kk kx k k *
VARIABLE DECLARATIONS AND DEFINITIONS
DENSITY OF MEDIUM
REAL RHO1
SPEED OF COMPRESSIONAL WAVES IN MEDIUM
REAL ALPHAl
SPEED OF SHEAR WAVES IN MEDIUM
REAL BETAl
INCIDENT ANGLE OF INCOMING SHEAR WAVE
REAL PHI1
FREQUENCY OF INCOMING SHEAR WAVE
REAL w
RIGHT SIDE COEFFICIENT MATRIX

COMPLEX A(4,4)

X0k % O b % Ok Xk X X A 2 O O A X O X K
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C RIGHT SIDE VECTOR
COMPLEX B(4)

C REFLECTION AND TRANSMISSION COEFFICIENT VECTOR
TO BE CALCULATED

COMPLEX C(4)

c SPATIAL POSITION WHERE DISPLACEMENT IS CALCULATED
REAL X

c STIFFNESS TANGENTIAL TO INTERFACE PLANE
REAL CT

C STIFFNESS NORMAL TO INTERFACE PLANE
REAL CN

c DISPLACEMENT NORMAL TO INTERFACE
COMPLEX Ux

C AMPLITUDE OF PARTICLE DISPLACEMENT
REAL MUX

C SQUARE ROOT OF -1
COMPLEX J

C TEMPORARY COMPUTATION VARIABLES
COMPLEX Z, Z1, TEMP, TEMP1l, TEMP2
C MODEL PARAMETERS
ALPHA 1 = 8793.0
BETA 1 = 3608.0
RHO1 = .23*(ALPHAl**.25)

PHI1

72.0%3.14159265/180.0

w = 2.0%3.14159265%2650
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CN -9.60E-15

CT = CN
J = (0.0,1.0)
C COMPUTE ALL DISPLACEMENTS AT VERTICAL
C DEPTH OF ZERO
X1 = 0.0
C START DISPLACEMENT LOOP
DO 5 X=0.0, 5.00, .1
C INPUT FREQUENCY INDEPENDENT COEFFICIENT
C MATRIX ELEMENTS
Z=(SIN(PHI1)**2)-BETAl**2/ALPHALl**2
Z=SQRT(Z)
A(1,1)=2
A(1,2)=2
A(1,3)=J*SIN(PHI1)
A(1l,4)=-J*SIN(PHI1)
A(2,1)=COS(2*PHI1)
A(2,2)=-COS(2*PHI1)
A(2,3)=-SIN(2*PHI1)
A(2,4)=-SIN(2*PHI1)
A(3,1)=2*J*Z*SIN(PHI1)
A(3,2)=2*J*Z*SIN(PHI1)
A(3,3)=-COS(2*PHI1)
A(3,4)=COS(2*PHI1)

c INPUT FREQUENCY INDEPENDENT RIGHT SIDE
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C VECTOR ELEMENTS
B(1) = -A(1,3)

B(2)

A(2,3)
B(3) = -A(3,3)

C INPUT ALL FREQUENCY DEPENDENT TERMS
Z1=CN*J/RHO1*w*BETAL
A(4,1)=2*%J*Z*SIN(PHI1)+Z1*SIN(PHI1)
A(4,2)=-21*SIN(PHI1)
A(4,3)=2Z1*COS(PHI1)-COS (2*PHI1)
A(4,4)=21*COS(PHI1)

B(4)=-A(3,3)+21*COS(PHI1)

C NOW ALL MATRIX AND VECTOR TERMS ARE
C ENTERED CALL SUBROUTINE GAUS AND SOLVE
c FOR REFLECTION AND TRANSMISSION COEFFICIENTS

CALL GAUS (A,B,C)
C NOW COMPUTE DISPLACEMENT FOR A GIVEN X
C FIRST COMPUTE TEMPORARY VARIABLES
TEMP=EXP (- (w/BETA1 ) *Z*X ) *CEXP (J* (~w/BETAL )
1 *SIN(PHI1)*X1)
TEMP1=CEXP (J* (-w/BETAL ) * (X*COS (PHI1)+X1
1 *SIN(PHI1)))
TEMP2=CEXP (J* (w/BETAL ) * (X*COS (PHI1)-X1
1 *SIN(PHI1)))
c COMPUTE DISPLACEMENT

Ux=C(1)*(~w/BETAl)*Z*TEMP-(J*(-w/BETAl)
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1 *SIN(PHI1)*TEMP2)-C(3)*(J*(-w/BETAl)
1 *SIN(PHI1l)*TEMP1)
C COMPUTE MAGNITUDE OF DISPLACEMENT
MUX=.114846206*ABS (Ux)

WRITE(10,*) X, MUX

5 CONTINUE
END
C SUBROUTINE GAUS

SUBROUTINE GAUS (AG, BG, XG)
COMPLEX AG(4,4),BG(4),XG(4),SUM
C EXECUTE FORWARD ELIMINATION SCHEME
DO 300 K=1,3
DO 200 I=K+1,4
XMULT=AG(I,K)/AG(K,K)
DO 100 J=K+1,4
AG(I,J)=AG(I,J)-XMULT*AG(K,J)
100 CONTINUE
BG(I)=BG(I)-XMULT*BG(K)
200 CONTINUE
300 CONTINUE
C NOW BACK SUBSTITUTE
XG(4)=BG(4)/AG(4,4)
DO 400 I1=3,1,-1
SUM=(0.0,0.0)

DO 500 J=I+1,4
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500

400

SUM=SUM+AG(1I,J)*XG(J)
CONTINUE
XG(I)=(BG(I)-SUM)/AG(I,I)
CONTINUE

RETURN

END
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