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ABSTRACT 

High entropy alloys (HEAs) or Multi-principal element alloys (MEAs) are a relatively 

new class of alloys. These alloys are defined as having at least five major alloying elements in 

atomic percent from 5% to 35%. There are hundreds of thousands of equiatomic compositions 

possible and only a fraction have been explored. This project examines diffusion multiples as a 

method to accelerate alloy development in these systems. The system chosen for this experiment 

is the Co-Cr-Fe-Mn-Ni system. The methodology developed for creating these diffusion 

multiples involved a two-step process. In the first step two binary alloys (50at-% Fe-Mn and 50 

at%- Ni-Co ) were diffusion bonded together. In the second step, under uniaxial compression, 

was used to bond Cr to diffusion couple prepared in Step I. Successful diffusion multiples were 

created by this method. An auxiliary method named differential melting liquid impingement 

(DMLI) was developed that created diffusion multiples using liquid processing methods that will 

be described. After creation of these multiples, the ternary and quinary interface regions were 

examined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), 

energy dispersive spectroscopy (EDS), and nanoindentation. The Cr/NiCo region experienced 

interdiffusion but no intermediate phase formation retaining the FCC / BCC interface at the hot-

pressing temperature (1200 °C). However, upon cooling from 1200 °C, the BCC region adjacent 

�W�R���W�K�H���L�Q�W�H�U�I�D�F�H���G�H�F�R�P�S�R�V�H�G���L�Q�W�R���%�&�&�������1�����,�Q���F�R�Q�W�U�D�V�W�����W�K�H���&�U���)�H�0�Q���L�Q�W�H�U�I�D�F�H���U�H�J�L�R�Q���G�H�Y�H�O�R�S�H�G���D��

�O�D�\�H�U�H�G���V�W�U�X�F�W�X�U�H���R�I���)�&�&���1���%�&�&���V�X�J�J�H�V�W�L�Q�J���W�K�D�W���1���L�V���V�W�D�E�O�H���D�W���������� °C in contradiction to the 

published 1200 °C ternary �S�K�D�V�H���G�L�D�J�U�D�P�����8�S�R�Q���F�R�R�O�L�Q�J�����W�K�H���1 present at 1200 °C decomposed 

in�W�R���)�&�&�������1�����H�[�F�H�S�W���L�Q���V�D�P�S�O�H�V���W�K�D�W���Z�H�U�H���F�R�Q�W�D�P�L�Q�D�W�H�G���Z�L�W�K���&�����L�Q���W�K�R�V�H���F�D�V�H�V�����)�&�&�������023C6 

was observed as the decomposition product. The quinary regions were evaluated using the 

�Y�D�U�L�R�X�V���+�(�$���S�D�U�D�P�H�W�H�U�V�����Q�D�P�H�O�\�����û�6mix�����û�+mix�����
�����û�$�����D�Q�G���/�����1�R���V�W�U�R�Q�J���F�R�U�U�H�O�D�W�L�R�Q�V���Z�L�W�K���S�K�D�V�H��

stability were found using these parameters in contrast to expectations based on the literature. It 

was found that Cr solubility in the quinary disordered FCC varied linearly between the two 

ternary system endpoints (Co-Cr-Ni and Cr-Fe-Mn) Additionally, while nano-hardness maps did 

not support the severe lattice distortion hypothesis proposed for HEAs, a comparison of different 

solid solution strengthening mechanisms suggests that elastic modulus mismatch and a change in 

the lattice friction stress were the most likely contributors to strengthening.  
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CHAPTER 1  
Introduction 

High Entropy Alloys (HEAs) or Multi-Principal Element Alloys (MEAs) are a relatively 

new class of alloys, generally defined as containing a minimum of five major alloying elements 

with atomic percentages ranging from 5 % to 35 %, [1]. While it is often expected for such 

compositions to form embrittling intermetallics, some HEAs form solid solutions with simple 

crystal structures such as BCC or FCC. In some cases, these HEAs exhibit appealing properties 

including high hardness, stability at a high fraction of the homologous temperature, high 

strength, good ductility, and excellent corrosion resistance[2]�±[6]. As opposed to more 

traditional systems based primarily on a single component, HEAs provide an extensive design 

space with over 190,000 5-component equimolar HEA alloy compositions alone [7]. That 

number does not take into account the unique compositions based upon variations in the molar 

ratios or the addition of minor alloying elements (<5%). While this creates a huge possible 

design space where new structural or functional alloys might be discovered and developed, it 

poses significant challenges simply related to the extremely large number of possible alloys that 

one might want to investigate in this search for new alloys. In other words, using traditional 

methods, this large composition space is intractable to approach experimentally. The goal of this 

work was to design, develop, and utilize an experimental technique that will allow for rapid 

acquisition of both mechanical properties and phase equilibria of HEAs.  

 Design considerations for rapid development of HEAs 1.1

The development of an experimental technique to screen compositionally-complex 

regions is non-trivial with several challenges that must be overcome. First, the sample must 

contain a compositional gradient that would encompass much of the complex regions of interest. 

Second, as a corollary to this first point, this gradient must systematically cover the complex 

composition space of interest. For example, varying a single element along a given axis is not 

sufficient to explore a significant region of compositional complexity. In other words, if a single 

element is varied along a given axis, how can the other 4 components be varied? Are they 

reduced in equal measure or is one preferentially reduced? Regardless of methodology, there will 

be regions in this complex space that will be missed and can only be covered by generating many 
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samples. The creation of these many samples would, in part, defeat the original purpose of 

creating a simple, rapid tool for empirical observation of compositionally-complex alloys. 

Therefore, this second challenge is one of the most significant to overcome. To overcome it 

completely, one would need to create a sample that can systematically vary five components 

smoothly over the entire complex region. The third challenge is simple in that, whatever 

geometry is designed, it must be experimentally feasible to create. These three considerations 

informed the design selection process for this project. 

 Evaluation of Possible Geometries and Techniques 1.2

With these considerations in mind, several possible approaches were examined. The first 

approach considered was to use a laser or electron beam additive process. These processes 

involve utilizing powder feed systems to create compositionally graded samples. However, these 

systems do not address the second consideration due to the fact that these systems primarily vary 

composition along a line or axis. This would lead to exactly the problem raised previously. 

Significant gaps would be present in the compositional gradient that could only be covered by 

the creation of many samples. This would significantly increase the time and complexity of 

evaluating complex compositional regions. Therefore, laser or electron beam processes were 

deemed to not satisfy the primary design considerations. Secondly, a powder compaction process 

was considered in which elemental powders would be mixed thoroughly and sintered. While 

such sintered combinations of particles would form small regions of compositional complexity at 

the sintered particle interfaces, this technique was deemed to be experimentally too complex and 

random, as one would be relying primarily on serendipity to produce the desired regions of 

interest. The third geometry examined was a solid-state bonding method. Essentially, this 

geometry would entail the creation of a multi-component diffusion multiples to form diffusion 

gradients in the compositionally-complex region of interest. This geometry would effectively 

address the first two design considerations. It would allow for significant coverage of most of the 

regions of complexity with few or no gaps in the compositional record. The challenge with this 

technique is that of creating an experimentally viable geometry with the desired diffusion 

gradients. A simple alloy diffusion couple would be insufficient to create the desired 

compositional gradients. Therefore, multiple elemental or alloy pieces would have to be bonded 

in order to create the complex regions of interest. Diffusion couples that have more than two 
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bonded components are referred to as diffusion multiples [8]. Figure 1.1 shows the first 

conceptualization of an HEA diffusion multiple. The geometry shown in Figure 1.1 envisions six 

elemental pieces in diffusive contact at the line in the center of the pie-shaped multiple. This 

geometry is impractical experimentally as it is nearly impossible to diffusively bond multiple 

samples all meeting along a common line. However, this geometry is useful to illustrate how a 

multiple might work. At the center of this geometry, there will be a large amount of intermixing 

resulting in a range of complex diffusion profiles. In addition, there will be a directional 

�F�R�P�S�R�V�L�W�L�R�Q�D�O���J�U�D�G�L�H�Q�W���G�H�Y�H�O�R�S�H�G���W�R�Z�D�U�G���H�D�F�K���R�I���W�K�H���S�X�U�H���H�O�H�P�H�Q�W���³�V�O�L�F�H�V�´�����7�K�H�U�H�I�R�U�H�����W�K�H���H�I�I�H�F�W��

of a given element may be tracked away from the complex regions back to the elemental bulk. 

Assuming the experimental challenges of this technique could be overcome, the diffusion 

multiple approach to the design of HEAs could be effective in capturing the compositional 

complexity of HEAs in a small compact sample. Therefore, this methodology was chosen to 

continue this project forward. More detailed discussion of diffusion multiples and experimental 

methodologies will be detailed later in this work. 

 

Figure 1.1:  The first conceptualization of the HEA diffusion multiple. A, B, C, D, E, and F 
designate different elemental sections. Dimensions are in cm. 

 

 The CoCrFeMnNi System 1.3

This is the first attempt to utilize diffusion multiples to evaluate HEAs. Due to the lack of 

prior information as well as to simplify any potential experimental problems in the fabrication of 

these multiples, it was decided to choose a system with relatively ideal behavior between the 
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binary and ternary systems that compose the full higher order HEA system. It was also desirable 

that the chosen system be an existing equiatomic HEA system that has already been evaluated in 

the literature. From these two criteria, the Co-Cr-Fe-Mn-Ni system was selected. The binary and 

ternary systems of this alloy are relatively simple. Additionally, the equiatomic CoCrFeMnNi 

HEA was one of the first HEA systems discovered and has been relatively well studied when 

compared with other systems [9]. Therefore, a five component diffusion multiple of Co-Cr-Fe-

Mn-Ni was deemed the appropriate test system in order to validate the usefulness of the diffusion 

multiple technique to explore HEAs.  

 Summary of Project Goals 1.4

This project had two primary goals. The first goal was to develop and evaluate the 

effectiveness of a technique to rapidly explore the complex compositional space of HEAs. The 

second goal was to explore the CoCrFeMnNi system in the complex compositional regime. This 

exploration consisted of characterizing the diffusion multiple and determining some information 

about both the mechanical properties and the phase transformation/equilibria behavior. This was 

conducted with the purpose of furthering our understanding of both the CoCrFeMnNi system and 

our understanding of HEAs in general. A tertiary goal of this project was to identify promising 

composition regions in this space for potential further alloy development.   
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CHAPTER 2  
Background and Literature Review 

This chapter covers the relevant background and work done to date on high entropy 

alloys and diffusion multiples as they pertain to this work. This includes HEA definitions, 

�S�U�R�S�R�V�H�G���³�F�R�U�H���H�I�I�H�F�W�V�´�����V�R�O�L�G���V�R�O�X�W�L�R�Q���G�H�V�L�J�Q���S�D�U�D�P�H�W�H�U�V�����U�H�O�H�Y�D�Q�W���V�W�X�G�L�H�V���R�Q���W�K�H���&�R�&�U�)�H�0�Q�1�L��

system, pertinent diffusion multiple information, and solid solution strengthening theories.  

 The Definition of High Entropy Alloys 2.1

High entropy alloys are loosely defined as containing at least five components with 

compositions between 5 at-% and 35 at-%, with additional minor alloying elements of less than 5 

at-% [1]. This definition can include alloys with more than five principal components. HEAs can 

also be defined by a designated value of the configurational entropy of mixing. The 

configurational entropy of mixing, �û�6�P�L�[, is defined in equation 2.1 as [10] 

�û�6�P�L�[� �����5
Í �; �L�O�Q�; �L

�Q

�L� ��

�� 2.1 

where R is the universal gas constant and �� �g is the mole fraction of the ith component. 

Based upon the calculation of configurational entropy, a cut off of �û�6�P�L�[ > 1.5R has been 

proposed for HEAs [1]. This value of configurational entropy is relatively high compared to 

most binary or ternary alloys where the maximum �' Smix is .69 R and 1.09R, respectively. 

Because of this relatively high value of entropy, these alloys are commonly referred to as high 

entropy alloys. Additionally, as an extension of this entropy classification system, so-called 

�³�P�H�G�L�X�P���H�Q�W�U�R�S�\���D�O�O�R�\�V�´��(1.5 R �• �û�6�P�L�[ �• 1 �5�����D�Q�G���³�O�R�Z���H�Q�W�U�R�S�\���D�O�O�R�\�V�´��(1 R > �û�6�P�L�[), have 

been defined as well [1].  

 High Entropy Theory 2.2

One of the reasons for the interest in HEAs has been the proposed tendency to form 

simple solid solutions of FCC or BCC rather than transforming into a multiphase mixture, either 

by phase separation or intermetallic formation as might be expected by extrapolation of binary 

and ternary behavior [1], [9], [11]. The proposed mechanism for this tendency is the high 
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configurational entropy of mixing (see equation 2.1) that might overshadow non-ideal enthalpies 

of mixing [12]. This argument is based upon the relative competition between the entropy of 

mixing �û�6�P�L�[ and the enthalpy of mixing �û�+�P�L�[ in determining the free energy of mixing, �û�*�P�L�[. 

The free energy of mixing is given by equation 2.2 [10] 

�û�*�P�L�[� �û�+�P�L�[���7�û�6�P�L�[�� 2.2 

It has been argued that a high �û�6�P�L�[ can overwhelm the enthalpy contribution to the free 

energy of mixing and thus cause the formation of a disordered solid solution instead of phase 

separation occurring. However, there are two major challenges that have been raised about this 

theory. First, there is the question whether the entropy effect is sufficient to stabilize a disordered 

solid solution against the formation of intermetallic compounds. This question has been 

examined by Otto et al. [13]. Their experiment started with the base CoCrFeMnNi HEA in which 

they made single element substitutions. These single substitutions would not change the ideal 

configurational entropy of the system as it is constant for a given number of components. They 

found that changing one element could cause the formation of a second phase (either 

intermetallic or BCC). This would indicate that simple configurational entropy does not 

guarantee the formation of a solid solution and that solid solution stability depends on the 

element chosen in the alloy. Along this line of inquiry, Miracle et al. calculated the fraction of 

common intermetallics that would be suppressed by a given level of configurational entropy [7]. 

It was found that until a high temperature was reached (>1000 K), entropy is probably 

insufficient to destabilize the majority of compounds in these multi-component systems (Figure 

2.1)  

These studies indicate that other considerations are also important when trying to 

stabilize a disordered solid solution. This result is not exceedingly surprising when one considers 

the classic Hume-Rothery Rules for formation of solid solutions: 

1. The difference in atomic radii between the two elements cannot exceed 15% 

2. The elements must have the same crystal structure 

3. The elements must have the same valence 

4. The elements must have similar electronegativity 
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Therefore, there is likely interplay between these various considerations of the Hume-

Rothery Rules that will determine the full range of a disordered solid solution. Work has been 

done to consider these other considerations [14]�±[17] as will be discussed in more detail in 

ensuing sections. 

 
Figure 2.1: Fraction of compounds suppressed by entropy plotted against temperature for a 

given number of components [7]. 

 

The second challenge to this proposed theory is that the calculation for entropy is based 

solely upon ideal configurational entropy. The calculation for entropy from equation 2.1 only 

calculates entropy for a given number of components in an ideal solution. It is based upon the 

number of ways a number of unique components can be arranged in a disordered lattice. It does 

not consider other contributions to entropy such as vibrational entropy. These contributions can 

increase or decrease the magnitude of entropy [11]. Currently, little to no work has been done to 

evaluate the effects of these other contributions in high entropy systems.  

 High Entropy Core Effects 2.3

�,�W���K�D�V���E�H�H�Q���S�U�R�S�R�V�H�G���W�K�D�W���W�K�H�U�H���D�U�H���I�R�X�U���P�D�L�Q���³�F�R�U�H���H�I�I�H�F�W�V�´���Rf high entropy alloys [1], 

[18], [19]. These effects include the high entropy effect, sluggish diffusion, the distorted lattice 

�H�I�I�H�F�W�����D�Q�G���W�K�H���³�F�R�F�N�W�D�L�O���H�I�I�H�F�W�´�����(�D�F�K���R�I���W�K�H�V�H���H�I�I�H�F�W�V���V�K�D�O�O���E�H���D�G�G�U�H�V�V�H�G���L�Q���W�K�L�V���V�H�F�W�L�R�Q�� 

Miracle et. al. 
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2.3.1 The High Entropy Effect 

The high entropy effect refers to the stabilization effect of high configurational entropy 

on disordered solid solutions. While this effect has been discussed in more detail in preceding 

sections, it is useful to note that this is often discussed as the first of these core effects.  

2.3.2 The Sluggish Diffusion Effect 

The diffusion behavior of HEAs has yet to be vigorously evaluated. However, it has been 

proposed that HEAs should exhibit sluggish diffusion compared to traditional alloys [12], [20]. 

This is theorized to be due to large fluctuations in the lattice potential energy (LPE) in HEAs. 

Because of its random nature, each atom site in the solid solution will have a different energy 

associated with that site (due local differences in bonding). Therefore, some sites are of high 

�H�Q�H�U�J�\���D�Q�G���R�W�K�H�U�V���R�I���O�R�Z���H�Q�H�U�J�\�����,�W���L�V���W�K�R�X�J�K�W���W�K�D�W���W�K�H���O�R�Z���H�Q�H�U�J�\���V�L�W�H�V���F�D�Q���³�W�U�D�S�´���G�L�I�I�X�V�L�Q�J��

atoms and therefore reduce the overall rate of diffusion in HEAs [20]. At this time, there is no 

evidence that these LPE sites are ordered. Tsai et al. conducted an experiment to investigate this 

behavior in the Co-Cr-Fe-Mn-Ni system. Their experiment showed that the interdiffusion 

coefficients were similar to the tracer diffusion coefficients. However, the normalized (with 

respect to melting point) activation energies were found to be higher than in reference metals. 

This increase was moderate (e.g. Ni in CoCrFeMnNi compared to FCC Fe, ~ 14%) which would 

cause a lower mobility. Significantly more studies are necessary in order to be able to confirm 

this finding. 

If present, the sluggish kinetics of HEAs is of great interest. A slow diffusion rate will 

affect all of the traditional diffusion based kinetic reactions used in metallurgical systems. For 

example, it may allow for the easier creation of supersaturated solutions, fine precipitates, 

increased recrystallization temperatures, slow grain growth, slow particle coarsening, and 

improved creep performance [1], [12]. This property would allow for the manipulation of HEA 

kinetics to enhance properties.  

2.3.3 The Distorted Lattice Effect 

The distorted lattice effect is a mechanism proposed to explain the mechanical 

performance of some high entropy alloys [1], [12]. It has been proposed that the size misfit 

between different atoms on the disordered lattice gives rise to a distorted lattice (e.g., Figure 2.2 

[1]). This, in turn, is believed to inhibit the motion of dislocations through the lattice thereby 
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increasing strength. Yeh et al. conducted a study of lattice distortion using x-ray diffraction 

techniques [21]. They attributed an observed decrease in x-ray intensity to the increased number 

of principal components leading to an increase in the lattice distortion. Experimental reports of 

mechanical properties vary however. For example, in one BCC HEA system, excellent 

compressive mechanical properties were reported [22]. However, in FCC systems, low strengths 

and high ductilities have been reported [2], [23]. It would be predicted that strength should 

increase monotonically with the increase in the number of components if this mechanism was the 

only one in operation. This is not observed. A study of binary, ternary, quaternary, and quinary 

alloys in the CoCrFeMnNi system indicated that the strength does not necessarily scale with the 

number of components with lower order alloys actually exhibiting higher strengths in some cases 

[21]. 

 

 
Figure 2.2: A schematic illustration of the severe lattice distortion effect. Figure taken from 

Reference [1]  

 

 Yeh et al. reported an increase in hardness with an increase in the number of components 

[22]. However, this evidence is inconclusive as it does not directly consider the impact of duplex 
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microstructures in their study. It is clear that further work is needed to study the distorted lattice 

effect fundamentally in order to explain these discrepancies.  

2.3.4 The Cocktail Effect 

�7�K�H���L�G�H�D���R�I���³�P�X�O�W�L-�P�H�W�D�O�O�L�F���F�R�F�N�W�D�L�O�V�´���Z�D�V���I�L�U�V�W���L�Q�W�U�R�G�X�F�H�G���E�\���5�D�Q�J�D�Q�D�W�K�D�Q���D�V���D���Z�D�\���W�R��

emphasize the possible synergistic effects of multi-component metallic systems [23]. These 

synergistic effects are those that arise due to the favorable interactions that are only present when 

a given number of components are present in a mixture. High entropy systems are often thought 

to fall into this category due to the highly mixed disordered structures formed. In many regards, 

this category has been used to describe effects that cannot be readily explained using theories 

developed for simpler systems. In particular, the cocktail effect has been used to describe the 

drastic changes that additions of aluminum can cause in high entropy transition element systems 

[11], [24]. This term is used loosely and more directed studies are necessary in order to narrow 

the definition.  

 High Entropy Design Parameters for Solid Solution Formation 2.4

There have been several attempts to define empirical parameters for evaluating the 

tendency of an alloy to form a solid solution [14]�±[17]. These parameters primarily attempt to 

extend the classical Hume-Rothery rules for solid solubility to n-component systems. Each 

proposed parameter and its experimental evaluation is presented below.  

2.4.1 �
�����5�H�O�D�W�L�Ye comparison of enthalpy to entropy 

Zhang et al. proposed a design parameter to evaluate the formation of solid solutions in 

multi-component alloys designated as �
��[14], [15]�����7�K�H���S�D�U�D�P�H�W�H�U���
���W�D�N�H�V���L�Q�W�R���F�R�Q�V�L�G�H�U�D�W�L�R�Q���W�K�H��

relative magnitude of ���7�û�6�P�L�[ as compared to �_�û�+�P�L�[�_ (from equation 2.2). �
   is defined in 

Equation 2.3 as [14]:   

�
 
L
�7�P�û�6�P�L�[

���û�+�P�L�[��
�� 2.3 

 

where Tm is the weighted average of the component melting temperatures given by 

Equation 2.4:  
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�7�P� 
Í �; �L��

�Q

�L� ��

�7�P���L�� 2.4 

and �_�û�+�P�L�[�� �L�V���F�D�O�F�X�O�D�W�H�G���X�V�L�Q�J���D���U�H�J�X�O�D�U���V�R�O�X�W�L�R�Q���P�R�G�H�O���E�D�V�H�G���R�Q���0�L�H�G�H�P�D�¶�V��

macroscopic model for binary liquid alloys [14]. �%�D�V�H�G���X�S�R�Q���W�K�L�V���
���S�D�U�D�P�H�W�H�U�����L�W���L�V���D�U�J�X�H�G���W�K�D�W��

�D�Q�\���Y�D�O�X�H���R�I���
 > �����V�K�R�X�O�G���U�H�V�X�O�W���L�Q���D���V�R�O�L�G���V�R�O�X�W�L�R�Q���V�L�Q�F�H���W�K�H���7�û�6mix term exceeds the enthalpy of 

�P�L�[�L�Q�J���W�H�U�P�����&�R�Q�Y�H�U�V�H�O�\�����L�I���
���”���������H�Q�W�K�D�O�S�\���L�V���H�[�S�H�F�W�H�G to dominate the entropic term. Based 

upon experimental observation, it was proposed that �
  > 1.1 was the required threshold to a 

disordered solid solution.  

This parameter has one important caveat. It only compares the absolute value of �û�+�P�L�[. It 

does not treat the case where �û�+�P�L�[ is positive differently than if negative. This leads to a 

comparison that is a significant simplification of reality. For if �û�+�P�L�[ is negative, entropy and 

enthalpy are not in competition. If �û�+�P�L�[, is a large negative value, that indicates extremely 

favorable binary atom pairs are present in the mixture. Large negative values of �û�+�P�L�[ may in 

fact lead to compound formation. Guo et al.. has reported this effect and has proposed limits 

based on �û�+�P�L�[ values of (7 kJ/ mol >�û�+�P�L�[>-22 kJ/mol) [16]. Therefore, caution must be used 

�Z�K�H�Q���X�V�L�Q�J���
���W�R���H�Y�D�O�X�D�W�H���R�U���G�H�V�L�J�Q���+�(�$�V���� 

2.4.2 �/: Size mismatch parameter 

�7�K�H���V�H�F�R�Q�G���S�D�U�D�P�H�W�H�U�����/�����F�R�Q�V�L�G�H�U�V���W�K�H���U�R�O�H���R�I���D�W�R�P�L�F���V�L�]�H���L�Q���W�K�H���I�R�U�P�D�W�L�R�Q���R�I���V�R�O�L�G��

solutions. It is defined in Equation 2.5 as [14]:  

�Ü 
L
©
Í �? �Ü�:�s 
F
�U�L
�U�§

��
�6

�á

�Ü�@�5

�� 2.5 

where ci is the atom fraction of the ith component, ri is the radius of the i th component and 

�N�§ is defined in Equation  2.6 as:  

�N�§ �� 
L 
Í �?�Ü�N�Ü

�á

�Ü�@�5

������ 2.6 

This parameter estimates the given mismatch an alloy would be expected to have. Based 

on experiments and additional literature review, Yang et al. proposed that �/ �”�������� % as the 
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maximum allowed mismatch [14]. Other studies have also found that there is a limit in solubility 

related to atomic misfit [25].  

2.4.3 �û�$: Comparison of Electronegativity 

The pa�U�D�P�H�W�H�U���û�$���L�V���G�H�I�L�Q�H�G���V�L�P�L�O�D�U�O�\���W�R���/���D�Q�G���Z�D�V���R�U�L�J�L�Q�D�O�O�\���S�U�R�S�R�V�H�G���E�\���)�D�Q�J��et al. for 

use in bulk metallic glass systems. The definition of �û�$ is shown in Equation 2.7 [26]:  

�Â�ï
L 
©
Í �? �Ü

�á

�Ü�@�5

�:�ï�Ü
F �ï�§�;�6 2.7 

�Z�K�H�U�H���$i is the electronegativity of the ith component, ci the atomic fraction of the of the 

ith component, and �ï��
% = �Ã �F�L�$�L
�Q
�L . Although Guo proposed this parameter for use in the HEA 

system, no strong conclusions were presented about the effect of �ü�.  [16]. However, from the 

perspective of the Hume-�5�R�W�K�H�U�\���5�X�O�H�V�����5�X�O�H�����������L�W���Z�R�X�O�G���E�H���H�[�S�H�F�W�H�G���W�K�D�W���û�$���Z�R�X�O�G���E�R�X�Q�G���W�K�H��

stability of the solid solution in a similar manner to �
���D�Q�G���/�� 

2.4.4 VEC: Valence Electron Concentration 

The valence electron concentration (VEC) examines the average valence concentration of 

an alloy by taking the weighted average of the number of valence electrons in each component. 

This is calculated by equation 2.8 [17]: 

�8�'�% 
L 
Í �?�Ü�:�8�'�%�;�Ü

�á

�Ü�@�5

 2.8 

where ci is the atomic fraction of the ith component and (VEC)i is the VEC for the i th 

component. Using this parameter, Guo et al. found no link between VEC and the tendency for an 

HEA to form a solid solution. However, a link between VEC and the selection between FCC or 

BCC in HEAs was found. It was proposed that, �I�R�U���9�(�&���’�������������W�K�H���%�&�&���S�K�D�V�H���L�V���V�W�D�E�O�H���Z�K�L�O�H���D�W��

�9�(�&���•���������)�&�&���L�V���V�W�D�E�O�H�����,�Q���E�H�W�Z�H�H�Q�����D���P�L�[�W�X�U�H���R�I���)�&�&���D�Q�G���%�&�&���Z�L�O�O���W�H�Q�G���W�R���I�R�U�P. This was 

reported primarily in aluminum containing systems. [17]. 
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 The CoCrFeMnNi System 2.5

The CoCrFeMnNi system is one of the earliest reported solid solution high entropy alloy 

systems [9]. The system forms a simple FCC solid solution upon solidification. The lattice 

parameter of an equiatomic HEA in this system was reported (by XRD) to be 0.359 nm [9]. The 

mechanical behavior of this system has been evaluated [2], [21] and the alloy has excellent 

ductility but moderately low strength. The tensile properties of several different binary, ternary, 

quaternary, and quinary alloys contained within the Co-Cr-Fe-Mn-Ni system (e.g Co-50Ni, Co-

33Ni-3Cr, Co-25Ni-25Cr-25Fe) [2], [21] are provided in Table 2.1. The microstructure of the 

equiatomic CoCrFeMnNi alloy was equiaxed after cold rolling and recrystallization as well as 

after hot rolling [2]. All alloys in this study had similar grain sizes (24-48 ��m) It was found from 

these studies that the equiatomic CoCrFeMnNi alloy is not the best performing alloy in terms of 

strength and ductility.  

Table 2.1:   Comparison of mechanical properties of the different binary, ternary, quaternary, 
and quinary alloys contained within the Co-Cr-Fe-Mn-Ni system [2], [21] 

Alloy Yield Strength (MPa) UTS (MPa) Uniform Elongation (%) 

Ni 100 550 38 

Ni50Co 150 800 60 

Fe50Ni 325 810 48 

Ni33Co33Mn 380 950 50 

Ni33Co33Cr 500 1300 75 

Fe33Ni33Mn 380 930 47 

Fe33Ni33Co 340 800 43 

Ni25Co25Cr25Mn 500 1300 62 

Fe25Ni25Co25Mn 300 800 48 

Fe25Ni25Co25Cr 490 1200 46 

Co20Cr20Fe20Mn20Ni 230 630 40 
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This was also observed at elevated temperature [2], [21]. Additionally, a Mn-rich HEA 

composition was made in this system that was reported to be FCC with similar tensile properties 

to the equiatomic quinary HEA [27]. This may indicate that the solid solution range is extremely 

wide and that the ideal composition may not occur at the equiatomic point in these alloys. 

 Diffusion Multiples 2.6

Diffusion multiples are an extension of diffusion couples. Instead of two components in 

contact along a surface, three or more components are in diffusional contact. This allows for 

information to be gathered for ternary and higher order systems. These multiples have been 

shown to give effective information about the phase formation behavior of ternary systems, 

allowing for the effective evaluation of phase equilibria in ternary systems. In recent years, the 

primary work on diffusion multiples has been carried out by Zhao et al. [8], [28]�±[33]. An 

example of a diffusion multiple geometry is shown in Figure 2.3 [30]. Table 2.2 summarizes the 

techniques that have successfully been used on diffusion multiples.  

 

 

 

 

 

 

 

a)                                      b) 

 

c) 

  

Figure 2.3: Diffusion multiple geometry used by Zhao. a)  cross-sectional view; b) perspective 
view; and c) backscatter electron image of the Nb-Cr-Si tri-junction region 
highlighted in a) [30] 
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Table 2.2: Summary of information gained from diffusion multiples and the characterization 
techniques [8], [31], [32] 

 

Information Gained Method Used 
Composition Electron probe microanalysis (EPMA) 

Crystal Structure 
Electron backscatter diffraction (EBSD) and 
Transmission electron microscopy (TEM) 

Hardness Nanoindentation 
Elastic Moduli Nanoindentation 

Thermal conductivity Time-domain thermo-reflectance 

 

Additionally, as indicated in Figure 2.4, this method has been used to construct ternary 

phase diagrams [29], [30]. The data points were obtained from the composition measurements on 

the diffusion couple in Figure 2.3 [30] and illustrate the amount of data that can be derived from 

diffusion multiples. 

 

 

Figure 2.4: The Cr-Nb-Si phase diagram constructed from the tri-junction shown in 9.1 c). The 
open circles represent phase boundary compositions and the dotted lines represent 
tie lines. [30] 
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There are several challenges with constructing viable diffusion multiples. The first 

challenge is to create intimate contact at multiple interfaces. Slight variations in sample 

dimensions can result in gaps in the compacted sample. This can be addressed with high 

precision machining and by careful sample surface preparation. The second challenge is 

preventing oxidation of the samples. Oxidation can compromise the sample during bonding and 

may prevent intimate contact between the sample surfaces thereby precluding both bonding and 

interdiffusion. This problem can be addressed by encapsulation in quartz in inert atmosphere or 

by heat treating under high vacuum or reducing conditions.  

 Solid Solution Strengthening 2.7

Solid solution strengthening describes the strengthening that can result by adding a solute 

atom to a solvent metal. This strengthening is the result of interactions between the solute atom 

and dislocation cores. These interactions can be categorized as elastic misfit, elastic modulus, 

electrical, chemical, local order, and vibrational entropy [34]. Each of these interaction types 

shall be addressed briefly.   

2.7.1 Elastic Misfit Interaction  

The elastic misfit interaction is caused by the size difference between a solute atom and 

the solvent matrix. This misfit causes elastic strains in the parent lattice. These elastic strains can 

interact with the strain field around a dislocation core. This interaction can reduce the overall 

strain energy in the lattice, which gives the solute/dislocation interaction an associated energy. A 

force must be applied to the dislocation to break the dislocation free from this interaction. Thus, 

strength is increased [34]. The magnitude of this strengthening is directly related to the atomic 

misfit of the solute atom in the solvent. Expanded calculations of this interaction are presented in 

[34], [35].  

2.7.2 Modulus Misfit Interaction 

The modulus misfit interaction is caused by a misfit in the elastic modulus between the 

solute and solvent atoms (as evaluated by bulk modulus). The solvent atom modifies the local 

bonding such that the solute atom behaves as an elastic inhomogeneity. The solute atoms are 

�F�R�Q�V�L�G�H�U�H�G���W�R���E�H���H�L�W�K�H�U���H�O�D�V�W�L�F�D�O�O�\���³�K�D�U�G�´���R�U���³�V�R�I�W�´���U�H�J�L�R�Q�V���L�Q���W�K�H���O�D�W�W�L�F�H��[34]. These regions can 

help relax the dislocation strain energy. In general, the degree of hardening is directly related to 
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the degree of elastic mismatch and interaction energy and has been calculated by different 

authors (e. g. [36]).  

2.7.3 Electrical Interaction 

Dislocations are associated with an electrical field. The electric field of the solute atom 

can interact with the dislocation electric field. This interaction gives rise to an associated energy 

[34]. It has been observed that there is an charge halo around solute atoms that would support 

this assertion [37]. This effect is of relatively small magnitude and is generally not directly 

addressed in most metallic solid solutions. 

2.7.4 Chemical Interaction 

The chemical interaction arises when solute atoms interact with stacking faults that lie 

between partial dislocations. Solute atoms may be either preferentially bound to, repelled by or 

neutral to a stacking fault. This idea was first put forth by Suzuki [38] and solute atoms 

segregating to stacking faults are referred to as Suzuki atmopsheres. This preferential segregation 

can reduce the mobility of the partial dislocations, locking them in place until the necessary 

energy is provided to move them. This contribution is significant in some alloy systems. [39]. 

2.7.5 Local Ordering 

Local ordering or short-range order (SRO) occurs when solute atoms arrange themselves 

preferentially with the solvent atoms in the disordered lattice. If a dislocation glides through this 

ordered region it may destroy the locally ordered regions in its wake. This destruction of local 

order creates an interface with a positive energy [37], [40]. In turn, a dislocation will require 

additional stress to break free from these positive pinning interfaces. 

2.7.6 Vibrational Entropy 

A dislocation has vibrational modes that are distinct from those of the host lattice. This is 

determined by its line tension and unpinned length. The introduction of a dislocation into a 

lattice modifies the vibrational modes at the dislocation core, leading to an increase in vibrational 

entropy. Solute atoms can decrease the entropy of the dislocation. This creates a repulsive 

interaction [34]. This has been physically described as a loss of low frequency vibrational modes 

caused by the reduction of dislocation line length (by the presence of pinning points) [34].  

 



 18 

 

CHAPTER 3  
Experimental Methods 

The experimental methods used in this research are summarized in the following 

sections. This includes are relevant information concerning diffusion multiple construction as 

well as the characterization techniques used to evaluate them. 

 Binary Alloy Melting 3.1

For the solid state bonding studies, the binary alloys were melted using pure components 

with purities of at least 99.9% metals basis. Two different routes for alloy fabrication were used. 

The nickel-cobalt binary alloy (50 at-% Co) and the pure chromium component were arc melted 

in a titanium-gettered argon atmosphere. The melted Ni-Co ingot was 17.66 g and the chromium 

ingot was 20.04 g. The Ni-Co alloy was remelted three times to ensure homogeneity. After the 

final melt, the alloy was cast in a copper mold with a rectangular cross section 11.75 mm by 9.5 

mm. The composition and homogeneity of the Ni-Co alloy were verified by a combination of 

EDS and by mass loss measurements.  

The iron-manganese binary alloy was prepared by induction melting in an argon 

atmosphere. A nominally 50 g ingot was melted. Additional manganese was added to account for 

manganese vaporization. The as-melted ingot was a cylinder with diameter 23.5 mm. The 

composition and homogeneity were verified using mass balance and energy dispersive 

spectroscopy (EDS). The Fe-Mn alloy was used in the as-cast condition. An additional Fe-Mn 

ingot was successfully created by the same procedure used for the Ni-Co ingot. This ingot was 

primarily used for the stock in the liquid processed samples.  

 Diffusion Multiple Fabrication 3.2

In this section, the processes used to create diffusion multiples by two different methods 

are detailed. One method is a completely solid-state processing route and the other involves 

liquid-solid interactions. Both of these methods can result in a functioning diffusion multiples 

although the solid-state technique is more controllable. 



 19 

3.2.1 Solid State Diffusion Multiple Fabrication 

The diffusion multiple geometry for this project has been simplified compared to other 

geometries used, especially that of Zhao [28]. The diffusion multiple is constructed in two steps. 

The first step consists of bonding two equiatomic binary alloys together with a short heat 

treatment in a clamping fixture such as that shown schematically in Figure 3.1. 

 
a)  

 
b)  

Figure 3.1: Diffusion multiple clamp fixture schematic. a) Top view; b) Side View. 
Dimensions are in mm. Screws and Clamps are constructed of INVAR® 36, nuts 
are 18-8 stainless steel.  

 

 
a)  

 
 

b)  

Figure 3.2:  Schematic illustration of the two step bonding process a) Stage I: Binary alloy 
bonding shown with Fe-50Mn and Ni-50Co binary alloys b) Stage II : After 
subsequent sectioning, the final component (Cr) is bonded by hot pressing 
creating a tri-junction interface with 5 components in diffusive contact. 

 

This step creates a diffusion bond between the two equiatomic binary alloys, in this 

experiment Fe-50Mn and Ni-50Co, creating a quaternary diffusion couple. The second step 

consists of sectioning the resulting pseudo-binary couple in order to reveal the bonded 
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quaternary interface and bonding an additional alloy (or pure component) with this interface. In 

short, the first step creates a bond between two binary alloys, while the second step adds the final 

component(s) and creates a five component diffusion multiple. This two-step process used for 

the Co-Cr-Fe-Mn-Ni system in this study is illustrated in Figure 3.2. 

The following description provides details of the entire fabrication procedure starting 

with the binary alloys and the pure base material. Stage I consists of bonding the Fe-50 at-% Mn 

alloy to a Co-50 at-% Ni alloy. Rectangular sections with nominal dimensions of 11.75 mm by  

9.5 mm by 2.54 mm were cut from the binary alloys using an abrasive saw. It should be noted 

that, for the Fe-Mn pieces in this experiment, the shape was not completely regular due to 

geometrical constraints during sectioning.  The specimens were then ground flat using a 

precision surface grinder (Harig 618 Autostep). The first series of these samples was 

subsequently polished using a 6 ��m diamond suspension on a silk cloth. However it was found 

this was not necessarily optimal for bonding and subsequent surfaces were used in the as-ground 

condition (60-grit). The clamp fixture plate surfaces were also prepared by the surface grinder to 

ensure flat, parallel surfaces with respect to the samples. 

Prior to assembly, the clamp fixture surfaces were coated with a ZYP yttrium oxide 

refractory coating. After the coating dried, the samples were aligned in the fixtures and the 

system secured together by use of 5-40 threaded INVAR® 36 rods and stainless steel (18-8) hex 

nuts. The use of INVAR® 36 in the assembly was to minimize the thermal expansion of the 

clamp and thus increase pressure slightly during heating/bonding. Once assembled, the couple 

was heat treated at 1000 °C for 24 h in a vacuum furnace (~10-7 Torr) to establish the Stage I 

quaternary bond.  

In the second stage utilizes a vacuum hot press was utilized in an effort to avoid bonding 

failure between the pure chromium component and the quaternary stage 1 couple. The hot press 

provides a high vacuum or inert gas environment and, due to the graphite rams and crucibles, a 

reducing atmosphere for oxygen. Both of these aid in limiting the Cr2O3 surface film which was 

found to inhibit the formation of a diffusion bond in some preliminary studies. The chromium 

component and the quaternary couple surfaces were prepared by the same procedure outlined for 

Stage I. The chromium piece and the quaternary couple were held together by wrapping with fine 

gauge nickel wire instead of using a clamp system. This was to prevent pieces from sliding 
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during sample mounting in the hot press. The multiple was wrapped in tantalum foil and covered 

with graphite when placed in the ram. It was then hot pressed at 1200 °C and 8.0 kN for 8 h.  

After the first sample, this operation was conducted under an argon backfill to suppress the 

considerable Mn volatilization that was observed when conducted under vacuum.  

3.2.2 Differential Melting Liquid Impingement (DMLI) Diffusion Multiple 
Fabrication 

A separate process was developed in an attempt to speed the construction of these 

diffusion multiples as well as to alleviate problems with oxidized component surfaces interfering 

with the solid-state bonding process. For this method, the lowest melting point component was 

melted and then impinged on the higher melting point component or alloy (Figure 3.3).  

 

 
Figure 3.3: Schematic of the DMLIprocess. The low melting point component is melted and 

allowed to flow onto the high melting point component. 

 

The process occurs in two steps to create a 5-component multiple. First, the highest 

melting point component is placed next to a slope in the arc melter. Next, the lower melting 

component is placed above it on the slope. The geometry of this arrangement can be changed 

depending on circumstance. The important aspect of this is to ensure that the lower melting 

component, once melted, will drop/slide down the slope and impinge the high melting 

component surface and solidify. The resulting piece is then sectioned to expose the interface 
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between the two materials. The process is then repeated with the lowest melting point 

component, creating a tri-junction interface between the different components. If the materials 

chosen are binary alloys, up to six elemental components can be placed at an interface. This 

process was performed for the Co-Cr-Fe-Mn-Ni system. First the Ni-Co was flowed onto the Cr 

component. The result was sectioned and the Fe-Mn was flowed onto the resulting interface 

creating a five component diffusion multiple.  

 Secondary Heat Treatments 3.3

Heat treatments following the fabrication of the diffusion multiples followed a standard 

procedure. All samples were encapsulated in quartz under argon with a titanium getter to ensure 

an oxygen-free environment. After encapsulation, samples were placed in a Carbolite® box 

furnace. All heat treatments were conducted at 1000 °C; above this temperature, extreme Mn 

volatilization was observed. The temperature was checked using a thermocouple probe to ensure 

the proper temperature was maintained to within 5 °C of the target temperature. Heat treatment 

times varied between 24-96 h. The reasons for this range will be addressed later. All samples 

were furnace cooled from temperature in order to prevent interface cracking due to the 

coefficient of thermal expansion (CTE) mismatch between the different phases at the multiple 

interfaces. 

 Sample Preparation for Scanning Electron Microscopy (SEM) 3.4

Samples were prepared for SEM analysis by standard grinding (to 2500 grit) followed by 

polishing to 1 micron using a diamond suspension. The samples were then examined using both 

a JEOL JSM-7000F Field Emission SEM and FEI Quanta 600 Environmental SEM at 15-20 kV 

accelerating voltage. Both instruments were equipped with energy dispersive spectroscopy 

(EDS) capability using Si(Li) detectors. Target dead times for all scans were 30% (±10%) and 

�W�K�H���O�D�U�J�H�V�W���W�L�P�H���F�R�Q�V�W�D�Q�W�����•�����������V�����Z�D�V���X�V�H�G���L�Q���R�U�G�H�U���W�R���P�D�[�L�P�L�]�H���H�Q�H�U�J�\���U�H�V�R�O�X�W�L�R�Q���� 

 

 Transmission Electron Microscopy:  3.5

TEM lift-out specimens from selected regions were prepared using a FEI Helios Nanolab 

600i FIB-SEM. The samples were examined using a Philips CM12 microscope at an accelerating 
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voltage of 120 kV. The microscope was equipped with a EDS Si (Li) detector. EDS performed 

on the TEM was performed using the largest spot size that gave acceptable resolution and count 

rates with a targeted dead time of 30% (±10%).  All diffraction patterns were taken at a camera 

length of 260 mm. The camera constant was calibrated to a polycrystalline aluminum standard. 

The calculated camera constant was 8.518 Å*mm. Image rotations were calibrated using a MoO3 

standard sample.  

 Nanoindentation 3.6

Nanoindentation traces were made with a Hysitron TI 950 nanoindenter using a medium 

sharpness Berkovich tip. An area function was defined using fused quartz as a standard. The area 

function was calculated using the Oliver and Pharr method [41]. The tip was checked against the 

quartz standard before every indentation trace to ensure no significant change had occurred 

between traces. All indents were made to a depth of 100 nm. Samples for indentation were 

prepared by a standard polishing procedure detailed in section 3.4, followed by an additional step 

of vibratory polishing using 0.05 colloidal silica for a minimum of 4 h. The target surface 

roughness was < 10 nm.     
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CHAPTER 4  
Solid State Diffusion Multiple #1 (Under vacuum) 

In this chapter, the boundary morphology and character of the first as-pressed diffusion 

multiple are summarized. First, a summary of the overall sample appearance is presented, 

followed by presentation of the ternary boundaries finishing with the quaternary and quinary 

boundaries. The phase equilibria will not be addressed fully in this section; that discussion will 

be presented after the results from this and the subsequent samples have been presented. This 

allows for a more complete discussion of both ternary and quinary equilibria for all samples.  

 Diffusion Multiple #1 As-Pressed  4.1

The overall appearance of the 1st hot pressed sample is shown in Figure 4.1  

 
Figure 4.1: A backscattered electron micrograph (BSE) of the first as-pressed CoCrFeMnNi 

diffusion multiple 

 

As can be seen, the chromium appears to have bonded successfully to the Ni-Co and Fe-

Mn binary alloys although there is some apparent cracking at the interface between the Fe-Mn 
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alloy and the chromium component. Fortunately, this cracking occurred away from the region of 

quinary mixing, which is referred to as the tri-junction, and should not adversely affect 

observations in that region. Additionally, the Fe-Mn alloy developed a large degree of porosity 

as seen in the higher magnification image in Figure 4.2. It appeared that this porosity is the result 

of manganese volatilization. Corresponding EDS examination indicate that a significant amount 

of manganese was lost in these regions confirming this speculation. Future hot press experiments 

were conducted under higher pressure conditions or under argon in order to minimize 

volatilization. Fortunately, the volatilization decreased near the interface with the Ni-Co alloy. It 

was also observed that the Fe-Mn binary alloy is extremely sensitive to the presence of moisture 

(either in air or in polishing solutions) and significant pitting will occur if polishing is conducted 

in water-based solutions. It is likely that the extent of this volatilization is somewhat exaggerated 

optically by the expansion of porous regions by this localized pitting during polishing. 

Preventive measures were implemented after this realization, but it is challenging to keep 

moisture away from the sample at all times. However, despite these issues this sample showed an 

adequate bond and useful area for further examination.  

 

 
Figure 4.2 BSE micrograph of the observed porosity in the Fe-Mn region of the sample.  
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4.1.1 Cr/FeMn Ternary Couple 

The ternary boundary region on the Cr/FeMn side of the diffusion multiple exhibited a 

complex microstructure with the formation of several phases (Figure 4.3 a)). 

 
a)  

 
b)  

Figure 4.3:  a) BSE micrograph of the Cr-FeMn boundary. At least 3 regions of distinct Z-
contrast (labelled A-C) are noted. b) EDS line scan taken along the black line 
marked in a) 
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There are three distinct regions labeled A-C in Figure 4.3a. The EDS line scan profile 

across all of these regions is shown Figure 4.3 b). The line scan indicates that region A is Cr rich 

and relatively depleted in Fe. Region B refers to the three phase mixture of the intermediate gray 

phase, the light matrix phase, and the dark grey that matches the contrast and EDS signal of 

Region A. The gray phase in this region has intermediate levels of Cr, Fe, and Mn. The light 

regions between the gray contain Cr, Fe, and Mn consistent with Region C. Region C is Fe rich 

with the bulk of the remaining Mn and low levels of Cr. This would indicate that this is the bulk 

FCC Fe-Mn phase with some Cr in solution. The EDS spectra from Regions A and the gray 

phase in region �%���L�Q�G�L�F�D�W�H���W�K�D�W���W�K�H�\���D�U�H���O�L�N�H�O�\���%�&�&���.-�&�U���D�Q�G���W�H�W�U�D�J�R�Q�D�O���1�����U�H�V�S�H�F�W�L�Y�H�O�\�����+�R�Z�H�Y�H�U����

there is one complication to this tentative identification, namely, the Z-contrast exhibited by 

region A is darker than the bulk Cr as shown in Figure 4.4; this may indicate the presence of 

carbon or some other interstitial. Interestingly however, this was not observed across the entire 

boundary as shown in Figure 4.5 

 
Figure 4.4: BSE micrograph showing the difference in Z contrast between the bulk Cr and 

Region A.  
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Figure 4.5: BSE micrograph showing similar Z contrast observed on both sides of the 

Cr/FeMn interface. The region A phase exhibits a similar Z contrast as the bulk 
Cr.   

 

The inconsistent appearance of this dark Z contrast suggests that the source of the 

interstitial, likely carbon (based upon the use of graphite rams in the hot-press and the high 

vacuum conditions), is probably at one end of the diffusion multiple interface and that the 

diffusion occurs directionally along the interface. There is an additional observation that is of 

interest in the Cr-FeMn interdiffusion zone, namely, Regions A and B appear to be linked by a 

solid state transformation. There are multiple instances of transformed particles that are part A 

and part B (Figure 4.3). 

4.1.2 Cr/CoNi Ternary Boundary 

The Ni-Co and Cr ternary interdiffusion zone also exhibited a complex structure with at 

least two phases at the boundary (Figure 4.6). These were distributed in the three regions of 

interest labeled D-F in Figure 4.6. Region D represents the Ni-Co FCC whereas region F 

represents the bulk Cr side (BCC) but also contains lighter (higher Z) regions, possibly as the 

result of solute diffusion along Cr boundaries. The middle reaction zone (Region E) clearly 

contains a distribution of two phases. Since the brighter phase has similar contrast and EDS 

signal to that of the FCC phase in Region D, it is assumed that this phase is also FCC. The darker 

Bulk Cr 
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grey phase in Region E appears darker than the BCC phase on the Cr side (Region F). There are 

two main possibilities for the identity of this phase, namely BCC or a Cr-rich carbide due to 

carbon contamination as suggested above and by the lower Z contrast. Unlike the Cr/FeMn 

boundary, this appearance was found to be consistent across the entire Cr/CoNi boundary. This 

may indicate that the carbon contamination began along the Co/CrNi boundary and diffused 

towards the Cr/FeMn boundary, forming carbides all along this side of the boundary. This idea is 

supported by the appearance of the tri-junction as will be described below 

 

 
Figure 4.6: BSE micrograph of the Cr/NiCo ternary boundary showing the complex nature of 

the boundary. Regions of interest are labeled D-F. 

 

4.1.3 Cr/CoNi/FeMn Tri-Junction 

The appearance of the quinary tri-junction containing all five components is shown in 

Figure 4.7 and exhibits multi-phase regions (Zones B and E above, Figures 4.3 and 4.6)) that 

disappear when the region of quinary mixing is reached. The dark Z-contrast region (Zone G) 

separating these two-phase regions has intermediate contrast and appears to extend continuously 

along the Cr interface with the FeMn and NiCo couples. This would support the hypothesis that 
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the carbon contamination originated from Co/CrNi interface and diffused along the boundary to 

the Cr/FeMn side of the interface. 

 

 
Figure 4.7: BSE micrograph showing the appearance of the region of five component Co-Cr-

Fe-Mn-Ni mixing, known as a tri-junction. 

 

 Diffusion Multiple #1 �± Heat Treated 4.2

The as-pressed sample was heat treated at 1000 °C for 96 h. This treatment was 

performed in order to enhance the diffusion depth and to examine the evolution of the boundary 

structure beyond that produced during its preparation. The changes to each boundary structure 

were evaluated and compared to the as-pressed behavior. 

4.2.1 Cr/FeMn Heat Treated Boundary  

After heat treatment, the structure at the Cr/FeMn boundary had clearly coarsened 

considerably. First, the extent of region A was significantly lower than that of the non-heat 

treated sample. In region B, two phases were observed and �D�U�H���O�L�N�H�O�\���)�&�&�����1���R�U���)�&�&�������%CC. 

Since any carbides are unlikely to be dissolved at 1000 °C and since there is no source of carbon 

during the heat treatment, there should be no significant change in the starting fraction of carbon 
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although its distribution might change if it diffuses into the different regions. It is noted that this 

region in Figure 4.8 came from a section closer to the center of the sample thickness than that 

shown for the as-pressed sample and, therefore, should contain a lower level of carbon. Thus, 

this sample should be more representative of the true boundary equilibrium 

 
Figure 4.8: BSE micrograph showing the Cr/FeMn ternary boundary of the first hot-pressed 

sample heat treated at 1000 °C for 96 h. This micrograph illustrates the 
coarsening of the second phase at the boundary. Regions A-C are labeled in the 
same way as in Figure 4.3. 

 

4.2.2 Cr/CoNi Heat Treated Boundary 

The appearance of the Cr/CoNi boundary appeared almost unchanged from the as-

pressed boundary (Figure 4.9). The Z-contrast observed in the separate regions was essentially 

identical to that in the as-pressed sample. The failure of the sample to develop a deeper diffusion 

depth supports the hypothesis that a carbide layer had formed on this boundary during hot 

pressing. Such a layer should act as an efficient barrier to Ni and Co diffusion due to their lack of 

solubility in most carbides. The presence of this layer on the Cr/CoNi boundary further supports 

the suggestion that the carbon source likely originates on the CoNi edge of the sample.  
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Another possible explanation for the lower interdiffusion depth could be due to the 

boundary being partially cracked (Section 4.1.1) and inhibiting intimate contact and 

interdiffusion between the regions of interest. 

 
Figure 4.9: BSE micrograph showing the heat treated Cr/CoNi ternary boundary after 96 h at 

1000 °C. The regions are labeled D-F in the same fashion as the as-pressed 
boundary 

 

4.2.3 Cr/CoNi/FeMn Tri-Junction After Heat Treatment 

While the heat treated tri-junction region appeared somewhat similar to the as-pressed 

condition there were a few notable differences (Figure 4.10). Similar to the as-pressed sample, 

the ternary behaviors on each side merge at the tri-junction and there is a transition region 

between them. The regions outside the multi-phase boundaries are disordered FCC on the CoNi 

and FeMn sides as before. One key difference after heat treatment is the advance of the dark Z-

contrast layer into the Cr/FeMn based grey phase (Region B). This advance of Region E appears 

to correlate well to the advance of Ni-Co into this region. It is hypothesized that this advance of 

Ni-Co modifies the local equilibrium and lowers the solubility of the local FCC region for 

carbon, causing its rejection from the FCC to the Cr/FeMn second phase. This may cause the 

decomposition of Region B (BCC o�U���1�����W�R���D���F�D�U�E�L�G�H�����7�K�L�V���Z�L�O�O���E�H���G�L�V�F�X�V�V�H�G���L�Q���V�X�E�V�H�T�X�H�Q�W��

sections.  
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Figure 4.10: BSE micrograph showing the heat treated (1000 °C for 96 h) quinary region of 

mixing between Cr-Co-Fe-Mn-Ni 
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CHAPTER 5  
Solid-State Diffusion Multiples #2 and #3 (Under Argon) 

In this chapter the boundary morphology and character of the second and third as-pressed 

diffusion multiples are summarized. These samples were hot pressed using the same procedure 

as the first hot-pressed sample with one difference; these samples were hot pressed under an 

argon atmosphere to suppress the Mn volatilization described in Chapter 4.  

 Diffusion Multiples #2 and #3 As-Pressed Condition 5.1

The boundary morphologies of the second and third hot-pressed samples are shown in 

Figure 5.1 and differ from the first hot-pressed sample in several key ways. First, the lamellar 

two-phase region in the first hot-pressed sample along the Cr/FeMn ternary boundary was 

replaced by what appears to be a planar single-phase region, presumably an intermetallic phase.  

 
a)  

 
b)  

Figure 5.1: BSE micrographs of a) the second solid-state multiple in the as-pressed condition 
and b) the third as-pressed sample. Both of these samples were hot-pressed under 
argon. The two images were taken at different magnifications 

 

Further, this phase appears to have partially transformed into a lamellar two-phase 

structure upon cooling. In addition, the Cr/CoNi interdiffusion zone consisted of a two-phase 

structure completely unlike that observed in the first hot-pressed samples. Finally, the 

suppression of Mn volatilization seems inconsistent in these samples given that the second hot-
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pressed sample appeared to have experienced little to no volatilization while the third sample had 

a significant amount. It is possible that this inconsistency is due to a different degree of pitting 

due to sample preparation. However, since similar Mn composition profiles were developed in 

both samples, the Mn volatilization does not appear to be a significant issue. 

5.1.1 Cr/FeMn Ternary Boundary 

The Cr/FeMn boundary region was dominated by the presence of a planar intermetallic 

that underwent decomposition into a lamellar two-phase product upon cooling as mentioned 

above. A higher magnification of this lamellar decomposition product is shown in Figure 5.2 and 

was taken from the third sample. Site-specific TEM was conducted in an attempt to identify the 

planar intermetallic phase as well as the lamellar decomposition products. The site of the TEM 

foil containing the intermetallic and lamellar phases in the Cr/FeMn reaction zone in Sample 3 is 

shown in Figure 5.3. This foil contained both the intermetallic and lamellar regions. The selected 

area diffraction patterns (SADPs) and BF TEM from the planar intermetallic (Figure 5.4-5.5) are 

consistent with singe phase tetragonal �V phase (P42/mnm with a=8.8 Å an c=4.6 Å). The SADPs 

from the lamellar regions (Figure 5.6) corresponded to a mixture of FCC and M23C6 with the 

expected cube-cube orientation relationship.  

 
Figure 5.2: Higher magnification BSE micrograph of the intermetallic decomposition into a 

fine lamellar structure in the third hot-pressed sample. 
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The presence of M23C6 confirms that carbon contamination occurred as suggested above 

and reinforces the speculation that the first hot-pressed sample was contaminated with carbon. 

The presence of relatively small amounts of M23C6 in the second and third hot-pressed samples 

indicate that these samples contained less carbon as neither sample formed a continuous film of 

carbide as appears to have occurred in the first hot-pressed sample. Therefore, the second and 

third samples represent a more accurate picture of the ternary equilibria in this system.  

In addition to the change in interface morphology, the Cr composition profile developed 

during the bonding process was significantly wider than anticipated (Figure 5.7). The width of 

the Cr-rich interface layer in this multiple is at least 200 µm after 8 h at 1200°C. This is 

approximately an order of magnitude above that expected using a basic �¾�&�P estimation in the 

Cr-Fe binary system. Not only is the width of the profile unexpectedly long but the observed 

intermediate flat profile was not anticipated. The Fe, Mn, and Cr levels were nearly flat across 

the entire intermetallic region strongly suggesting that this region was an intermediate phase at 

the reaction temperature. In other words, this behavior would be unusual unless a similar 

�F�R�P�S�R�V�L�W�L�R�Q���R�I���1���F�R�X�O�G���H�[�L�V�W���L�Q���H�T�X�L�O�L�E�U�L�X�P���Z�L�W�K���E�R�W�K���W�K�H���)�&�&����-�)�H�0�Q���D�Q�G���%�&�&���.-Cr. This 

observation shall be discussed in greater depth below. 

 

 
Figure 5.3:  BSE micrograph of the Fe-Mn/ Cr boundary zone in Sample 3 showing the region 

from which the TEM foil was lifted out of the sample (black rectangle). The 
resulting foil contained both the lamellar zone and the planar intermetallic 

 

Intermetallic 
Lamella 



 37 

 

 
a)  

 
b)  

 
c)   

Figure 5.4:  SADPs taken from the planar intermetallic region. a) B = [010]�1 b) B = [001]�1 c) 
and B = [�s�r�s
$] �1 

 

 
Figure 5.5: �%�)���7�(�0���L�P�D�J�H���R�I���W�K�H���1���U�H�J�L�R�Q�����,�P�D�J�H���W�D�N�H�Q���Q�H�D�U���D���1���]�R�Q�H���D�[�L�V 
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a)  

 
b)  

Figure 5.6: SADP taken with a selected area aperture across the lamellar boundary down an 
[011] FCC zone axis. The extra reflections are consistent with the M23C6 structure 
with the common cube-cube orientation relationship with the FCC phase. 

 

 
 

 

a)  

 
b)  

Figure 5.7:  a) BSE micrograph showing the planar intermetallic region between the Cr and 
FeMn regions in the third hot-pressed sample. The arrow in a) indicates the 
location and direction of the EDS line scan shown in b) 
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5.1.2 Cr/CoNi Ternary Boundary Region 

The morphology of the Cr/CoNi boundary region (Figure 5.8) was distinctly different 

from the equivalent boundary in the first hot-pressed sample. In the current case, there are two 

phases that formed in the region of interdiffusion, namely, a high Z phase (light) between regions 

of the gray phase. The �U�H�J�L�R�Q���O�D�E�H�O�H�G���³gray phase�  ́region itself is not a single-phase region. 

When viewed at higher magnification, fine acicular precipitates can be seen in the grey matrix 

(Figure 5.9). This acicular precipitation would not be expected based upon equilibrium diagrams. 

EDS analysis of these regions show variations in Ni and Co content (~5%) between the grey 

phase and the light phase, however, both phases were rich in Cr. Due to the complex nature of 

the boundary, site-specific TEM �V�D�P�S�O�H�V���Z�H�U�H���)�,�%�¶�G���R�X�W���R�I���W�K�L�V���U�H�J�L�R�Q���D�Q�G���7�(�0���D�Q�D�O�\�V�L�V was 

performed in order to determine the identity of these phases. The approximate location of the 

TEM foil taken from this sample is marked in Figure 5.9 

 

 
Figure 5.8:  BSE micrograph of the Cr/CoNi interface of the third solid-state boundary. 
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SADPS from the region with no precipitation are shown in Figure 5.10 (BF TEM shown 

in Figure 5.12).  

 
Figure 5.9:  BSE micrograph of Ni-Co and Cr ternary boundary region in the third hot-pressed 

sample. Note the presence of fine needlelike precipitates in the grey phase. The 
black rectangle marks approximate the location of the site-specific TEM liftout 

 

A BF�7�(�0���L�P�D�J�H���R�I���W�K�H���J�U�H�\���U�H�J�L�R�Q���Z�L�W�K���W�K�H���S�U�H�F�L�S�L�W�D�W�H�V���D�G�M�D�F�H�Q�W���W�R���D�Q���1���S�K�D�V�H���S�D�U�W�L�F�O�H��

�L�V���V�K�R�Z�Q���L�Q���)�L�J�X�U�H���������������7�K�H���L�P�D�J�H���L�V���R�U�L�H�Q�W�H�G���G�R�Z�Q���D���P�D�M�R�U���]�R�Q�H���R�I���D���1���S�D�U�W�L�F�O�H���D�Q�G���W�K�H���1���D�V��

well as the plate-like precipitates appear dark as expected if the latter are also aligned along a 

�]�R�Q�H���D�[�L�V���D�Q�G���G�L�I�I�U�D�F�W�L�Q�J���V�W�U�R�Q�J�O�\�����7�K�L�V���V�X�J�J�H�V�W�V���W�K�D�W���W�K�H�\���D�U�H���H�L�W�K�H�U���1���R�U���F�O�R�V�H�O�\���U�H�O�D�W�H�G���W�R���1��

since both diffract strongly at similar tilt. This was investigated further by a series of 

microdiffraction studies taken down several BCC zone axes (e.g., Figure 5.13, 5.14).  The weak 

�U�H�I�O�H�F�W�L�R�Q�V�����K�R�Z�H�Y�H�U�����D�S�S�H�D�U���W�R���E�H���L�Q�F�R�Q�V�L�V�W�H�Q�W���Z�L�W�K���W�K�H���1���S�K�D�V�H�����7�Z�R���R�U�L�H�Q�W�D�W�L�R�Q���U�H�O�D�W�L�R�Q�V�K�L�S�V��

�K�D�Y�H���E�H�H�Q���U�H�S�R�U�W�H�G���E�H�W�Z�H�H�Q���%�&�&���D�Q�G���1���S�K�D�V�H��[42], [43] and neither appear to be consistent with 

the observed patterns. �7�K�H�V�H���S�D�W�W�H�U�Q�V���F�R�X�O�G���E�H���L�Q�G�H�[�H�G���D�V���W�K�H���W�H�W�U�D�J�R�Q�D�O���1���S�K�D�V�H���V�L�P�L�O�D�U���W�R���W�K�D�W��

seen on the Cr-Fe-Mn interface. The grey region with precipitates was also examined (Figure 

5.11) and it is clear that the strong reflections in these patterns are from a disordered BCC solid 

�V�R�O�X�W�L�R�Q�����V�S�H�F�L�I�L�F�D�O�O�\���.-Cr. Clearly, the weak reflections seen in the [011] BCC patterns are the 

result of two separate variants of the precipitate phase overlapping. These patterns seem 

�F�R�Q�V�L�V�W�H�Q�W���Z�L�W�K���W�K�H���R�U�L�H�Q�W�D�W�L�R�Q���U�H�O�D�W�L�R�Q�V�K�L�S���E�H�W�Z�H�H�Q���D���K�H�[�D�J�R�Q�D�O���&���S�K�D�V�H���D�Q�G���D���%�&�&���S�D�U�H�Q�W��

phase observed in several systems, most notably titanium and zirconium. 
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a)  

 
b)  

 
c)  

Figure 5.10:  SADPs taken from the bright phase in Figure 5.8 where all patterns can be 
indexed as the t�H�W�U�D�J�R�Q�D�O���1���S�K�D�V�H: a) B =[110]�1  b) [111]�1 c) B =  [112]�1 

 

 

a)  
 

b)  
 

c)   

Figure 5.11:  SADPs taken from the gray region in figure 5.8. The strong reflections are 
consistent with a BCC matrix. a) B = [001]BCC  b) B = [011]BCC c) B = [111]BCC   

 

�$�Q���&���S�K�D�V�H���K�D�V���D�O�V�R���E�H�H�Q���U�H�S�R�U�W�H�G���X�S�R�Q���Q�R�Q-equilibrium cooling of Cr-Ni binary alloys with an 

orientation relationship of (0001)�& �R����������BCC, [2̄1̄1̄0]�& �R�>1̄1̄0]BCC [44]. This phase is known to be 

hexagonal with the P6/mmm space group. It has lattice parameters defined by the parent BCC a 

= �¾�t�=�4 and c =  �¾�u
�Ô�,

�6
 [44]. Using this relationship, lattice parameters were calculated for the 

�S�U�R�S�R�V�H�G���&-like phase and the pattern was indexed accordingly. Based upon this assumption, and 

the orientation relationship defined in [44], predicted diffraction patterns were modeled for the 

�R�W�K�H�U���P�D�M�R�U���]�R�Q�H���D�[�H�V���L�Q���W�K�H���%�&�&���D�Q�G���L�W���Z�D�V���I�R�X�Q�G���I�U�R�P���W�K�L�V���F�R�P�S�D�U�L�V�R�Q���W�K�D�W���&-phase could not 

account for all the extra reflections seen in the different patterns.  
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Figure 5.12: BFTEM image of the BCC + �1 region taken with the large �1 particle (right side) 

down its �>�s�s�r�? zone axis. .The BCC phase (left side) clearly contains several 
variants of lenticular precipitates. 

 

 
a)  

 
b)  

 
c)  

Figure 5.13: a) [001]BCC SADP  from 2-phase region in figure 5.11; b) microdiffraction pattern 
taken  ~ 9° from the [001] zone axis showing weak ½ 110 type reflections; c) 
microdiffraction pattern showing a separate variant with the same half spacing at 
the same tilt as b). 
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a)  

 
b)  

 
c)  

Figure 5.14: a) [011]BCC zone axis from the two-phase region in Figure 5.11 b) 
Microdiffraction taken down the same [011] BCC zone axis with only one variant 
of the precipitate; c) Microdiffraction pattern taken down the same [011] zone 
axis with the other variant of the precipitate. 

 

�,�Q���R�W�K�H�U���Z�R�U�G�V�����W�K�H���I�R�U�P�D�W�L�R�Q���R�I���D�Q���&-like phase does not explain all the diffraction data 

�F�R�O�O�H�F�W�H�G�����2�W�K�H�U���U�H�S�R�U�W�V���R�I���&���L�Q���D���&�U-Co-Ni system [44] �K�D�Y�H���V�X�J�J�H�V�W�H�G���W�K�D�W���&���I�R�U�P�V���X�Q�G�H�U���Q�R�Q-

�H�T�X�L�O�L�E�U�L�X�P���F�R�R�O�L�Q�J���F�R�Q�G�L�W�L�R�Q�V�����7�K�L�V���P�L�J�K�W���L�Q�G�L�F�D�W�H���W�K�D�W���W�K�L�V���&���S�K�D�V�H���E�H�K�D�Y�H�V���D�V���D���P�H�W�D�V�W�D�E�O�H��

�W�U�D�Q�V�L�W�L�R�Q���E�H�W�Z�H�H�Q���%�&�&���D�Q�G���1�����7�K�L�V���K�\�S�R�W�K�H�V�L�V���Z�R�X�O�G���U�H�T�X�L�U�H���P�R�U�H���G�L�I�Iraction studies to 

examine more thoroughly. 

5.1.3 Cr/FeMn/CoNi Tri-Junction 

The appearance of the quinary region of mixing in the tri-junction regions of the second 

and third samples (Figure 5.1) indicate that there exists an extended interdiffusion zone with no 

apparent second phase formation in addition to the reaction zones described above. Of interest in 

all three of the hot-pressed samples, is the curved nature of the boundary between the Cr/FeMn 

two-phase region boundary and the single phase FCC region (e.g., Figure 5.15). The curved 

nature of this boundary may be indicative of the influence of Ni and Co on the formation of the 

two-phase region. Ni and Co are not strong carbide formers and are relatively insoluble in the 

observed carbides. Therefore, it would not be unexpected that carbide formation might be 

suppressed by the presence of Ni and Co. 
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Figure 5.15:  BSE micrograph of the tri-junction region in the third hot-pressed sample. This 

micrograph illustrates the curvature of the boundary between the Cr/FeMn two-
phase region and the single-phase FCC region. 

 

 Diffusion Multiple #2-Heat Treated 5.2

The second hot-pressed diffusion multiple was heated treated at 1000 °C for 24 h. This 

treatment was performed in order to examine the relationship between the first and second hot-

pressed samples and to give both samples a similar thermal history after pressing. The character 

of the various regions was expected to converge to a similar appearance after this treatment. In 

the following sections, the ternary and quinary regions will be summarized and compared to 

those in the as-pressed condition. 

5.2.1 Cr/FeMn Heat Treated Boundary Region 

The morphology of the Cr/FeMn interdiffusion zone (Figure 5.16) indicates that the 

structure underwent a lamellar decomposition reaction; an SADP taken from this lamellar region 

(Figure 5.17) is consistent with this being M23C6 + FCC similar to that observed in the as-hot-

pressed material.  The stronger reflections in the SADP are consistent with a <011> type FCC 

zone axis and the weak reflections with a <011> type zone of M23C6 in a cube-cube orientation 

relationship. This SADP would indicate that, upon heat treating and subsequent cooling, some of 

the solute carbon in the sample comes out in the formation of M23C6 + FCC �V���L�Q���W�K�H���1�� 

Ni-Co 

Cr 

Fe-Mn 
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Figure 5.16: BSE micrograph of the Cr/FeMn interface of the second hot-pressed sample after 

heat treatment at 1000 °C for 24 h.  

 

 
Figure 5.17: <011> SADP from a lamellar region of the hot pressed sample after aging. 

Weaker reflections are consistent with a <011> M23C6 zone in a cube-cube 
orientation relationship with the FCC. 

 

5.2.2 Cr/CoNi Heat Treated Boundary Region 

After the heat treatment, the volume fraction of the BCC regions in the Cr/CoNi interface 

region was reduced compared with that in the as-pressed sample (Figure 5.18), .This change 

�D�S�S�H�D�U�V���W�R���E�H���W�K�H���U�H�V�X�O�W���R�I���1���J�U�R�Z�W�K���L�Q�W�R���W�K�H���%�&�&���U�H�J�L�R�Q�V����In addition, the precipitates present in 

the as-pressed multiple were not observed in these BCC regions supporting the hypothesis that 

�W�K�H���1���P�D�\���E�H���U�H�O�D�W�H�G���W�R���W�K�H���S�U�H�F�L�S�L�W�D�W�H�V���L�Q���V�R�P�H���Z�D�\�����7�K�H���F�R�D�U�V�H�Q�L�Q�J���R�I���W�K�H���1���S�K�D�V�H���Z�R�X�O�G���E�H��
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expected on the basis of the equilibrium diagrams. However, this interface morphology differs 

markedly from that observed in the first hot-pressed sample that was heat treated presumably due 

to the significant carbide contamination of the first hot-pressed sample. 

 
Figure 5.18: BSE micrograph of the Cr/NiCo ternary boundary region in the second hot-

pressed sample after heat treatment at 1000 °C for 24 h. 

 

5.2.3 Cr/CoNi/FeMn Tri-Junction Heat Treated 

The tri-junction region after heat treatment (Figure 5.19) appeared relatively unchanged. 

The curved appearance of the two-phase region boundary with the single phase FCC on the 

Cr/FeMn side of the boundary remained persistent after the heat treatment. 
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Figure 5.19: BSE micrograph of the quinary tri-junction interdiffusion zone. 
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CHAPTER 6  
Solid State Diffusion Multiples #4  

In this chapter, the boundary morphology and character of the fourth as-pressed diffusion 

multiple are described. This sample was pressed using alumina as a protective fill powder and 

under an argon atmosphere in an effort to avoid the carbon contamination observed in the first 

three hot pressed samples. Thus, the primary focus is on the relevant differences observed 

between this carbon free sample and the carbon-contaminated samples.  

 Diffusion Multiple #4: As-Pressed Condition 6.1

The fourth solid-state multiple (Figure 6.1) exhibited the same general boundary 

character and morphology as that of the second and third multiples. First, the same planar 

intermetallic that formed along the Cr/FeMn boundary was observed with a similar curved 

morphology at the transition towards the Cr/CoNi side of the tri-junction. Within the 

intermetallic, there was a decomposition product that did not exhibit the lamellar decomposition 

product observed in the second and third hot-pressed samples. Unfortunately, in this sample 

section, the Cr/CoNi boundary region was heavily cracked indicating non-uniform bonding 

across the sample section. However, cross-sections with an intact Cr/CoNi boundary were found. 

This will be addressed in the Cr/CoNi ternary section. 

 
Figure 6.1: BSE micrograph showing the overall appearance of the fourth solid�±state 

diffusion multiple 
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6.1.1 Cr/FeMn Ternary Boundary Region 

The Cr/FeMn ternary boundary region in the fourth hot-pressed sample contained the 

�V�D�P�H���S�O�D�Q�D�U���1���O�D�\�H�U���D�V���W�K�D�W���L�Q���W�K�H���V�H�F�R�Q�G���D�Q�G���W�K�L�U�G���V�D�P�S�O�H�V�����)�L�J�X�U�H������������ An EDS line scan across 

this layer indicated that it had a composition that, while similar to the second and third samples, 

was richer in Mn and lower in Fe content (Figure 6.3). Significantly, the line scan indicated that 

there is a slight composition gradient across this layer that was less obvious in the second and 

third samples. This gradient would indicate that, at 1200 °C, this intermetallic layer formed 

separate equilibria with both the FCC and BCC phases as would be expected if there is a range of 

compositions for the �V phase. This is also supported by the presence of discontinuities in the 

composition profile at the boundaries of the �V with both the FCC and BCC regions. Although 

there is this slight difference in composition profile, the morphology, observed Z-contrast, and 

�O�D�\�H�U���W�K�L�F�N�Q�H�V�V���D�O�O���P�D�W�F�K���F�O�R�V�H�O�\���Z�L�W�K���W�K�H���1���R�E�V�H�U�Y�H�G���L�Q���W�K�H���V�H�F�R�Q�G���D�Q�G���W�K�L�U�G���V�D�P�S�O�Hs. In 

�D�G�G�L�W�L�R�Q�����W�K�L�V���O�L�Q�H���V�F�D�Q���L�Q�G�L�F�D�W�H�V���W�K�D�W���W�K�H���&�U���G�L�I�I�X�V�L�R�Q���G�L�V�W�D�Q�F�H���Z�D�V���R�Y�H�U�������������P���R�U���a���������P��

further than observed in the carbon-contaminated samples discussed in Chapter 5. Further, this is 

over an order of magnitude larger than predicted based upon a simple �¾�&�P���H�V�W�L�P�D�W�L�R�Q�����a���������P������ 

 

 
Figure 6.2: BSE micrograph showing the Cr-Fe-Mn ternary boundary of the fourth hot-

pressed sample.  Vertical line marks the location of the EDS line scan shown in 
Figure 6.3 
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Figure 6.3:  EDS line scan across the intermetallic layer along the line marked in Figure 6.2. 

 

�$�V���L�Q���W�K�H���S�U�H�Y�L�R�X�V���V�D�P�S�O�H�V�����D���V�H�F�R�Q�G���S�K�D�V�H���Z�D�V���D�O�V�R���R�E�V�H�U�Y�H�G���L�Q���W�K�H���1���O�D�\�H�U�����)�L�J�X�U�H������������

although not as the lamellar decomposition product observed in the previous samples. 

�6�S�H�F�L�I�L�F�D�O�O�\�����L�W���D�S�S�H�D�U�V���W�K�D�W�����D�W���W�K�H���W�K�H����-�)�H�0�Q�������1���L�Q�W�H�U�I�D�F�H���W�K�H���)�&�&���S�K�D�V�H���K�D�V���J�U�R�Z�Q���L�Q�W�R���W�K�H���1��

�O�D�\�H�U�����)�X�U�W�K�H�U���I�U�R�P���W�K�H���L�Q�W�H�U�I�D�F�H�����W�K�H�U�H���L�V���H�Y�L�G�H�Q�F�H���R�I���)�&�&���S�U�H�F�L�S�L�W�D�W�L�R�Q���Z�L�W�K�L�Q���W�K�H���1�����7�K�H��

composition of this decomposition product was measured and compared with that of the bulk Fe-

Mn (Table 6.1). These compositions ar�H���F�R�Q�V�L�V�W�H�Q�W���Z�L�W�K���&�U���V�R�O�X�E�L�O�L�W�\���L�Q����-Fe.  A different 

�E�H�K�D�Y�L�R�U���Z�D�V���R�E�V�H�U�Y�H�G���D�W���W�K�H���&�U���1���L�Q�W�H�U�I�D�F�H���Z�K�H�U�H�����L�Q�V�W�H�D�G���R�I���)�&�&���Q�X�F�O�H�D�W�L�R�Q�����D���F�H�O�O�X�O�D�U���U�H�D�F�W�L�R�Q��

zone was observed (Figure 6.5). The Z contrast observed by the dark decomposition product in 

this zone i�V���F�R�Q�V�L�V�W�H�Q�W���Z�L�W�K���L�W���E�H�L�Q�J���W�K�H���%�&�&���.-Cr phase. The higher Z phase in this region is 

�P�R�V�W���O�L�N�H�O�\���W�K�H���1���S�K�D�V�H���Z�L�W�K���D���V�O�L�J�K�W�O�\���G�L�I�I�H�U�H�Q�W���F�R�P�S�R�V�L�W�L�R�Q���W�K�D�Q���W�K�H���1���S�D�U�H�Q�W���S�K�D�V�H�����7�K�L�V���W�Z�R-

phase region probably formed upon cooling due to the decrease in Fe and Mn solubility and a 

�F�K�D�Q�J�H���L�Q���Y�R�O�X�P�H���I�U�D�F�W�L�R�Q���E�H�W�Z�H�H�Q���W�K�H���%�&�&���D�Q�G���1���S�K�D�V�H�V���� 
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Figure 6.4: BSE micrograph showing the observed �G�H�F�R�P�S�R�V�L�W�L�R�Q���R�I���W�K�H���1���O�D�\�H�U�����:�K�L�W�H���;��

marks position of EDS point scan in the Cr profile and growth region 

 

It can be concluded that the carbon-free Cr/FeMn boundary region exhibits an 

�H�T�X�L�O�L�E�U�L�X�P���D�W�������������ƒ�&���R�I���1���L�Q���H�T�X�L�O�L�E�U�L�X�P���Z�L�W�K���W�K�H���%�&�&���.-�&�U���D�Q�G���)�&�&����-FeMn solid solution 

phases in contrast to what would be expected from the ternary phase diagram (discussed below). 

�8�S�R�Q���F�R�R�O�L�Q�J�����W�K�H���)�&�&���S�K�D�V�H���S�U�H�F�L�S�L�W�D�W�H�V���L�Q���W�K�H���1���Q�H�D�U���W�K�H���V/FCC interface whereas the BCC 

�S�K�D�V�H���S�U�H�F�L�S�L�W�D�W�H�V���D�V���D���F�H�O�O�X�O�D�U���1�������%�&�&���S�U�R�G�X�F�W���Ln the �V near the �V/BCC interface.  

Table 6.1: Compositions of the Cr profile �O�D�\�H�U�����W�K�H���S�K�D�V�H���J�U�R�Z�L�Q�J���L�Q�W�R���W�K�H���1�����D�Q�G���W�K�H���)�H-Mn 
bulk. 

Region Fe (at-%) Mn (at-%) Cr (at-%) 

Cr Profile 48.0 45.5 6 

FCC growth 41.7 40.4 17.9 

Fe-Mn Bulk 49.7 50.3 0 
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Cr 

Cr profile into Fe-Mn  
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Figure 6.5: �%�6�(���P�L�F�U�R�J�U�D�S�K���V�K�R�Z�L�Q�J���W�K�H���&�U���1���L�Q�W�H�U�I�D�F�H���G�H�F�R�P�S�R�V�L�W�L�R�Q���S�U�R�G�X�F�W�� 

 

6.1.2 Cr/CoNi Ternary Region 

The Cr/CoNi interface region in the fourth sample (Figure 6.6) contained the same two-

�S�K�D�V�H���%�&�&�������1���U�H�J�L�R�Q���W�K�D�W���Z�D�V���S�U�H�V�H�Q�W���L�Q���W�K�H���V�H�F�R�Q�G���D�Q�G���W�K�L�U�G���V�D�P�S�O�H�V�����,�Q���D�G�G�L�W�L�R�Q�����I�L�Q�H�U��

precipitates were observed in the BCC regions. This indicates that a similar equilibrium is 

present at this interface as in the second and third hot-pressed samples. However, this sample 

does offer better insight into the 1200 °C equilibria due to the lack of C contamination.  

From Figure 6.6 a), it can be seen that the BCC layer was present at temperature in 

equilibrium with the CoNi FCC and that all subsequent precipitation occurred in this BCC 

region. This assertion is supported by the EDS line scan taken at the location marked in Figure 

6.6a and shown in Figure 6.7. Specifically, it is clear that there is an essentially continuous 

transition from the bulk Cr to the BCC layer to the bulk CoNi FCC, i.e., the transition across the 

boundary from the Cr to the BCC layer does not exhibit a compositional discontinuity that would 

indicate the presence of a different intermediate phase at the hot-pressing temperature. 

 

Cr 

�1 
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a)  

 

b)  

Figure 6.6: BSE micrographs of the Cr/CoNi interface region: a) low magnification and b) 
high magnification images, the latter focused on a transition region between 
boundary appearance. 

 

One additional observation was made in this boundary region. As can be seen in Figure 

6.6 b), there was an abr�X�S�W���W�U�D�Q�V�L�W�L�R�Q���L�Q���Y�R�O�X�P�H���I�U�D�F�W�L�R�Q���R�I���E�R�W�K���1���D�Q�G���W�K�H���X�Q�N�Q�R�Z�Q���S�U�H�F�L�S�L�W�D�W�H��

phases. The right side of this transition is more characteristic of the second and third hot-pressed 

samples while the left side of the transition is quite different. This transition was hypothesized to 

be the result of incomplete bonding along the interface creating local regions of Cr enrichment or 

�G�H�S�O�H�W�L�R�Q�����O�H�D�G�L�Q�J���W�R���D���P�R�G�L�I�L�F�D�W�L�R�Q���R�I���%�&�&�������1���Y�R�O�X�P�H���I�U�D�F�W�L�R�Q�V�����$�Q���D�O�W�H�U�Q�D�W�L�Y�H���H�[�S�O�D�Q�D�W�L�R�Q���L�V��

related to a quinary interaction effect. This transition zone was measured to be approximately 

�����������P���I�U�R�P���W�K�H���W�U�L-junction region of this sample. To test these hypotheses, a line scan was 

taken horizontally through the CoNi FCC phase located immediately above the FCC / BCC 

interface in order to see if there was any change in the FCC compositions adjacent to these very 

different regions (Figure 6.8). While this profile does show a slight variation in the local Cr 

concentration along the interface and would seem to match the first hypothesis of a variation in 

Cr content, it must be noted that the distance from the BCC / FCC interface varied somewhat do 

to non-uniform interface height. This variation could lead to sampling an inconsistent depth of 

the Cr composition profile in the FCC.  

Ni-Co Ni-Co 

Cr 

BCC 

BCC 
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Figure 6.7: EDS line scan profile taken across the bulk Cr, BCC layer, and CoNi FCC. 

Transitions are marked 

 
 

 

 

a) 

 
 

b) 

Figure 6.8: a) BSE micrograph of the Cr/CoNi boundary b) EDS line scan taken from just 
above the BCC / FCC interface (marked in a)) on the Cr/CoNi interface. Line 
starts at the tri-junction region and ends at the transition. 

Transition to high volume 

fraction BCC 
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Therefore, while this may be indicative of some Cr variations, it is difficult to say with 

certainty. The second hypothesis matches well with the experimental observations. At the 

transition region, the Fe and Mn levels have dropped to background levels indicating that a 

relatively small fraction of Fe and Mn can modify the equilibrium volume fractions of the BCC 

�D�Q�G���1���S�K�D�V�H�V���V�L�J�Q�L�I�L�F�D�Q�W�O�\�� 

6.1.3 Cr/CoNi/FeMn Tri-Junction 

The quinary region of 5-component mixing (Figure 6.9) in this multiple appeared very 

similar to that in the second and third hot pressed samples. Specifically, there was a wide region 

�R�I���G�L�V�R�U�G�H�U�H�G���)�&�&���L�Q���H�T�X�L�O�L�E�U�L�X�P���Z�L�W�K���D���F�X�U�Y�H�G���1/FCC boundary. One feature that was not 

observed in the second and third hot-�S�U�H�V�V�H�G���V�D�P�S�O�H�V���Z�D�V���W�K�H���W�K�L�Q���O�D�\�H�U���R�I���1���H�[�W�H�Q�G�L�Q�J across the 

tri-junction into the Cr/CoNi side of the interface. This extension of the �1 layer may be an 

expression of the Fe and Mn effects on the Cr/CoNi equilibrium. This would match the 

hypothesis that Fe and Mn have an impact on the volume fraction of BCC along the Cr/CoNi 

interface. This difference may be due to the lack of carbon at the boundary modifying the 

observed equilibria in the second and third samples. 

 

 
Figure 6.9: BSE micrograph of the quinary tri-junction region 
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CHAPTER 7  
Differential Melting Liquid Impingement (DMLI) Diffusion Multiples 

The differential melting liquid impingement (DMLI) method of creating diffusion 

multiples was developed as an alternative to solid-state processing in an effort to speed sample 

preparation and aid in the bonding of materials with tenacious oxide layers. The process of 

creating a DMLI multiple is summarized in the experimental methods chapter (Chapter 3). In 

this chapter, the effectiveness of this technique for creating viable diffusion multiples with large 

composition profiles is reported by presenting the appearance of the relevant boundaries at 

separate steps in the process and after a subsequent heat treatment. 

 Stage I: CoNi Bonding to Cr 7.1

Stage I of the DMLI process requires the bonding of the material with intermediate 

melting temperature (Co-50Ni with Tl ~ 1450 °C) to the highest melting point material (Cr with 

Tm=1907 °C).  

a)  b)  

Figure 7.1: BSE micrographs showing a) an effective bond created using DMLI with a 
minimal interdiffusion region and b) an less effective bond with a large 
interdiffusion zone.  
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The utility of bonding CoNi to Cr for use in a diffusion multiple is dependent on limiting 

the interdiffusion zone that develops during the process. This depth is extremely sensitive to 

substrate mass and heat input into the CoNi that is being melted prior to impinging on the Cr. 

Varying either of these parameters can drastically change the character of the bond between the 

two regions. A comparison between a good Stage I bond and a poor one is evident in Figure 7.1a 

and b, respectively. It should be noted that, depending on the system, intermetallic formation can 

occur during this reaction, leading to boundary embrittlement and complicating any subsequent 

processing steps. 

 Stage II: FeMn Bonding to Cr/CoNi 7.2

The second step in this process involved bonding the lowest melting point Fe-50Mn alloy 

(Tl~1340 °C) to the Cr/CoNi couple produced in the first stage. The same considerations, 

namely, heat input into the FeMn droplet and mass of the Stage I couple apply here. However, 

the parameter window for creating a successful bond is somewhat narrower. If the FeMn is 

superheated too greatly, the Ni-Co portion of the Stage I couple can be remelted. This effectively 

intermixes the two alloys, destroying the possibility of creating effective diffusion profiles. A 

comparison between an effective Stage II bond and a poor one is shown in Figure 7.2.  

 
a)  

 
b)  

Figure 7.2: BSE micrographs of the Stage II bonds between Fe-Mn and the Cr/CoNi 
substrate. a) Interface that exhibits desirable bonding behavior, and b) interface 
that exhibits poor bonding with the FeMn droplet remelting the original Ni-Co 
and Cr bond.  
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The bond in Figure 7.2 a) exhibits relatively narrow interdiffusion zones between all 

three regions whereas that in Figure 7.2 b) exhibits extreme erosion of the original Ni-Co and Cr 

bond to the extent that it has been replaced by a mixture of all components. This bond failure is 

due to overheating of the Fe-Mn droplet or an accidental arc-substrate interaction. 

 Summary of DMLI Method 7.3

It has been demonstrated that the DMLI method can produce a useful diffusion multiple. 

However, these samples were produced in a standard arc melter. This system cannot easily 

control heat input and tends to have a large arc size. Because of this lack of control, it is 

extremely difficult to make diffusion multiples in a reproducible manner using this approach. 

Thus, if future work is to be done using this method, a specialized system should be built to 

control these parameters more directly.  

 Example DMLI Diffusion Multiple 7.4

Despite the difficulties of creating a viable diffusion multiple using the DMLI method, a 

full diffusion multiple was created. This multiple exhibited a bond that was of intermediate 

quality. Other samples of higher quality were created using this process but failed due to other 

experimental considerations (subsequent heat treatment and quarz tube failure). This sample 

though is useful to demonstrate the general behavior of these samples. 

7.4.1 DMLI Diffusion Multiple �± As-Solidified Bond Character 

The as-solidified DMLI diffusion multiple is shown in Figure 5.3. This multiple exhibits 

a relatively large interdiffusion zone between the Cr and Ni-Co components as well as Ni-Co 

infiltration into the interior of the Cr. However, the Fe-Mn and Cr interface is relatively distinct. 

Even though the interdiffusion zones were larger than optimal, they were sufficiently small to 

proceed with further heat treatments.  
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Figure 7.3: BSE micrograph of the as-solidified DMLI diffusion multiple.  

 

7.4.2 DMLI Diffusion Multiple �± Heat Treated 

The DMLI diffusion multiple was heat treated at 1000 °C for 96 h in order to develop 

conventional diffusion profiles in the sample. The overall character of this multiple is shown in 

Figure 5.4.  After heat treatment, the interdiffusion zones changed significantly with the 

development of distinct solid-state diffusion profiles. This is best exemplified at the tri-junction 

region where an EDS scan (Figure 7.5) revealed a large degree of mixing between the five 

components in the complex tri-junction region. Further, the ternary boundaries exhibited two-

phase boundary structures (Figure 7.6) with distinct layered structures. The Cr/CoNi boundary 

had a two-phase region near the FCC CoNi side, followed by an intermetallic layer towards the 

bulk Cr. The Cr/FeMn boundary exhibited two distinct planar single-phase regions between the 

Cr and the Fe-�0�Q���V�L�G�H�V���R�I���W�K�H���³�F�R�X�S�O�H�´�����7�K�H�V�H���P�L�F�U�R�J�U�D�S�K�V���G�H�P�R�Q�V�W�U�D�W�H���X�V�H�I�X�O���L�Q�I�R�U�P�D�W�L�R�Q���F�D�Q��

be derived from DMLI diffusion multiples. However, interpretation of the structures observed is 

more difficult due to the unconventional nature of fabrication. 

Ni-Co 

Fe-Mn 

Cr 
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Figure 7.4: BSE micrograph of the DMLI diffusion multiple heat treated at 1000°C for 96 h.  

 

 
 

 

 

 

a)  

 
b) 

Figure 7.5: a) BSE micrograph of the quinary tri-junction region. The arrow marks the 
location and direction of the line scan displayed in b)  
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a)  

 
b)  

Figure 7.6:  BSE micrographs of the ternary interfaces in the DMLI diffusion multiple after 
heat treating at 1000 °C for 96 h a) Cr-Co-Ni interface b) Cr-Fe-Mn Interface 
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CHAPTER 8  
Discussion of Phase Equilibria 

In this chapter, the phase equilibria suggested by the examinations of the diffusion 

multiples in the previous chapters will be summarized. The discussion begins with the equilibria 

apparent at each ternary interface at the processing and heat treatment temperatures examined as 

well as the transformations observed upon cooling. This is followed by a discussion of the 

quinary observations in the tri-junction regions of the multiples. The data presented in Chapters 

4-6 will be referenced as appropriate and key data will be reproduced in this chapter in order to 

clarify or emphasize key evidence and observations.  

 Cr/FeMn Phase Equilibria 8.1

The ternary Cr-Fe-Mn 1200 °C isotherm should provide the most accurate representation 

of the phase equilibria at the hot-pressing temperature (Figure 8.1 [45]).  

 
Figure 8.1: The Cr-Fe-Mn isothermal section at 1200 °C [45] 

 

This ternary isotherm indicates that, upon pressing, there should be an equilibrium 

�H�V�W�D�E�O�L�V�K�H�G���E�H�W�Z�H�H�Q���W�K�H���)�&�&����-�)�H�0�Q���D�Q�G���%�&�&���.-CrFe phases, with compositions at the 

1200 °C 

BCC 

�1 
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interface given by a tie line connecting the two single-phase regions. However, as was discussed 

in both Chapters 5 and 6 for the 2nd, 3rd and 4th hot-pressed s�D�P�S�O�H�V�����D���O�D�\�H�U���R�I���1���Z�D�V���R�E�V�H�U�Y�H�G��

between these two phases suggesting that the Cr and Mn rich �V��field in Fig. 8.1 may extend to 

much higher Fe concentrations than indicated in the diagram. It should be noted also that such a 

layer of �V was not observed in the first hot-pressed sample, presumably due to the significant 

carbon contamination which may have modified the phase equilibria significantly. Instead, the 

structure formed carbides, most likely M23C6 �L�Q�V�W�H�D�G���R�I���1���� 

The distinct discontinuities in the composition profiles at both the �V/FCC and �V/BCC 

�L�Q�W�H�U�I�D�F�H�V���V�W�U�R�Q�J�O�\���V�X�J�J�H�V�W���W�K�D�W���W�K�L�V���1���O�D�\�H�U���I�R�U�P�H�G���D�W���W�K�H���������� °C hot-pressing temperature 

rather than upon cooling (Figure 6.2). In addition, the composition profile in the fourth hot-

�S�U�H�V�V�H�G���V�D�P�S�O�H���H�[�K�L�E�L�W�H�G���D���F�R�P�S�R�V�L�W�L�R�Q���J�U�D�G�L�H�Q�W���D�F�U�R�V�V���W�K�H���1���O�D�\�H�U���W�K�D�W���Z�R�Xld be expected if the 

�1���H�V�W�D�E�O�L�V�K�H�G equilibria with both the FCC and BCC phases and had a range of solubility. This 

profile was less obvious in the carbon-contaminated third sample but may have been obscured by 

the influence of carbon on the �F�R�P�S�R�V�L�W�L�R�Q�V���R�I���1���L�Q���H�T�X�L�O�L�E�U�L�X�P���Z�L�W�K���W�K�H���)�&�&���D�Q�G���%�&�&���S�K�D�V�H�V�� 

The difference in the composition profile may have also been influenced by the Mn 

volatilization. The Mn content in the second and third hot-pressed samples was lower than in the 

fourth hot-pressed sample. This would modify the �1 equilibrium composition (due to changing 

the tie line defining the equilibrium). The change in Mn composition may also account for the 

significantly higher Fe levels observed in the second and third samples.  Secondly, with 

exception of the 1st  sample, all samples exhibited long-range composition profiles that could not 

have developed upon cooling or from subsequent phase transformations. Since the �V��in the 1200 

°C isotherm in Fig. 8.1 is much leaner in Fe than what was observed in these layers, then either 

this phase diagram is incorrect or there are other experimental reasons for these discrepancies 

(incorrect recorded hot-pressing temperatures being the foremost). Further, these inconsistencies 

with the phase diagram are important in explaining the transformations in the �V upon cooling to 

room temperature. It should be noted also that such a layer of �V was not observed in the first hot-

pressed sample, presumably due to the significant carbon contamination that is believed to have 

occurred and that may have modified the phase equilibria significantly. Instead, the structure 

formed carbides, most likely M23C6�����L�Q�V�W�H�D�G���R�I���1 
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a)  

 
b)  

Figure 8.2: A comparison of the �(�'�6���O�L�Q�H���V�F�D�Q���S�U�R�I�L�O�H�V���W�D�N�H�Q���D�F�U�R�V�V���W�K�H���H�Q�W�L�U�H���1���O�D�\�H�U���L�Q���D����
the third hot-pressed sample and b) the fourth hot-pressed sample 

 

The phase transformations that occurred upon cooling can be interpreted with the aid of 

the 1000 °C and 800 °C Cr-Fe-Mn isotherms shown in Figure 8.3 [45]. The compositions of Cr, 

�)�H���D�Q�G���0�Q���P�H�D�V�X�U�H�G���L�Q���W�K�H���1���L�P�P�H�G�L�D�W�H�O�\���D�G�M�D�F�H�Q�W���W�R���E�R�W�K���W�K�H���)�&�&�������1���D�Q�G���%�&�&�������1���L�Q�W�H�U�I�D�F�H�V���L�Q��

the 4th sample are marked in Figure 8.3. �)�U�R�P���W�K�L�V�����L�W���Z�R�X�O�G���E�H���S�U�H�G�L�F�W�H�G���W�K�D�W���W�K�H���1���O�D�\�H�U���V�K�R�X�O�G��

�G�H�F�R�P�S�R�V�H���L�Q�W�R����-�)�H�������1���L�Q�L�W�L�D�O�O�\�����D�O�W�K�R�X�J�K���W�K�H���%�&�&���V�L�G�H���R�I���W�K�H���1���O�D�\�H�U���Z�R�X�O�G���H�Q�W�H�U���Dn �1���S�K�D�V�H��

field upon further cooling. This prediction would correlate well with the observed structures seen 

in the fourth hot-pressed sample (Figure 8.4) and further decompositions are predicted to 

continue at lower temperatures as suggested by the 25 °C isotherm (Figure 8.5). In other words, 

�W�K�H���P�D�M�R�U�L�W�\���R�I���W�K�H���1���O�D�\�H�U���S�U�H�V�H�Q�W���D�W�������������ƒ�&���Z�R�X�O�G���E�H���O�R�F�D�W�H�G���L�Q���W�K�H���)�&�&�������%�&�&�������1���S�K�D�V�H��

field at room temperature. The BCC phase would not have the same composition as the bulk Cr. 

This would suggest that a significant fraction of the �1���O�D�\�H�U���Z�R�X�O�G���E�H���U�H�W�D�L�Q�H�G���W�R���O�R�Z��

temperature, i.e., it would not fully transform. It might also be expected that small isolated 

�U�H�J�L�R�Q�V���R�I���%�&�&���P�L�J�K�W���E�H���D�E�O�H���W�R���I�R�U�P���L�Q���W�K�H���1���D�O�W�K�R�X�J�K���W�K�H���W�U�D�Q�V�I�R�U�P�D�W�L�R�Q�V���Z�R�X�O�G be sluggish at 

�O�R�Z�H�U���W�H�P�S�H�U�D�W�X�U�H�V�����7�K�L�V���Z�R�X�O�G���D�J�U�H�H���Z�L�W�K���W�K�H���Q�X�F�O�H�D�W�L�R�Q���R�I���%�&�&���D�W���W�K�H���1�����%�&�&���L�Q�W�H�U�I�D�F�H��

observed in the fourth sample. �7�K�H���U�H�J�L�R�Q�V���F�O�R�V�H�V�W���W�R���W�K�H���%�&�&���Z�R�X�O�G���E�H���S�U�H�G�L�F�W�H�G���W�R���U�H�P�D�L�Q���1���L�Q��

BCC 
BCC 

FCC 

FCC 

�1 

�1 
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the room temperature isotherm. The observation of BCC on �1�����%�&�&���L�Q�W�H�U�I�D�F�H would indicate the 

phase boundaries predicted in the 25 °C isotherm may not be completely accurate.  

 

 

a)   b)   

Figure 8.3: a) Cr-Fe-Mn 1000 °C isothermal section and b) Cr-Fe-Mn 800 °C isothermal 
section. Blue triangles mark the composition of the FCC measured adjacent to the 
�)�&�&�������1���D�Q�G red mark the BCC composition measured adjacent to the �%�&�&�������1��
interfaces in the fourth hot pressed sample 

 

The second and third samples, which contain some degree of carbon, had a more complex 

�H�T�X�L�O�L�E�U�L�X�P�����$�F�F�R�U�G�L�Q�J���W�R���W�K�H���O�L�Q�H���S�U�R�I�L�O�H���L�Q���)�L�J���������������W�K�H���1���F�R�P�S�R�V�L�W�L�R�Q���D�F�W�X�D�O�O�\���D�S�S�H�D�U�V���W�R���I�D�O�O���L�Q��

the �V���J���D three-phase field in the 1000 °C isotherm (marked on Figure 8.5). However, if the 

observations of this experiment are correct, the solubility of Fe and Mn in BCC �.-Cr as predicted 

by the ternary isotherm is overestimated and the predicted compositional range o�I���1���V�W�D�E�L�O�L�W�\���L�V��

greatly underestimated. If that is the case, this representation of the equilibrium may not be 

accurate. Also, as discussed previously, the decomposition product found in the second and third 

�V�D�P�S�O�H�V���Z�L�W�K�L�Q���W�K�H���1���O�D�\�H�U���L�V���)�&�&�������023C6. It is difficult to project into which phase field(s) the 

composition will fall given that it is actually a quaternary alloy, but it seems possible that the 

addition of carbon would modify the decomposition sequence resulting in the two-phase FCC + 

1000 °C 800 °C 

�)�&�&�������1 �)�&�&�������1 

�%�&�&�������1 �%�&�&�������1 
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M23C6 reacti�R�Q���S�U�R�G�X�F�W���R�E�V�H�U�Y�H�G�����:�K�L�O�H���W�K�H���F�D�U�E�R�Q���V�R�O�X�E�L�O�L�W�\���L�Q���1���L�V���O�R�Z�����)�L�J�X�U�H���������������L�W���D�S�S�H�D�U�V��

that it was sufficient to result in the decomposition to FCC + M23C6 upon cooling [46]. Further, 

the formation of FCC would be expected as the formation of a region of M23C6 would necessitate 

the formation of Fe and Mn-rich regions that would favor FCC formation. The corresponding 

formation of FCC would be fully expected as the formation of a region of M23C6 would 

necessitate the formation of Fe and Mn-rich regions that would favor FCC formation. 

 

 
Figure 8.4: �%�6�(���P�L�F�U�R�J�U�D�S�K���R�I���W�K�H���)�&�&�������1���L�Q�W�H�U�I�D�F�H���L�Q���W�K�H���I�R�X�U�W�K���V�D�P�S�O�H���V�K�R�Z�L�Q�J���W�K�H��

�G�H�F�R�P�S�R�V�L�W�L�R�Q���R�I���W�K�H���1-layer in�W�R���)�&�&�������1�� 

�1���)�&�& 

Fe- Mn 
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Figure 8.5:  Cr-Fe-Mn 25 °C isothermal section. Blue triangles mark the composition 

�P�H�D�V�X�U�H�G���D�G�M�D�F�H�Q�W���W�R���W�K�H���)�&�&�������1���D�Q�G��red triangles the measured composition for 
the �%�&�&�������1���L�Q�W�H�U�I�D�F�H in the fourth hot pressed sample. The black triangle marks 
the �1 composition measured for the carbon containing �1 

 
Figure 8.6: Cr-Fe-C isothermal section at 800°C [46] 
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8.1.1 Co-Cr-Ni Phase Equilibria 

The 1200°C Co-Cr-Ni isothermal section should provide the most accurate indication of 

the phase equilibria at the pressing temperature for the Cr/CoNi region of the sample (Figure 8.7) 

[47]. The isothermal section predicts BCC in equilibrium with FCC at 1200 °C with phase 

compositions given by an appropriate tie line between the fields. This matches well with 

experimental observations in the Cr/CoNi boundary region (Figure 8.8), both in terms of 

morphology, and in measured interface compositions (Table 8.1). 

 

Table 8.1: Measured compositions of the FCC and BCC phases adjacent to the FCC / BCC 
interface in the third hot-pressed sample. 

Phase Ni (at-%) Co (at-%) Cr (at-%) 

BCC 20 20 60 

FCC 32 22 46 

 

 

 
Figure 8.7: The Cr-Co-Ni isothermal phase diagram at 1200 °C [47]. Blue triangles mark the 

measured composition of the FCC and red triangles the BCC. Both measured 
immediately adjacent to the FCC / BCC interface 

1200 °C 
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Figure 8.8: BSE micrograph of the Cr/CoNi interface showing the as-pressed BCC + FCC 

boundary of the fourth as-pressed sample 

 

 
Figure 8.9:  The Cr-Co-Ni isothermal phase diagram at 927 °C [47]. Red triangle marks the 

location of the BCC starting composition 
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Ni-Co 

Cr 
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Using these observations, the phase transformations that should occur can be predicted 

The 927°C Co-Cr-Ni isothermal section is reproduced in Figure 8.10 [47] As can be seen the 

composition of the BCC region present at 1200°C (red triangle in Fig. 8.10�����O�L�H�V���F�O�R�V�H���W�R���W�K�H���1��

phase single phase region at 927°C and indicates that the BCC phase should precipitate a large 

�I�U�D�F�W�L�R�Q���R�I���1 upon cooling from 1200°C. If allowed to equilibrate, the structure should be nearly 

100% �1���Z�L�W�K���D���V�P�D�O�O���I�U�D�F�W�L�R�Q���R�I���%�&�&���U�H�P�D�L�Q�L�Q�J�����7�K�L�V���L�V���W�K�H���E�H�K�D�Y�L�R�U���R�E�V�H�U�Y�H�G���L�Q���W�K�H���V�H�F�R�Q�G���K�R�W-

pressed sample that was heat treated at 1000°C for 24 h (Figure 5.8).  

The behavior of this interface region appears to be consistent with what would be 

expected from the phase diagrams except for the observed lenticular precipitates observed in the 

some of the BCC regions as described in Section 5.1.3. These precipitates appear to have a 

formed upon cooling with a definite orientation relationship and habit with the BCC matrix. 

Similar precipitates were reported in the Ni-Cr binary system (30% Ni) by Ezaki et. al. [44]  

upon quenching from 1300°C.   

 
Figure 8.10: BSE micrograph of the Ni-Co and Cr ternary boundary region in the second hot-

pressed sample after heat treatment at 1000 °C for 24 h.  

 

In the current study, the cooling rate from the hot-pressing temperature was significantly 

slower than a quench and much closer to a furnace cool. Further, these precipitates are clearly 

�X�Q�V�W�D�E�O�H���Z�L�W�K���U�H�V�S�H�F�W���W�R���1���D�V���H�Y�L�G�H�Q�F�H�G���E�\���W�K�H�L�U���G�L�V�D�S�S�H�D�U�D�Q�F�H���D�I�W�H�U��the 1000 °C heat treatment 
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(Figure 8.10). As can be seen in Figures 8.7 and 8.9, there is a large change in Ni and Co 

solubility in the BCC Cr phase between 1200 °C and 927 °C; this large change likely provides 

sufficient driving force for the formation of a metastable product. However, more directed 

studies are necessary to confirm this speculation and determine the identity of this phase. 

 Co-Cr-Fe-Mn-Ni Quinary Equilibria 8.2

When examining the Co-Cr-Fe-Mn-Ni quinary phase equilibria, there are no phase 

diagrams to aid in the analysis. Thus, this discussion will draw upon the phase equilbria in 

ternary regions as well as the use of the various HEA phase stability parameters. The bulk of this 

discussion will be focused on the quinary regions in the first and third hot-pressed samples, with 

an emphasis on the third sample. Both of these samples contained carbon, with the first hot-

pressed sample containing a significantly higher amount. These samples were chosen due to the 

experimental constraints concerning the timing of equipment availability, etc. However, despite 

the carbon contamination, both samples exhibited extended regions of disordered FCC. It is 

expected that a significant majority of the carbon formed carbides in both of these samples. 

Despite the complications in this analysis, this discussion and methodology serves as a model to 

evaluate other HEA systems using the diffusion multiple method.  

8.2.1 HEA Parameter Mapping 

For both samples, the compositionally-complex disordered FCC region was mapped 

using EDS�����7�K�L�V���Z�D�V���S�H�U�I�R�U�P�H�G���L�Q���J�U�L�G�V���Z�L�W�K���D�����������P���V�S�D�F�L�Q�J���X�W�L�O�L�]�L�Q�J���O�L�Q�H���V�F�D�Q�V�����7�K�H�V�H���V�F�D�Q�V��

were aligned using nanoindents. The results of the nanoindentation will be discussed in a 

subsequent chapter. The regions mapped in both samples are shown in Figure 8.11. The grid laid 

down in the first hot-pressed sample was rotated several degrees from the intended pattern due to 

small sample shift that occurred before the beginning of the nanoindentation trace, possibly due 

to sample vibration. The EDS mapping was, in turn, oriented with respect to the rotated 

�Q�D�Q�R�L�Q�G�H�Q�W�D�W�L�R�Q���S�D�W�W�H�U�Q�����8�V�L�Q�J���W�K�H���(�'�6���S�U�R�I�L�O�H�V�����W�K�H���+�(�$���S�D�U�D�P�H�W�H�U�V���û�6mix�����û�+mix�����/�����
�����D�Q�G���û�$��

were calculated and mapped to this grid, allowing for the visualization of how these parameters 

change in composition space.  Comparisons of these contour maps for both the first and third 

sample are shown in Figures 8.12 �± �������������7�K�H���S�O�R�W���R�I���û�$�����)�L�J�X�U�H���������������L�V���V�K�R�Z�Q���R�Q�O�\���I�R�U���W�K�H���W�K�L�U�G��

hot pressed sample, the reason for which will be discussed.  
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a)  b)  

Figure 8.11: BSE micrographs showing the areas in which both EDS mapping and nano-
indentation were conducted. The origin in both samples was defined as the bottom 
right corner. a) third hot-pressed sample b) first hot pressed sample 

                                                                                                                                                                                                                                     

 
a) 

 
b) 

Figure 8.12:  �û�6mix contour plots of the regions marked in Figure 8.10 a) third hot-pressed 
sample;                                                                                                                                                                                
b) first hot pressed sample heat treated for 96 h at 1000 °C. The black lines mark 
the approximate boundary between the single and two-phase regions. 
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a) 
 

b) 

Figure 8.13: �û�+mix contour plots of the regions marked in Figure 8.10 a) third hot-pressed 
sample b) first hot pressed sample heat treated for 96 h at 1000 °C. The black 
lines mark the approximate boundary between the single and two-phase regions. 

 

 
a) 

 
b) 

Figure 8.14: �
���F�R�Q�W�R�X�U���S�O�R�W�V���R�I���W�K�H���U�H�J�L�R�Q�V���P�D�U�N�H�G���L�Q���)�L�J�X�U�H�������������D�����W�K�L�U�G���K�R�W-pressed sample 
b) first hot pressed sample heat treated for 96 h at 1000 °C. The black lines mark 
the approximate boundary between the single and two-phase regions. 
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a) 

 
b) 

Figure 8.15: �/���F�R�Q�W�R�X�U���S�O�R�W�V���R�I���W�K�H���U�H�J�L�R�Q�V���P�D�U�N�H�G���L�Q���)�L�J�X�U�H�������������D�����W�K�L�U�G���K�R�W-pressed sample 
b) first hot pressed sample heat treated for 96 h at 1000 °C. The black lines mark 
the approximate boundary between the single and two-phase regions. 

 

 
Figure 8.16: �û�$ contour plot from the third hot-pressed sample taken from the region marked 

in Figure 8.10 a) The black line marks the approximate boundary between the 
single and two-phase regions. 
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�)�U�R�P���W�K�H�V�H���P�D�S�V�����V�H�Y�H�U�D�O���R�E�V�H�U�Y�D�W�L�R�Q�V���F�D�Q���E�H���P�D�G�H�����)�L�U�V�W�����W�K�H���O�D�U�J�H�V�W���û�6mix values 

(Figure 8.12) occurred almost completely in the single-phase disordered FCC region. This 

observation may indicate that entropy did help stabilize the solid solution, however, there are 

regions of wide variation in both composition and entropy that are contained in the single-phase 

region. While this observation may not directly contradict the effect of entropy on the stability of 

a solid solution, it does not offer any support for the high entropy hypothesis. Secondly, the 

�F�D�O�F�X�O�D�W�H�G���û�+mix (which is calculated based on binary pair interactions in the liquid) shows no 

clear delineation between the single and two-�S�K�D�V�H���U�H�J�L�R�Q�V�����)�L�J�X�U�H�����������������7�K�H���û�+mix term is 

negative in all regions, which would make it non-�F�R�P�S�H�W�L�W�L�Y�H���Z�L�W�K���û�6mix for phase separation but 

�Q�R�W���L�Q�W�H�U�P�H�W�D�O�O�L�F���I�R�U�P�D�W�L�R�Q�����$���Q�H�J�D�W�L�Y�H���û�+mix could favor compound formation at large values of 

�û�+mix �E�X�W���W�K�H���Y�D�O�X�H�V���R�I���û�+mix �D�U�H���U�H�O�D�W�L�Y�H�O�\���V�P�D�O�O�����7�K�L�U�G�O�\�����
�����)�L�J�X�U�H���������������V�K�R�Z�V���O�L�W�W�O�H���W�R���Q�R��

sensitivity to the phase boundary, having a similar value over a very large range of composition. 

�)�R�X�U�W�K�O�\�����/�����)�L�J�X�U�H���������������L�Q�G�L�F�D�W�H�V���W�K�H���O�D�U�J�H�V�W���G�H�J�U�H�H���R�I���P�L�V�P�D�W�F�K���L�V���J�H�Q�H�U�D�O�O�\���D�Z�D�\���I�U�R�P���W�K�H��

two-�S�K�D�V�H���U�H�J�L�R�Q�����,�I���/���Z�H�U�H���S�O�D�\�L�Q�J���D���G�H�F�L�V�L�Y�H���U�R�O�H�����L�W���Z�R�X�O�G���E�H���H�[�S�H�F�W�H�G���W�R���U�H�D�F�K���P�D�[�L�P�X�P��

values immediately adjacent to the boundary between the single phase and two phase regions. 

�%�H�F�D�X�V�H���P�D�[�L�P�D���L�Q���/���Z�H�U�H���R�E�V�H�U�Y�H�G���Z�L�W�K�L�Q���V�H�Y�H�U�D�O�����P���R�I���L�V���E�R�X�Q�G�D�U�\�����L�W���F�R�X�O�G���E�H���D�U�J�X�H�G���W�K�D�W���W�K�H��

regions immediately adjacent to the nucleated regions are depleted in solute, thus lowering the 

�P�H�D�V�X�U�H�G���Y�D�O�X�H���D�I�W�H�U���G�H�F�R�P�S�R�V�L�W�L�R�Q���D�Q�G���J�L�Y�L�Q�J���W�K�H���D�S�S�H�D�U�D�Q�F�H���W�K�D�W���/���L�V���L�Q�V�H�Q�V�L�W�L�Y�H���D�V���D���S�U�H�G�L�F�W�R�U����

This argument is not persuasive as we see a large extended region of similar mismatch in regions 

with lower entropy as well as similar value�V���R�I���H�Q�W�K�D�O�S�\�����L���H�������L�I���/���Z�D�V���D�Q���H�I�I�H�F�W�L�Y�H���L�Q�G�L�F�D�W�R�U����

�W�K�H�V�H���U�H�J�L�R�Q�V���Z�R�X�O�G���E�H���S�U�H�G�L�F�W�H�G���W�R���E�H���X�Q�V�W�D�E�O�H���D�V���D���V�L�Q�J�O�H���S�K�D�V�H���D�V���Z�H�O�O�����)�L�Q�D�O�O�\�����W�K�H���û�$��

�S�D�U�D�P�H�W�H�U�����)�L�J�X�U�H���������������V�K�R�Z�V���O�L�W�W�O�H���F�K�D�Q�J�H���R�Y�H�U���W�K�H���H�Q�W�L�U�H���U�H�J�L�R�Q���H�[�D�P�L�Q�H�G�����7�K�H���Y�D�U�L�D�W�L�R�Q���R�I���û�$��

shows no clear correlation with the two-phase region. Additionally, no clear relationship has 

�E�H�H�Q���V�X�J�J�H�V�W�H�G���I�R�U���W�K�H���V�W�D�E�L�O�L�W�\���U�D�Q�J�H���R�I���û�$���D�Q�G���W�K�L�V���V�W�X�G�\���G�R�H�V���Q�R�W���V�K�R�Z���D�Q�\���V�W�U�R�Q�J���F�R�U�U�H�O�D�W�L�R�Q��

�E�H�W�Z�H�H�Q���û�$���D�Q�G���S�K�D�V�H���V�W�D�E�L�O�L�W�\�����7�D�N�H�Q���V�L�Q�J�O�\�����Q�R�Q�H���R�I���W�K�H�V�H���S�D�U�D�P�H�W�H�U�V���R�I�I�H�U���V�Wrong evidence as 

to their influence on the stability of a solid solution. 

The observations to this point have focused on the effectiveness of individual parameters. 

In the literature, there have been two sets of criteria proposed to predict the stability of a solid 
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solution; one set, proposed by Yang et al. [14]�����X�V�H�G���
���D�Q�G���/���D�Q�G���W�K�H���R�W�K�H�U�����S�U�R�S�R�V�H�G���E�\���*�H�R���H�W��

al. [16]�����X�V�H�G���û�+mix�����/�����D�Q�G���û�6mix.These criteria are summarized in Table 8.2. 

  

Table 8.2: Summary of the criteria propose to predict solid solution stability in HEAs [14] 
and [16]. 

Criteria �
  
�/  

(%) 
�û�+mix (kJ/mol) 

�û�6mix 

(J/(K*mol)) 

Yang et al. �
���•��������  �/ �”�������� N/A N/A 

Guo et al. N/A ���”���/ �”���������� -�����”���û�+mix �”���� �������”���û�6mix�”���������� 

 

The criteria proposed by Yang et al. are fulfilled in both samples over the entire range of 

mapping, yet a two-phase region is present and stable in this range. This would suggest that this 

criterion system does not predict stability accurately for the Co-Cr-Fe-Mn-Ni system. The 

second criterion �S�U�R�S�R�V�H�G���E�\���*�X�R���H�W���D�O�����V�S�H�F�L�I�L�H�V���W�K�U�H�H���U�D�Q�J�H�V�����7�K�H���Y�D�O�X�H�V���I�R�U���û�+mix �D�Q�G���/���D�U�H��

�I�X�O�I�L�O�O�H�G���R�Y�H�U���W�K�H���H�Q�W�L�U�H���U�D�Q�J�H���R�I���Y�D�O�X�H�V�����+�R�Z�H�Y�H�U�����W�K�H���U�D�Q�J�H���I�R�U���û�6mix is not. The two-phase 

region in both samples falls just below the threshold (~0.5 J/(K*mol)). This may indicate that 

�û�6mix was the defining parameter in determining the stability of the solid solution. However, 

there are regions, especially moving towards the Co-Cr-Ni side of the multiple in which the 

�û�6mix threshold is also not reached and yet the material remains a single-phase solid solution. 

While this set of criteria predicted the two-phase region, it is inconsistent. In other words, neither 

of these criteria seem to be consistent with the behavior in the Co-Cr-Fe-Mn-Ni system. While 

more studies are needed to systematically examine these parameters in other systems, this study 

casts doubt on the overall effectiveness of this evaluation system for predicting solid solution 

stability.  

8.2.2 Evaluation of Quinary Effects on Ternary Boundary Behavior 

This section will focus on evaluating the phase equilibria in the quinary region of mixing 

by examining composition profiles across the regions of mapping and correlating these to 

observed phase boundaries. Primarily, this discussion will focus on modification of the Cr-Fe-

Mn interface by the introduction of Ni and Co.  
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The composition profiles observed show a significant amount of Ni and Co near the 

Cr/FeMn interface near the tri-junction, while on the other hand, limited levels of Fe and Mn 

were seen along the Cr/CoNi interface. Therefore, Ni and Co had a much stronger influence on 

the Cr/FeMn interface region over a much wider range than did Fe and Mn on the Cr/CoNi 

interface.  

One other observation that will be useful in this discussion is the nature of the 

FeMn/CoNi quaternary interface, which has not been discussed up to this point. However, in all 

multiples at all steps, the boundary exhibited a single-phase FCC structure with no observed 

compositional discontinuities. This fact is not surprising as both of the binary alloys are FCC at 

essentially all temperatures with nearly identical lattice parameters. This would imply however, 

that the different compounds that form are driven foremost by the presence of Cr, and that Cr 

leads to the complex ternary interfaces observed when in contact with both binary alloys. This is 

also not surprising given that Cr is known to form compounds in all four Cr-X binary diagrams 

where X represents the other four elements in the current study. This also indicates that the 

critical parameter in determining the stability of the solid solutions in this quinary system is the 

relative ratio of compound formers to solid solution stabilizers.  This hypothesis can be directly 

examined by looking at compositional slices taken across the contour maps in Figures 8.12-8.16 

Of specific interest are the compositions of the FCC regions right at the point of transition into 

the two-phase regions. These values are tabulated in Table 8.3 and two representative sections 

are shown in Figure 8.17. From Table 8.3, the Cr concentration at the boundary is almost 

constant, with a small range of values arguably falling within the range of uncertainty associated 

with EDS quantification. This relatively constant Cr value is observed over a fairly large range of 

Co, Fe, Mn and Ni concentrations and seems to indicate that there is a nearly uniform Cr 

�F�R�Q�F�H�Q�W�U�D�W�L�R�Q���L�Q���W�K�H���)�&�&���S�K�D�V�H���W�K�D�W���H�[�L�V�W�V���L�Q���H�T�X�L�O�L�E�U�L�X�P���Z�L�W�K���1 in complex FCC solid solutions 

containing wide variations of Co, Fe, Mn and Ni. This observation appears to occur 

independently of the ratio of any given element to Cr. This constant Cr level in the FCC phase 

may be indicative of the solubility of Cr in this complex FCC solid solution.  

It may be that this uniform Cr interface composition is an artifact of the region examined. 

Specifically, the regions being analyzed are those between M23C6 (thought to have nucleated off 

�R�I���D���S�U�L�R�U���1���)�&�&���L�Q�W�H�U�I�D�F�H�����D�Q�G���)�&�&�����6�L�Q�F�H���W�K�H���V�W�D�E�L�O�L�W�\���U�D�Q�J�H���L�Q���W�K�H���E�L�Q�D�U�\���&�U-C system of 
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M23C6 extends above the pressing temperature, it could be argued that the carbides formed at 

temperature and the supposed uniform level of Cr is merely an artifact of the temperature at 

which the carbides established equilibrium with the FCC solution. However, although the 

evidence presented previously indicated that the carbide is believed to have formed as a 

�G�H�F�R�P�S�R�V�L�W�L�R�Q���S�U�R�G�X�F�W���R�I���1���X�S�R�Q���F�R�R�O�L�Q�J�����L���H�������1���Æ M23C6+FCC), it is difficult to show 

unequivocally that no carbide was present at temperature. Therefore, in order to test this 

�D�V�V�H�U�W�L�R�Q�����D�U�E�L�W�U�D�U�\���K�R�U�L�]�R�Q�W�D�O���(�'�6���O�L�Q�H���V�F�D�Q�V���Z�H�U�H���W�D�N�H�Q���D�F�U�R�V�V���W�K�H���)�&�&�������1���L�Q�W�H�U�I�D�F�H���L�Q���W�K�H��

fourth hot-pressed sample where there was no carbon contamination. In this case, the measured 

interface compositions (see data in Table 8.4 and example trace in Figure 8.18), with the 

exception of the first horizontal trace, agree well with those observed in the third hot-pressed 

sample. The first horizontal trace was taken very close to the Cr interface and, consequently, was 

significantly enriched in Cr, Ni and Co.  

 

Table 8.3: Summary of the compositions (in at. pct.) of the FCC regions that are 
immediately adjacent to the two-phase regions as taken from horizontal sections in the 

third hot-pressed sample. Reader should refer to Figure 8.17 to see the Y=0 and Y = 100 
sections. 

�6�H�F�W�L�R�Q���&�R�R�U�G�L�Q�D�W�H�������P�� Co (%) Cr (%) Fe (%) Mn (%) Ni (%) 

Y = 0 19 22 25 15 17 

Y = 10 16 22 28 17 16 

Y = 20 14 22 30 19 14 

Y = 30 15 21 32 19 15 

Y = 40 12 21 35 19 12 

Y = 50 11 22 37 20 11 

Y = 60 8 21 30 21 9 

Y = 70 10 19 41 21 10 

Y =80 7 20 42 21 8 

Y = 90 6 20 45 22 6 

Y = 100 5 20 46 23 5 

Range (Ymax - Ymin)  14 3 21 8 12 
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a) 

 
b) 

Figure 8.17: �(�'�6���O�L�Q�H���V�F�D�Q�V���W�D�N�H�Q���D�W���W�Z�R���U�H�S�U�H�V�H�Q�W�D�W�L�Y�H���K�R�U�L�]�R�Q�W�D�O���V�H�F�W�L�R�Q�V���D�����<��� ���������P���E�����<��� ��
�����������P�����7�K�H�V�H���V�F�D�Q�V���Z�H�U�H���W�D�N�H�Q���L�Q���W�K�H���W�K�L�U�G���K�R�W-pressed sample. 

 

Table 8.4: Summary of FCC compositions measured immediately �D�G�M�D�F�H�Q�W���W�R���W�K�H���)�&�&�������1��
�E�R�X�Q�G�D�U�\���W�D�N�H�Q���I�U�R�P���V�H�F�W�L�R�Q�V���R�I���W�K�H���)�&�&�������1���L�Q�W�H�U�I�D�F�H���R�I���W�K�H���I�R�X�U�W�K���K�R�W-pressed sample 

Section  Co (%) Cr (%) Fe (%) Mn (%) Ni (%) 

1 16 29 18 17 17 

2 13 25 22 22 14 

3 13 23 22 22 13 

4 10 25 25 26 12 

5 10 23 27 26 11 

6 8 22 32 29 9 

7 8 20 33 30 8 

8 8 22 33 29 9 

Range (Max �± Min)  8 9 15 13 9 
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Figure 8.18: �$�Q���(�'�6���O�L�Q�H���V�F�D�Q���W�D�N�H�Q���D�F�U�R�V�V���D�Q���D�U�E�L�W�U�D�U�\���V�H�F�W�L�R�Q���R�I���)�&�&�������1���L�Q�W�H�U�I�D�F�H���L�Q���W�K�H��

fourth hot-pressed sample. 

 

This modification in behavior may indicate that there is a transition of Cr solubility in the 

quinary FCC solid solution. It appears as though the Cr solubility in the FCC transitions from a 

level consistent with the Cr-Fe-Mn system to a level consistent with the Co-Cr-Ni system. To 

�H�[�D�P�L�Q�H���W�K�L�V���W�U�D�Q�V�L�W�L�R�Q�����I�X�U�W�K�H�U���O�L�Q�H���V�F�D�Q�V���Z�H�U�H���W�D�N�H�Q���D�F�U�R�V�V���W�K�H���1�������)�&�&���E�R�X�Q�G�D�U�\���L�Q���R�U�G�H�U���W�R��

examine the Cr composition in the FCC as the quinary region transitioned between two ternary 

end systems. The results are plotted in Figure 8.19 where it can be seen that the Cr composition 

�L�Q���W�K�H���)�&�&���S�K�D�V�H���D�G�M�D�F�H�Q�W���W�R���W�K�H���L�Q�W�H�U�I�D�F�H���Z�L�W�K���1���D�J�D�L�Q�V�W���W�K�H���V�X�P���R�I���W�K�H���)�H���D�Q�G���0�Q��

concentrations. Plotting the Cr concentration in this manner makes the endpoints of this plot the 

ternary systems (CFe+CMn = 0 is the Co-Cr-Ni system and  CFe+CMn = 80 is the Cr-Fe-Mn 

system).  

As seen in Fig. 8.19, the Cr concentration appears to vary linearly with the sum of Fe and 

Mn content. This linear trend in Cr composition also implies that the Cr solubility in a 

compositionally-complex FCC solid solution can be predicted from a linear combination of the 

two ternary systems (e.g. Cr-Fe-Mn and Co-Cr-Ni). This would provide a means for predicting 

the absolute solubility for Cr in this system by a simple combination of the ternary systems. 
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Figure 8.19: �&�U���F�R�P�S�R�V�L�W�L�R�Q���P�H�D�V�X�U�H�G���L�Q���W�K�H���)�&�&���D�W���W�K�H���)�&�&�������1���L�Q�W�H�U�I�D�F�H���S�O�R�W�W�H�G���D�J�D�L�Q�V�W��

CFe+CMn in the fourth hot-�S�U�H�V�V�H�G���V�D�P�S�O�H�����7�K�H���H�Q�G�S�R�L�Q�W�V���R�I���W�K�H���S�O�R�W���D�U�H���W�K�H���³�S�X�U�H�´��
ternary systems 

 

  This hypothesis is in need of further verification but, if confirmed, may provide a 

roadmap for evaluating solubility of other HEA compositions. This finding may also imply that 

the relatively constant levels of Cr observed at the two-phase boundary between FCC and M23C6 

in the third sample may in fact be the result of the equilibrium that is established between M23C6 

and FCC and may not be indicative of the FCC / �1���H�T�X�L�O�L�E�U�L�X�P���D�W���W�H�P�S�H�U�D�W�X�U�H�����+�R�Z�H�Y�H�U����

significantly more testing must be done to verify these hypotheses.  

 Qualitative Diffusion Observations 8.3

The experimental focus of this project was not on quantifying diffusion constants. No 

marker planes were inserted into the samples nor were the techniques used to examine the 

sample sensitive enough to generate quality diffusion data. Despite this however, qualitative 

information can be gained by simple observation of profile shape and behavior. Therefore, it is 

useful to spend a brief discussion on some of the most relevant observations. 
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It has been proposed in literature that HEA compositions should exhibit relatively 

sluggish diffusion kinetics [20]. This was not observed in this system. These diffusion multiples 

developed extended composition profiles after relatively short times. The Cr-Fe-Mn exhibited 

very rapid diffusion of Cr. However, even in the quaternary and quinary regions, depths of on the 

order of 102 ���P���Z�H�U�H���Q�R�W���X�Q�F�R�P�P�R�Q�����&�R�Q�V�L�G�H�U�L�Q�J���W�K�D�W���T�X�L�Q�D�U�\���S�U�R�I�L�O�H�V���Z�H�U�H���R�Q�O�\���J�L�Y�H�Q�������K���W�R��

develop in most cases, this would not support the idea of sluggish diffusion.  

Secondly, the rate of diffusion of a given element was predictable. The order from fastest 

to slowest diffusers was Mn > Cr > Fe > Co > Ni. This sequence could be predicted on the basis 

of atomic size, and with the exception of Cr, by homologous temperature at the pressing 

temperature. This sequence was also predicted in the Co-Cr-Fe-Mn-Ni system by Tsai et al. 

however, the total magnitudes would not match his predictions [20].   
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CHAPTER 9  
Hardness Mapping of Compositionally-Complex FCC Solid Solutions 

Nanoindentation was performed on the region of compositionally complex FCC solid 

solutions in the tri-junction regions of both the first and third hot-pressed samples. The following 

sections will summarize the results of the hardness mapping and utilize the data to examine 

strengthening mechanisms in HEAs. 

 Hardness Mapping 9.1

The region on which nanoindentation was performed is the same as that used for mapping 

of HEA parameters presented in Chapter 8. For convenience, this region is presented again in 

Figure 9.1. For each of these regions, a hardness contour map was constructed (Figure 9.2). 

These maps have an indent spacing of 10 microns. The two-phase regions of these maps have 

been removed as indicated and the analysis of the results has been restricted to the single-phase, 

compositionally-complex regions. Of particular interest in this analysis is the evaluation of the 

�K�\�S�R�W�K�H�V�L�]�H�G���³�V�H�Y�H�U�H���O�D�W�W�L�F�H���G�L�V�W�R�U�W�L�R�Q�´���H�I�I�H�F�W���L�Q���+�(�$�V��[1], [11], [22]. This effect was 

hypothesized to be a function of the number and concentration of components (termed here as 

compositional complexity) as well as their relative size mismatches. Compositional complexity 

is represented well by the ideal configurational entropy of mixing, which responds to both 

�F�R�P�S�R�Q�H�Q�W���Q�X�P�E�H�U���D�Q�G���F�R�P�S�R�V�L�W�L�R�Q�����$���F�R�P�S�D�U�L�V�R�Q���R�I���û�6mix and hardness is shown for both 

samples in Figures 9.3 and 9.4. 

 A comparison of the region of maximum hardness with that of maximum 

compositional complexity (as given by the configurational entropy) indicates that they do not 

occur at the same location. In both samples, the maximum hardness is more closely associated 

with the Cr/CoNi ternary boundary. In fact, there is a significant variation in hardness within the 

regions of maximum complexity; this is particularly evident in the data for the third hot-pressed 

sample, (Figure 9.3).  This would contradict the initially proposed general hypothesis for HEAs 

that increasing the compositional complexity of the FCC solid solution also increases its 

hardness for Co-Cr-Fe-Mn-Ni system [1], [11], [22]. The second proposed contributor to the 

�³�V�H�Y�H�U�H���O�D�W�W�L�F�H���G�L�V�W�R�U�W�L�R�Q�´���H�I�I�H�F�W���L�V���W�K�H���U�H�O�D�W�L�Y�H���V�L�]�H���P�L�V�P�D�W�F�K���E�H�W�Z�H�H�Q���D�W�R�P�V�����7�K�L�V���F�R�Q�W�U�L�E�X�W�L�R�Q���L�V��

�E�H�V�W���H�V�W�L�P�D�W�H�G���E�\���W�K�H���/���S�D�U�D�P�H�W�H�U���W�K�D�W���Z�D�V���G�L�V�F�X�V�V�H�G���S�U�L�P�D�U�L�O�\���L�Q���W�H�U�P�V���R�I���S�K�D�V�H���V�W�D�E�L�O�L�W�\��  
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a)  b)  

Figure 9.1: BSE micrographs showing the areas from which EDS mapping and nano-
indentation measurements were conducted. The origin in both samples was 
defined as the bottom right corner. a) third hot-pressed sample b) first hot-pressed 
sample 

 

a) b) 

Figure 9.2:  Hardness contour plots of the regions marked in Figure 9.1: a) third hot-pressed 
sample and b) first hot-pressed sample both heat treated for 96 h at 1000°C. The 
hashed regions mark the two-phase region that was excluded from these maps. 
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a)  

 
b) 

Figure 9.3: Contour maps of the third hot-�S�U�H�V�V�H�G���V�D�P�S�O�H�����D�����+�D�U�G�Q�H�V�V���D�Q�G���E�����û�6mix. Hashed 
region and black line delineate the two-phase region.  

a) 
 

b)  

Figure 9.4: Contour maps of the first hot-pressed sample heat treated at 1000°C for 96 h: a) 
�+�D�U�G�Q�H�V�V���D�Q�G���E�����û�6mix. Hashed region and black line delineate the two-phase 
region. 
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This parameter is an estimated average mismatch in the solid solution based upon the 

binary atom pairs of the Co-Cr-Fe-Mn-Ni system.�$���F�R�P�S�D�U�L�V�R�Q���R�I���K�D�U�G�Q�H�V�V���D�Q�G���/���I�R�U���E�R�W�K��

samples (Figures 9.5 and 9.6) indicates that, similar to the compositional complexity comparison, 

the region of maximum mismatch does not correspond to the region of maximum hardness. This 

can be tested further by examining a hardness/composition section in the region of greatest 

mismatch (Figure 9.7) namely, the vertical section at X = 160 ���P�����L���H�������W�K�U�R�X�J�K���W�K�H���U�H�J�L�R�Q���R�I��

maximum mismatch. As can be seen, the hardness actually decreases throughout this region. 

Both of these observations contradict the hypothesis that greater mismatch should lead to higher 

hardness in compositionally-complex solid solutions. 

 

a)  

 
b) 

Figure 9.5: Contour maps for the third hot-�S�U�H�V�V�H�G���V�D�P�S�O�H�������D�����+�D�U�G�Q�H�V�V���D�Q�G���E�����/�����+�D�V�K�H�G��
region and black line delineate the two-phase region. 

 

Evidence gathered in this set of experiments directly contradicts the presence of a severe 

lattice distortion effect in the Co-Cr-Fe-Mn-Ni system. In fact, if this effect is present, it has 

essentially no impact on the material hardness. These findings are in agreement with the study by 

Wu et al. who found the equiatomic CoCrFeMnNi HEA to have inferior strength levels when 

compared to equiatomic quaternary and ternary alloys (details presented in Chapter 2) [21]. 

Maximum  

Mismatch 

Maximum Hardness 
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a) 
 

b)  

Figure 9.6:  Contour maps for the first hot-pressed sample heat treated at 1000°C for 96 h:  a) 
hardness and b) �/�����+�D�V�K�H�G���U�H�J�L�R�Q���D�Q�G���E�O�D�F�N���O�L�Q�H���G�H�O�L�Q�H�D�W�H���W�K�H���W�Z�R-phase region. 

 

 
Figure 9.7: Vertical section of composition and hardness taken from the X = 160 coordinate 

in the third hot-pressed sample. 

Maximum Hardness 

Maximum  

mismatch 

Greatest 

mismatch  

( > 3.6%) 
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This agrees with the nanohardness measurements which indicate that the highest hardness 

values are associated with the Co-Cr-Ni ternary system.  Therefore, it can be concluded that the 

severe lattice distortion hypothesis is an unsatisfactory explanation for the observed trends in this 

multicomponent system. 

 Evaluation of Hardening in Compositionally-Complex FCC Solid Solutions 9.2

As discussed in the previous section, the severe lattice distortion model provides an 

ineffective explanation for the experimental observations. Thus, in this section, an attempt is 

made to correlate potential solid solution strengthening mechanisms with the observed trends in 

order to apply existing strengthening mechanisms to complex solid solutions.  

9.2.1 Elastic Misfit Strengthening 

In dilute solid solution alloys, the elastic misfit strengthening mechanism refers to the 

elastic strain that arises from the insertion of a smaller or larger solute atom into a solvent matrix. 

This size mismatch leads to an associated strain that can interact with dislocations. This 

mechanism is the basis for the HEA hypothesis of severe lattice distortion, essentially stating that 

if you put high concentrations of variable size atoms, they will form a strained lattice to 

accommodate the size mismatch. As discussed in the previous section, this idea was determined 

to be insufficient in explaining the experimental observations in this HEA system. Therefore, it is 

unlikely this is the most effective descriptor of strengthening in this system.  

9.2.2 Modulus Misfit Interaction  

Modulus misfit interaction describes an interaction that arises between a solute and 

dislocation due to a difference in elastic modulus between the solute and the solvent. In a 

multicomponent alloy, the challenge is always to d�H�I�L�Q�H���Z�K�D�W���W�K�H���³�V�R�O�X�W�H�´���L�V���D�Q�G���Z�K�D�W���W�K�H��

�³�V�R�O�Y�H�Q�W�´���L�V�����,�Q���R�W�K�H�U���Z�R�U�G�V�����K�R�Z���F�D�Q���R�Q�H���G�H�I�L�Q�H���D���O�R�F�D�O���L�Q�K�R�P�R�J�H�Q�H�L�W�\���L�Q���P�R�G�X�O�X�V���Z�K�H�Q��

technically one could define all of the neighbors of the solute atom in the same way? However, it 

may be possible that local modifications in modulus may locally pin a dislocation line segment. 

�7�K�H���P�R�G�X�O�X�V���P�L�V�I�L�W���L�Q�W�H�U�D�F�W�L�R�Q���P�L�J�K�W���E�H���H�V�W�L�P�D�W�H�G���X�V�L�Q�J���D���V�L�P�L�O�D�U���P�H�W�K�R�G���W�R���/�����$���Q�H�Z���S�D�U�D�P�H�W�H�U��

�û�(���L�V���S�U�R�S�R�V�H�G���W�R���H�Y�D�O�X�D�W�H���W�K�H���P�R�G�X�O�X�V���P�L�V�I�L�W���L�Q�W�H�U�D�F�W�L�R�Q�����,�W���L�V���G�H�I�L�Q�H�G���V�L�P�L�O�D�U�O�\���W�R���/�����(�T�X�D�W�L�Rn 

9.1): 
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where ci is the atom fraction of the ith component, Ei is the elastic modulus of the i th 

component and �'
$ is defined in Equation  9.2 as:  
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This parameter is plotted and compared to the hardness contour map for the third hot-

pressed sample in Figure 9.8.  

 
a)  

 
b)  

  Figure 9.8:  Contour maps from the third hot-�S�U�H�V�V�H�G���V�D�P�S�O�H�������D�����+�D�U�G�Q�H�V�V���D�Q�G���E�����û�(�����+�D�V�K�H�G��
regions delineate the two-phase region and were excluded from this plot. 

 

From a comparison of the plots, the prediction of hardness is moderately accurate. The 

�U�H�J�L�R�Q���R�I���P�D�[�L�P�X�P���û�(���P�D�W�F�K�H�V���Z�H�O�O���Z�L�Wh the highest hardness (in the ternary Co-Cr-Ni rich 

end) but the other regions (from examination of the contour map) do not match well.  However, 

if a vertical hardness / composition section is taken through the contour map (e.g., at X = 150 

�Pm), a decrea�V�L�Q�J���û�(���Y�D�O�X�H���D�F�U�R�V�V���W�K�L�V���V�H�F�W�L�R�Q���F�R�U�U�H�V�S�R�Q�G�V���W�R���D���G�U�R�S���L�Q���K�D�U�G�Q�H�V�V�����)�L�J�X�U�H���������������,�W��

Maximum Hardness Maximum �û�( 
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�L�V���D�O�V�R���R�E�V�H�U�Y�H�G���W�K�D�W���D�Q���L�Q�F�U�H�D�V�H���L�Q���û�(���L�V���J�H�Q�H�U�D�O�O�\���D�V�V�R�F�L�D�W�H�G���Z�L�W�K���D�Q���L�Q�F�U�H�D�V�H���L�Q���K�D�U�G�Q�H�V�V����

While this is not absolutely followed, it does indicate that modulus mismatch is a better 

descriptor of strengthening in HEAs that atomic size misfit. 

 
Figure 9.9: Plot of both hardness and composition taken at a vertical section through the 

contour plot from the third hot-pressed sample at the position X = 150 �Pm.  

 

9.2.3 Electrical interactions 

As discussed in Chapter 2, electrical interactions are generally small. There is no 

particularly effective way of calculating this simply utilizing the data at hand. Once more, it is 

difficult to discuss without a clearly defined solvent atom what may be considered an 

inhomogeneity or an excess in electric field. Regardless, it seems likely that electrical 

contributions are minimal. If each atom with an electric field, either positive or negative, is 

considered, it seems highly probable that its nearest neighbors would effectively cancel its field 

unless there was a significant degree of local ordering. Statistically, therefore, this would mute 

electrical interactions to minimal levels. 
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9.2.4  Chemical Interactions 

Chemical interactions are generally considered the result of segregation to the faulted 

area between two partial dislocations (in FCC and HCP alloys). Since the faulted stacking 

pattern in FCC metals is HCP, it is conceivable that HEAs that contain elements that form stable 

HCP allotropes might segregate to these faulted regions. In the case of the Co-Cr-Fe-Mn-Ni 

system, Co is the only element that forms an HCP allotrope. Therefore, this mechanism is 

plausible in the Co-Cr-Fe-Mn-Ni system. This would likely manifest itself in a change in the 

stacking fault energy (SFE). A change in SFE would manifest itself most clearly in the strain 

hardening behavior of the material. While this cannot be directly inferred from the data collected 

in this experiment, the data collected by Wu et al. on an equiatomic Co-Cr-Fe-Mn-Ni alloy 

shows an excellent degree of strain hardening in this system [21]. Additionally, the effects of Co 

on the SFE of Ni has been reported [48]. Additions of cobalt significantly reduce the SFE of pure 

Ni. It may be speculated that Co may have a similar effect on the SFE of Co-Cr-Fe-Mn-Ni 

alloys. This mechanism seems to be a plausible contributor to strengthening in these alloys, but 

the total degree and effect is not directly obvious from the collected data. More directed studies 

would be illuminating in delineating the effect and exact mechanisms contributing to chemical 

interaction effects.  

9.2.5 Local Ordering 

The formation of local or short range order (SRO) is defined as the preferential 

arrangement of solute atoms. This would occur when bonding between given constituents is 

particularly strong or favorable. This tendency may be predicted by comparing binary enthalpies 

of mixing. These binary enthalpies, as calculated by Takeuchi et al. (Table 9.1) [49], are not 

strongly negative, with the strongest being the Mn-Ni pair.  

Table 9.1: Binary enthalpies of mixing as calculated by Takeuchi et al.  [49] 

Binary Pair Cr-
Ni 

cr-
Co 

Cr-
Fe 

Cr-
Mn 

Fe-
Co 

Fe-
Ni 

Fe-
Mn 

Mn-
Ni 

Mn-
Co 

Co-
Ni 

Enthalpy 
(kJ/mol) -6.7 -4.5 -1.5 2.1 -.6 -1.6 .2 -8.2 -5.2 -0.2 
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Since these binary pairs behave relatively close to ideal solution behavior, local ordering is not 

predicted. Additionally, there have been no reports in the literature of local ordering in the Co-

Cr-Fe-Mn-Ni system. Therefore, it is unlikely it is occurring within this system, although it could 

in other HEA systems where the mixing enthalpies deviate significantly from ideal behavior. 

9.2.6 Vibrational Entropy   

Vibrational entropy cannot be easily calculated nor easily correlated with properties. It 

can be speculated that complex FCC solid solutions likely have a global average vibrational 

behavior such that, unless local ordering occurs, any variations in vibrational modes are minimal. 

Therefore, on first inspection, it is not expected to be a significant contributor to strengthening in 

this particular HEA system. 

9.2.7 Peierls Stress 

The lattice friction or Peierls stress is the stress required to move dislocations in a 

material in the absence of other interactions with the dislocation. This stress is, in part, a function 

of the strength of the material bonding. The elastic modulus of a material is an indirect measure 

�R�I���W�K�H���E�R�Q�G���V�W�U�H�Q�J�W�K���R�I���W�K�H���P�D�W�H�U�L�D�O�����7�K�H���S�D�U�D�P�H�W�H�U���œ���P�D�\���L�Q�G�L�F�D�W�H���W�K�H���U�H�O�D�W�L�Y�H���F�K�D�Q�J�H���L�Q���W�K�H��

lattice friction stress for the third hot-pressed sample (Figure 9.10)�����7�K�H���S�D�U�D�P�H�W�H�U���œ���V�K�R�Z�V���D��

�V�L�P�L�O�D�U���W�U�H�Q�G���D�V���W�R���W�K�H���û�(���S�D�U�D�P�H�W�H�U�����7�K�L�V���P�D�\���L�Q�G�L�F�D�W�H���D���G�H�J�U�H�H���R�I���L�Q�I�O�X�H�Q�F�H�����+�R�Z�H�Y�H�U�����Z�K�L�O�H��

indicative, this correlation is not conclusive.   
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Figure 9.10: �œ���F�R�Q�W�R�X�U���P�D�S���S�O�R�W�W�H�G���Ior the third hot-pressed sample. Hashed region marks the 

two-phase region. 
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CHAPTER 10  
Summary and Conclusions 

It has been shown that diffusion multiples can be used to explore complex, multi-

component systems and significant information can be derived from this technique as 

demonstrated by these experiments. There are many possible avenues to further the use of this 

technique to increase our understanding of multi-component HEA systems.   

In this study, diffusion multiples of Co-Cr-Fe-Mn-Ni systems were created using a two-

stage bonding process. The resulting multiples successfully exhibited large interdiffusion zones 

across all of the ternary, quaternary, and quinary interfaces. Complex microstructures developed 

at both the Cr/CoNi and Cr/FeMn ternary interfaces. For the Cr/FeMn couple, a layered structure 

�R�I���)�&�&�������1�������%�&�&���I�R�U�P�H�G���D�W�������������ƒ�&���L�Q���F�R�Q�W�U�D�G�L�F�W�L�R�Q���W�R���W�K�H��published Cr-Fe-Mn ternary 

�L�V�R�W�K�H�U�P���D�W�������������ƒ�&�����)�X�U�W�K�H�U�����W�K�L�V���L�Q�W�H�U�P�H�G�L�D�W�H���1���O�D�\�H�U���Z�D�V���R�E�V�H�U�Y�H�G���W�R���G�H�F�R�P�S�R�V�H���W�R���)�&�&�������1 

with some isolated regions of BCC on cooling. However, in the presence of C contamination, 

M23C6 formed cooperatively with FCC as a cellular product with a cube-cube orientation 

relationship. The Cr/CoNi interface at 1200 °C was FCC/BCC. The BCC side of this interface 

�G�H�F�R�P�S�R�V�H�G���X�S�R�Q���F�R�R�O�L�Q�J���W�R���1���D�Q�G���I�R�U�P�H�G���D�Q���X�Q�L�G�H�Q�W�L�I�L�H�G���&-like precipitate. The FeMn/CoNi 

quaternary interface exhibited a disordered FCC solid solution in all samples. The quinary 

regions near the Cr/FeMn/CoNi tri-junction region exhibited a wide region of a compositionally-

�F�R�P�S�O�H�[���G�L�V�R�U�G�H�U�H�G���)�&�&���V�R�O�L�G���V�R�O�X�W�L�R�Q���D�V���Z�H�O�O���D�V���U�H�J�L�R�Q�V���R�I���1�� 

Within these disordered FCC regions in the tri-junction, nanoindentation measurements 

were conducted and correlated with corresponding composition measurements. In addition, 

�F�R�Q�W�R�X�U���S�O�R�W�V���R�I���W�K�H���Y�D�U�L�R�X�V���S�D�U�D�P�H�W�H�U�V���G�H�Y�H�O�R�S�H�G���I�R�U���S�U�H�G�L�F�W�L�Q�J���+�(�$���E�H�K�D�Y�L�R�U�����Q�D�P�H�O�\�����û�6mix, 

�û�+mix�����/�����
�����D�Q�G���û�$�����Z�H�U�H���P�Dde for these regions and correlated with the hardness and second 

phase formation data. Significantly, it was shown that the second phase boundaries were 

relatively insensitive to these various HEA parameters. However, an evaluation of the boundary 

separating the solid solution FCC from the two phase regions indicate that there is an 

approximately linear variation in Cr solubility in the FCC phase right at this boundary; this 

implies that the Cr solubility can be predicted from a linear combination of the Cr solubility in 

the FCC regions of the Cr-Fe-Mn and Co-Cr-Ni ternary systems.  
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It was also shown that the nanoindentation map of the quinary FCC region failed to 

support the proposal that compositional complexity should significantly increase the strength of 

the solid solution. Similarly, no correlation to atomic size mismatch was observed, which 

contradicts the severe lattice distortion hypothesis. The only parameters that showed any 

�F�R�U�U�H�O�D�W�L�R�Q���W�R���W�K�H���K�D�U�G�Q�H�V�V���Y�D�O�X�H�V���Z�H�U�H���W�K�H���Q�H�Z�O�\���S�U�R�S�R�V�H�G���û�(���D�Q�G���œ���S�D�U�D�P�Hters; this led to the 

conclusion that modulus misfit and modifications in the base lattice friction stress are likely the 

primary contributors to strengthening. Other known contributors to solid solution strengthening 

were not directly measured or were projected to have minimal contributions.  

In addition to the solid-state experiments, an alternative process for creating diffusion 

multiples, namely, the DMLI method, was developed and shown to be experimentally 

challenging. Specifically, it was found that this technique, while viable, would require more 

development in order for it to be a significant tool for alloy exploration. 
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CHAPTER 11  
Future Work 

There are many opportunities to further develop and explore both the diffusion multiple 

technique and the Co-Cr-Fe-Mn-Ni HEA system. The following sections will summarize the 

most immediately obvious extensions.  

 Extension to Six Component Diffusion Multiples 11.1

First of all, the Co-Cr-Fe-Mn-Ni diffusion multiple results did not yield an exceptional 

candidate for further alloy development. The wide, compositionally complex FCC region 

showed unexceptional properties in comparison with the simple ternary systems, in particular, 

when compared to the Co-Cr-Ni system [21]. However, the addition of Al to this system has 

been shown to cause significant hardening and the development of duplex FCC + BCC 

microstructures [24]. An Al-Co-Cr-Fe-Mn-Ni diffusion multiple could provide significant insight 

into this system and may aid in the identification and development of more promising HEAs. 

Beyond this, however, there are many different combinations of multi-component systems that 

have been only partially explored or not explored at all. These systems could be chosen based 

upon the desired design criteria and developed using a combination of methods including the 

multiple approach developed in this study. 

 Extended Annealing of Co-Cr-Fe-Mn-Ni Diffusion Multiples 11.2

The heat treatments applied to the series of multiples presented in this study were 

relatively short. It is currently not known how the Co-Cr-Fe-Mn-Ni system responds to long term 

thermal treatments. It is possible the disordered solution may not be stable over long time ranges 

in certain temperature ranges. Since many of the target HEAs are proposed for high temperature 

application, it would be useful to determine the aging behavior of these alloys. As seen in the 

�F�X�U�U�H�Q�W���P�X�O�W�L�S�O�H�V�����W�K�H���S�U�L�P�D�U�\���S�K�D�V�H���Z�L�W�K���Z�K�L�F�K���W�K�H���)�&�&���L�V���F�R�P�S�H�W�L�Q�J���L�V���W�K�H���1���S�K�D�V�H�����7�K�H�U�H�I�R�U�H����

long-term annealing at intermed�L�D�W�H���W�H�P�S�H�U�D�W�X�U�H�V���Z�K�H�U�H���W�K�H���1���L�V���N�Q�R�Z�Q���W�R���E�H���V�W�D�E�O�H���L�Q���W�K�H��

various binary systems should be conducted. 
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 Identification of Unknown Precipitate  11.3

The Co-Cr-Ni ternary interface in the second, third and fourth as-pressed diffusion 

multiples exhibited an unknown acicular precipitate that formed on cooling from the hot-pressing 

temperature at 1200°C. These precipitates were observed to disappear upon cfurther annealing at 

���������ƒ�&�����D�S�S�D�U�H�Q�W�O�\���L�Q���D���W�U�D�Q�V�L�W�L�R�Q���W�R���1���S�K�D�V�H�����7�K�H���L�G�H�Q�W�L�W�\���R�I���W�K�H�V�H���S�U�H�F�L�S�L�W�D�W�H�V���D�Q�G���W�K�H�L�U 

�R�U�L�H�Q�W�D�W�L�R�Q���U�H�O�D�W�L�R�Q�V�K�L�S���Z�L�W�K���E�R�W�K���W�K�H���%�&�&���S�D�U�H�Q�W���D�Q�G���W�K�H���D�S�S�D�U�H�Q�W�O�\���F�R�P�S�H�W�L�Q�J���1���S�K�D�V�H���Q�H�H�G���W�R��

be understood. In fact, it is surprising that these structures have not been reported in the Co-Cr-

Ni literature given the extent of work conducted on alloys in this system over the years. Given 

that there is compositional information from these regions, it would be appropriate to prepare 

select alloys in this range and perform a range of heat treatments that would enable their 

identification and phase relations and equilibria in this ternary system.  

 Verification of �1���6�W�D�E�L�O�L�W�\ at 1200 °C  11.4

�,�W���Z�D�V���R�E�V�H�U�Y�H�G���L�Q���W�K�H�V�H���H�[�S�H�U�L�P�H�Q�W�V���W�K�D�W���1���L�Q���W�K�H���&�U-Fe-Mn ternary system was stable at 

1200 °C in a composition regime outside the predicted �1 stability and developed during the hot-

pressing cycle. This contradicts the published phase diagram as pointed out earlier. It would be 

useful therefore, to replicate this using bulk alloys in the composition range of interest. Although 

it is possible that there was some contribution to �1���I�R�U�P�D�W�L�R�Q���W�K�D�W���Z�D�V���X�Q�L�T�X�H���W�R���W�K�H���G�L�I�I�X�V�L�R�Q��

multiple technique or that the thermocouples were out of calibration, it seems unlikely given the 

care taken in these experiments. Regardless, further data is required in order to confidently 

suggest a modification of the 1200 °C Cr-Fe-Mn isotherm or to determine the reason for these 

conflicting observations. If the diagram is found to be incorrect, another avenue for future 

research would be to recreate the 1200 °C isotherm using a combination of diffusion multiples 

and supplemental melts. 

 Verification of Predicted Cr solubility 11.5

The prediction of Cr solubility in the disordered FCC phase based upon the two end-point 

ternaries mentioned in Chapter 8 needs to be developed further. The diffusion multiple 

techniques is well suited for such a determination due to its ability to create continuous and 

smooth composition profiles. Two main paths would be recommended to explore this prediction. 

First, utilize traditional alloy melts with compositions predicted by this hypothesis both above 
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and below the solubility limit. The phase fraction and phase boundary compositions could be 

measured. If the predicted solubility were verified in these traditional melts, it would give 

evidence to support the hypothesis in the specific Co-Cr-Fe-Mn-Ni system. The next extension 

of this would be to pick two separate ternary systems containing Cr and repeat the procedure. If 

these predictions also prove approximately accurate, the construction of diffusion multiples in 

these systems could define the functional relationship between the two ternary systems more 

precisely. If this hypothesis is proven more widely applicable in other systems, this technique 

could be used to screen other proposed HEA systems for possible solubility limits at a given 

temperature.  

 Application of Neural Networks to Hardness Mapping 11.6

Artificial neural networks are useful computational tools for identifying empirical 

relationships between physical quantities. Thus, their utilization in the development of HEAs 

may produce useful empirical relationships between relevant HEA parameters and hardness. 

Diffusion multiples provide a useful approach for creating significant quantities of useful data 

for an effort of this type.  
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