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ABSTRACT

Currently in the petroleum industry, operators often 
are the produced gas instead of

commodifying it. The 
aring magnitudes are large in some states, which constitute problems

with energy waste and CO2 emissions. In North Dakota, operators are required to estimate

and report the volume 
ared. The questions are, how good is the quality of this reporting,

and what insights can be drawn from it?

Apart from the company-reported statistics, which are available from the North Dakota

Industrial Commission (NDIC), 
ared volumes can be estimated via satellite remote sensing,

serving as an unbiased benchmark. Since interpretation of the Landsat 8 imagery is hindered

by artifacts due to glow, the estimated volumes based on the Visible Infrared Imaging

Radiometer Suite (VIIRS) are used. Reverse geocoding is performed for comparing and

contrasting the NDIC and VIIRS data at di�erent levels, such ascounty and oil�eld.

With all the data gathered and preprocessed, Bayesian learning implemented by Markov

chain Monte Carlo methods is performed to address three problems: county level model

development, 
aring time series analytics, and distribution estimation. First, there is

heterogeneity among the di�erent counties, in the associations between the NDIC and VIIRS

volumes. In light of such, models are developed for each county by exploiting hierarchical

models. Second, the 
aring time series, albeit noisy, contains information regarding trends

and patterns, which provide some insights into operator approaches. Gaussian processes are

found to be e�ective in many di�erent pattern recognition scenarios. Third, distributional

insights are obtained through unsupervised learning. The negative binomial and Gaussian

mixture models are found to e�ectively describe the oil�eld
are count and 
ared volume

distributions, respectively. Finally, a nearest-neighbor-based approach for operator level

monitoring and analytics is introduced.
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CHAPTER 1

INTRODUCTION

Currently in the petroleum industry, for wells which produce both crude oil and natural

gas, operators often choose to 
are the produced gas insteadof commodifying it. The

rationales behind such decisions are multifold. Variations in natural gas price can be an

important factor, especially when the processing and transportation cost is higher than

the value of gas (Srivastava et al. 2019). The amount of gas being 
ared each year on a

national level is huge, and an increasing trend can be observed for the top 
aring countries

(Figure 1.1).

Source: NOAA, Colorado School of Mines, GGFR
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Figure 1.1: Top 30 countries ranked by 
ared gas volume in 2018. United States ranks No. 4
and has a large increase from 2017 to 2018 (World Bank 2019).

Due to the boom of unconventional resources (e.g., shale gasreservoirs) development

in the recent decade, the United States has been among the top 
aring countries in terms
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of total volume 
ared. This is backed by the data from the U.S. Energy Information

Administration (EIA) (2019) showing North Dakota, which is underlain by the Bakken

Formation, and Texas, which houses the Permian Basin and theEagle Ford Shale, are the

top two 
aring states since 2013. The two states' annual 
aring volume time series are

shown in Figure 1.2. Some 
aring sites can be clearly identi�ed from Google Earth's imagery

(Figure 1.3).
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Figure 1.2: The time series show the trend of gas 
aring for thetop two states in the United
States (EIA 2019a). Texas regained the lead in 2015.

Natural gas 
aring constitutes a problem of energy waste and CO2 emissions. In recent

years, various organizations and government agencies haveadvocated reducing or eliminating

routine gas 
aring. For example, the North Dakota IndustrialCommission (NDIC) introduced

a gas 
aring regulatory policy (Order 24665) in 2014, with goals of reducing 
aring in di�erent

aspects (e.g., volume of gas 
ared). The World Bank launchedthe \Zero Routine Flaring

by 2030" initiative in 2015. To monitor and benchmark 
aring activity's magnitude, a

precise and accurate method to obtain quantitative 
aring information is desirable. However,

in certain situations, this information is only available through self-reporting mechanisms.
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Figure 1.3: This Google Earth imagery shows gas 
aring being conducted on a well location
in North Dakota (Google Earth 2019).

Inaccuracies might be introduced either intentionally or unintentionally.

Satellite remote sensing is one unbiased approach for solving this problem. It can help

detect active 
ares especially during nighttime and can be used to calibrate the estimation

for 
ared gas volume. For this work, two di�erent types of sensors are considered, including

the Landsat 8 (L8)'s Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS),

as well as the Visible Infrared Imaging Radiometer Suite (VIIRS) that is on the Suomi

National Polar-orbiting Partnership (NPP) and NOAA-20 satellites. In the remainder of this

dissertation, they are referred to as L8 and VIIRS, respectively. An example of detecting


aring with VIIRS low light imaging data is shown in Figure 1.4.

1.1 Research Goal

This research is undertaken to achieve the following goals:

ˆ Evaluate the methodology for estimating 
ared gas volume leveraging satellite imagery;

and,
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Figure 1.4: Part of the original poster (Earth Observation Group at Payne Institute 2019)
which uses one year accumulation of VIIRS low light imaging data to showcase human
activities, e.g., gas 
aring, �shing, and city lights. As annotated, North Dakota's 
aring
activities are very visible from space at night.

ˆ Find insights into operators' gas 
aring behavior.

1.2 Dissertation Objectives

To achieve the goals outlined in Section 1.1, more speci�c objectives are listed below:

1. Compare and contrast the 
aring data from VIIRS and NDIC.

ˆ Compare the VIIRS 
ared volumes to the NDIC, using the NDIC as a benchmark.

2. Evaluate the e�ectiveness of using Landsat 8 nighttime images to improve 
are detection

and volume estimation.

ˆ Determine the detection limits of Landsat 8 and compare it with VIIRS' capabili-

ties.

3. Investigate operator approaches for gas 
aring.
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ˆ Determine the correlation between gas price / oil price / oilproduction and 
ared

gas volume.

ˆ Evaluate if the North Dakota regulatory policy (Order 24665)achieved its goals.

ˆ Develop a model that can predict 
ared gas volume at a state level.

4. Find any hidden structure/clusters from all the producingentities.

1.3 Outline and Contributions

The main contribution of this dissertation is demonstrating that Bayesian learning

implemented by Markov chain Monte Carlo methods is very e�ective in 
aring data analytics.

A series of parametric and nonparametric machine learning models are developed for various

analytics goals and granularities, providing direct guidance for future modeling endeavors.

To demonstrate the e�ectiveness and robustness, they are all tested with real data. The

superiority of this approach is based on the fact that the inference stage is entirely probabilistic,

in that the parametric uncertainties arising from probablemodels as well as the stochastic

uncertainties arising from noisy observations are all properly characterized and quanti�ed. It

makes the extracted insights robust and interpretable for decision- and policy-making by, for

example, a state government.

In Chapter 2, a literature review is given for the state of theart in satellite imagery

processing, Bayesian inference, Markov chain Monte Carlo methods, and machine learning.

In Chapter 3, the data gathering processes are discussed. Results from some exploratory

data analysis are presented.

In Chapter 4, county level models are built to study the correlations between VIIRS and

NDIC, and to explore the heterogeneity among the counties in North Dakota.

In Chapter 5, 
aring time series analytics is presented for the purposes of revealing trends

and patterns at di�erent levels.

In Chapter 6, unsupervised learning is applied on 
aring data to characterize the latent

structures.
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In Chapter 7, a method of operator level monitoring and analytics is introduced, and

some discussions about applying Bayesian learning are given.

In Chapter 8, major conclusions drawn are presented. Recommendations based on this

work are given. A number of future research areas are outlined.

6



CHAPTER 2

LITERATURE REVIEW

In the 1990s, the World Bank started gathering nighttime satellite images, from which

big cities and oil�elds were both bright and needed to be sorted using extra information. The

situation changed in 2012 when infrared data became available from VIIRS (Rassenfoss and

Zborowski 2018). One of the data products, VIIRS Night�re (VNF) specializes in natural

gas 
aring observation and is even able to distinguish between biomass burning and gas


aring (Elvidge et al. 2017).

VNF's development was based upon VIIRS imagery. To improve the performance of


are detection and gas volume estimation, other sources of information, such as L8 imagery,

can be leveraged. Table 2.1 presents a comparison of L8 and VIIRS spatial and temporal

resolutions (NASA 2019; Wikipedia 2019). Figure 2.1 illustrates L8's spatial resolution. In

addition, L8 collects data in11 di�erent spectral bands of the electromagnetic spectrum.

VIIRS has 22 bands. Both L8 and VIIRS are in near-polar orbits of the earth and can reveal

rich features in the landscape. Therefore, L8 should be ableto identify smaller gas 
ares

compared to VIIRS' capability, although its longer satellite revisit time poses a challenge to

identify less persistent 
ares. More details on the processing steps of VNF are discussed in

Section 2.1, the essence of which will be applied to L8.

Table 2.1: Resolutions of Landsat 8 and VIIRS

Resolution Type

Spatial [m] Temporal [d]

Landsat 8 15 to 100y 16:0z

VIIRS 375 to 750y 0:5

y Depends on the band of the electro-
magnetic spectrum

z For daytime mode
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Figure 2.1: Landsat 8's spatial resolution (NASA 2020). Each Landsat pixel (30 by 30 meter
area) is roughly the size of a baseball diamond.

Nowadays, one resource which is more than abundant is data. For a certain discipline or

research �eld, new sources of data bring in new dimensions ofinformation, such as satellite

images are now playing a role in gas 
aring analytics. How to analyze data e�ectively and

intelligently to gain insights is a central problem. In the petroleum engineering domain, for

example, data driven approaches have been proposed to analyze stimulation treatments (Kaza-

kov and Miskimins 2011) and predict screenouts (Yu et al. 2020). Machine learning is a

powerful tool for this purpose. It is at the core of arti�cial intelligence and data science,

and lies at the intersection of statistics and computer science (Jordan and Mitchell 2015).

Frameworks in computational learning theory, such as the PAC learning proposed by Valiant

(1984), help provide a theoretical backbone for some learning algorithms.

One subset of machine learning, deep learning (DL), had its debut in 2006 when Hinton and

Salakhutdinov introduced Deep Belief Networks (DBN), but it did not gain wide acceptance

until 2012 when AlexNet showed the breakthrough performance on classi�cation accuracy

in the ImageNet competition (Krizhevsky et al. 2012). AlexNet is a DL-based model (more
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speci�cally a convolutional neural network) and achieved an error rate of 15:3 %, which

is more than 10 % lower than the runner-up. DL dominated the competition thereafter,

and DL-based models �nally surpassed human performance on the classi�cation data set in

2015 (He et al. 2015).

Although neural network-based models have gained much success in recent years, it should

be noted that no one type of model can always be the best candidate for all problems. This

has been formally shown by Wolpert (1996), and is usually referred to as the \no free lunch"

(NFL) theorem. More recently, Olson et al. (2017) empiricallyassessed 13 classi�cation

algorithms on 165 di�erent problem sets, and the results aligned with the theorem: even the

union of the top �ve best performing algorithms cannot dominate all of the problem sets.

In the following sections, a detailed review is given for theaspects below, which serve as

the foundation and inspiration for this work:

1. Satellite image processing

2. Bayesian inference

3. Markov chain Monte Carlo

4. Machine learning

5. Analytics toolset

2.1 Satellite Image Processing

Satellite images are utilized to estimate 
ared gas volume.The �re detection algorithm

based on Planck curve �tting and physical laws, known as VIIRSNight�re (VNF) due to

Elvidge et al. (2013), serves as a starting point for analyzing L8 images in this research. The

method consists of several major steps:

1. Detection of hot pixels

During nighttime, the sensors mainly record instrument noise which approximately

follows a Gaussian distribution, except for the few pixels that contain an infrared
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emitter such as a gas 
are. Therefore hot pixels can be identi�ed by setting a cuto� on

the tail of the distribution, e.g., those pixels with digital numbers exceeding the mean

plus four standard deviations.

2. Noise �ltering

Hot pixels that are detected in only one spectral band are treated as noise and �ltered

out.

3. Atmospheric correction

Losses in radiance due to scattering and absorption e�ects can be corrected. MOD-

TRAN ® 5 (Berk et al. 2006), parameterized with atmospheric water vapor and tem-

perature pro�les, is used to derive the correction coe�cients for each spectral band.

4. Planck curve �tting

Planck curves are modeled for gas 
ares, which appear as graybodies because they are

sub-pixel sources. Therefore the output of the �tting is an estimate of the temperature

and an emission scaling factor(the emissivity term in the Planck function). The latter

is used subsequently to estimate the source area.

5. Calculation of source area

The source areaS is calculated using

S = "A ; (2.1)

where" is the emission scaling factor andA is the size of the pixel footprint.

6. Calculation of radiant heat

The radiant heat is calculated using the Stefan{Boltzmann law:

RH = �T 4S ; (2.2)
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whereRH is the radiant heat in MW, � is the Stefan{Boltzmann constant,T is the

temperature in K, and S is the source area in m2.

Once RH is obtained, previous work by Elvidge et al. (2015) developed a calibration for

estimating 
ared gas volume, utilizing nation-level 
aring reporting provided by Cedigaz

(2015) and state-level reporting from Texas and North Dakota. The developed calibration

can then be applied to each individual 
aring site worldwidefor estimation of 
ared gas

volume, etc.

2.2 Bayesian Inference

Bayesian inference leverages conditional probability theory to establish a formal procedure

for learning from data (Betancourt 2018). Bayesian models provide full joint probability

distributions p(D; � ) over observable dataD and unobservable model parameters� . The

essence of Bayesian analysis is to obtain the posterior distribution p(� j D ), which characterizes

the conditional probability of parameters� given some dataD. It can be derived through

Bayes' theorem:

p(� j D ) =
p(D j � ) p(� )

p(D)
(2.3a)

=
p(D j � ) p(� )R

p(D j � 0) p(� 0) d� 0
(2.3b)

/ p(D j � ) p(� ) ; (2.3c)

wherep(D j � ) is the likelihood (also referred to as the observation model) which denotes

how likely the data is given a certain set of parameters, andp(� ) is the prior which models

the probability of the parameters before observing any data. The prior encodes domain

expertise. Once some observations are given, it is updated into a posterior which quanti�es

how consistent the model con�gurations are with both the domain knowledge and the observed

data (Betancourt 2018). After the posterior is obtained, most if not all inferential questions

can then be answered with posterior expectation values of certain functions (Betancourt
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2019):

Ep[g(� )] =
Z

g(� ) p(� j D ) d� ; (2.4)

where g(� ) is the function encoding some inferential question (e.g.,where in the model

con�guration space the posterior concentrates).

Predictions can be made in the form of a posterior predictivedistribution:

p(y� j x � ; D) =
Z

p(y� j � ; x � ) p(� j D ) d� ; (2.5)

wherey� is the predictions based on the training setD for a test input x � . Essentially this

is integrating the prediction p(y� j � ; x � ) over the posterior distribution of parameters (Ras-

mussen and Williams 2006). Note that by giving the �nal resultsin terms of a probability

distribution, richer information and more reliable inferences are accessed compared to merely

giving a point estimate through MLE or MAP (as some machine learning models do under

the frequentist framework). This is achieved by incorporating into the inference process the

uncertainty in the posterior parameter estimate. Other bene�ts include posterior predictive

checks, which are conducted by checking for auto-consistency between generated data (y � )

and observed data (y).

2.3 Markov Chain Monte Carlo

Many of the integration problems central to Bayesian statistics, including those in

Equations 2.4 and 2.5, are analytically intractable. A class of sampling algorithms, known as

Markov chain Monte Carlo (MCMC), can be applied to approximate these (Andrieu et al.

2003). Suppose for some function of interestf (x), the objective is to obtain its integral,

with respect to a non-standard target distributionp(x) from which samples cannot be drawn

directly:

I (f ) =
Z

f (x) p(x) dx : (2.6)

By constructing Markov chains that havep(x) as the invariant distribution, MCMC samplers,

while traversing the sample spaceX , are able to generate samplesx(i ) that mimic samples
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drawn directly from the target distribution p(x). In other words, this mechanism makes it

possible to draw a set of samplesf x(i )gN
i =1 from p(x).

Then, by the Monte Carlo principle, the integralI (f ) can be approximated with a sum

I N (f ):

I N (f ) =
1
N

NX

i =1

f (x(i )) a.s.����!
N �! 1

I (f ) =
Z

f (x) p(x) dx : (2.7)

That is, the estimate I N (f ) is unbiased and by the strong law of large numbers, it will

converge almost surely (a.s.) toI (f ). That's why MCMC is a powerful tool in Bayesian

analysis. In practice, the Metropolis-Hastings (MH) algorithm and Gibbs sampling have been

popular MCMC methods (Andrieu et al. 2003), but only when the parameter space is not

too high-dimensional (McElreath 2020).

Due to limited computing resources, it is impossible to run Markov chains in�nitely long.

In other words, inference has to be made based on �nitely manydraws. One approach,

which is e�ectively leveraged in this research, is to run multiple chains in parallel and

monitor various statistics for diagnosing non-convergence. Besides the e�ective sample size

per transition of the Markov chain, the Gelman-Rubin statistic (Gelman and Rubin 1992),

denoted byR̂, is used in this dissertation. TheR̂ statistic quanti�es whether the ensemble

of Markov chains initialized from di�use points in parameter space �nally converge to the

same equilibrium phase (Betancourt 2017b). When̂R is su�ciently close to 1 (for example

R̂ < 1:05), convergence is declared to be achieved. As an example, Figure 2.2 presents how

four chains are started in di�erent corners but approach stationarity and convergence after a

certain number of iterations.

For many of the problems in practice, including the models inthis dissertation, the

parameter space is very high-dimensional and involves highly curving regions. The Metropolis-

Hastings algorithm and Gibbs sampling are far from e�cient in these situations. Hamiltonian

Monte Carlo (HMC), originally proposed by Duane et al. (1987), really outshines the other

algorithms at this point and is the main sampling strategy adopted in this dissertation.
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Figure 2.2: The evolution of four random walk Metropolis Markov chains (Carpenter 2020),
each started in a di�erent location. The target density is a bivariate normal with unit variance
and correlation0:9. After M = 5000 iterations, the four chains have mixed well and explored
most of the target density.

Speci�cally, No-U-Turn Sampler (NUTS) introduced by Ho�man and Gelman (2014), which

is an extension to HMC, is employed for sampling from posterior distributions.

2.4 Machine Learning

Machine learning was de�ned by Mitchell (1997) as computersimproving automatically

through experience. It can also be viewed as a function estimation problem (Vapnik 2000),

or as the process of extracting important patterns and trends from data (Hastie et al. 2009).

In terms of tasks, common types of learning consist of supervised, unsupervised, semi-

supervised, and reinforcement (Burkov 2019). Letx i 2 X � Rd represent input, andyi 2 Y

represent target, then the goals of the �rst two types are:

ˆ Supervised learning aims to use the dataset, consisting ofX = f x i gn
i =1 and y = f yi gn

i =1 ,

to produce a model that is able to predict an output (yj ) given some new/unseen input

(x j ), i.e., learning the underlying mappingf : X ! Y .

ˆ Unsupervised learning is used to �nd the hidden patterns inX ; in this case there does

not exist any labels (y) or prede�ned targets.
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Another variation of learning is online learning, in which case training data is fed to the

algorithm continuously or one example at a time (Abu-Mostafaet al. 2012). In other words,

streaming data is available that the algorithm has to process on the run. This is di�erent

from batch learning, where data is provided beforehand and \frozen" during the learning

process. Online learning can be applied to the di�erent tasks as discussed above (supervised

and others).

In terms of model characteristics, machine learning modelscan be categorized into

parametric and nonparametric models. Parametric models are characterized by a �xed

number of parameters, whereas nonparametric models have anin�nite-dimensional parameter

space. For example, in the latter case the parameter space can be the set of continuous

functions in a regression setting (Orbanz and Teh 2010). In this dissertation, supervised and

unsupervised learning are leveraged while exploiting bothparametric and nonparametric

models.

From Bayesian's perspective, machine learning is essentially computing the posterior (de

Freitas 2013), which is then used for inference and prediction tasks. This is conducted

exactly through Equation 2.3a. In practice, machine learning conducted under Bayesian's

framework follows a principled work
ow (Figure 2.3), which is adapted for the modeling in

this dissertation.

2.5 Analytics Toolset

For the past �ve to ten years, prosperity in contributions and progress in the open

source community has been witnessed. Ecosystems around Python, R, and Julia have been

prototyped, tested, and deployed in production environments in various industries. Powerful

probabilistic programming languages (PPL), for example Stan (Carpenter et al. 2017) and

PyMC3 (Salvatier et al. 2016), have become the workhorse forBayesian machine learning.

The majority of this work is implemented in Python. Speci�cally, Bayesian learning

is performed by leveraging PyMC3. Some analytic visualizations are produced employing

ArviZ (Kumar et al. 2019). Geospatial operations are performed with the help of GeoPan-
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1. Conceptual Analysis

4. Model Development

2. Define Observational Space

3. Construct Summary Statistics

5. Construct Summary Functions

6. Simulate Bayesian Ensemble

7. Prior Checks

8. Configure Algorithm

9. Fit Simulated Ensemble

10. A lgorithmic Calibration

11. Inferential Calibration

12. Fit Observed Data

13. Diagnose Posterior Fit

14. Posterior Retrodictive Checks

15. Celebrate

Pre-M odel
Pre-Data

Post-M odel
Pre-Data

Post-M odel
Post-Data

Figure 2.3: The 
owchart adapted from (Betancourt 2020) shows a principled Bayesian
work
ow.

das (Jordahl et al. 2020). Satellite imagery is processed andanalyzed in MATLAB, with

implementations mainly following Elvidge et al. (2013).

16



CHAPTER 3

DATA PREPROCESSING AND EXPLORATORY DATA ANALYSIS

In this chapter, an overview of the 
aring data is given. Someother variables which might

be correlated with the 
aring statistics are also considered. Exploratory data analysis is

performed for choosing the subset of the variables as the focus in this dissertation. A state

level model is developed in the end which motivates the work in the next two chapters.

3.1 Data Gathering

Four sources of data, L8 satellite images, VIIRS estimated 
ared volumes, NDIC monthly

production reports, and county/oil�eld shape�les for North Dakota were gathered for the

analysis used in this research.

3.1.1 Landsat 8 Images

In total, 167 images (since 2013) were downloaded from Google Cloud using the criteria

below:

ˆ From �ve Path/Row's: 126/216, 126/217, 126/218, 127/216, and 127/217.

According to the Worldwide Reference System (WRS), the satellite imagery of any

portion of the world can be queried using Path and Row numbers. These �ve Path/Row's

cover the majority of the areas in North Dakota that have production and 
aring

activities.

ˆ Nighttime images.

Only nocturnal Landsat 8 imagery are used for the purpose of 
are detection.

ˆ Cloud cover less than 10 %.

Images with low cloud cover percentages reveal more clearlyland features including gas


ares, and thus are ideal for validating the developed methodologies.
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ˆ GeoTIFF Data Product.

Both the georeferencing information and the raw images of all the spectral bands are

preserved through the GeoTIFF format, which are necessary for the analysis.

3.1.2 VIIRS Estimated Volumes

The VIIRS 
are inventory and estimated volume dataset obtained from Mikhail N. Zhizhin

(personal communication) are used in this dissertation. This dataset includes monthly 
are

detection records in North America from March 2012 to December2018 (both inclusive) with

their associated:

ˆ Timestamps giving the speci�c month

ˆ Latitudes and longitudes in WGS 84 coordinates

ˆ Flared volume estimations in bcm

3.1.3 NDIC Monthly Production Reports

All the monthly production reports from May 2015 to April 2020(both inclusive) which

have 
aring information have been downloaded from NDIC. There is one Excel spreadsheet

per month; each row corresponds to a well (that was active in that month), and columns

are for various types of information, including 
ared gas volume (estimated and reported

by operator), oil�eld, oil production, etc. A screenshot ofthe top � 50 rows in one of the

spreadsheets is displayed in Figure 3.1.

3.1.4 NDIC Shape�les

The shape�les for the counties and oil�elds in North Dakota are downloaded from the

NDIC GIS Map Server. All the polygons are described in NAD 27 coordinates. The shape�les

are for reverse geocoding the satellite detection locations to readable addresses, speci�cally

which county and oil�eld is a 
are located in.
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Figure 3.1: A screenshot of the top� 50 rows in the October 2018 production report. Each row corresponds to a well. There are
in total 17;135 rows in this spreadsheet, with the �rst row being the header.
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3.2 Satellite Image Processing

As discussed in Section 3.1.1, all the available L8 images have been downloaded. They

are processed in batch, following the work
ow as outlined inSection 2.1. To compare and

contrast with VIIRS' performance, speci�cally the nighttime combustion source detection

limits, all the 
ares detected from all of the L8 images are gathered and used to generate the

source area versus temperature scattergram shown in Figure 3.2.

Although it is expected that L8 would pick up smaller 
ares than VIIRS (which is

capable of detecting 
ares around the size of a whole cooktoparea), the majority of the

detections as indicated on the scattergram are too small fornatural gas 
aring. To verify

if some hot pixels are clustered together and actually representing a single 
are or 
aring

site, HDBSCAN (Campello et al. 2013) with an implementation dueto McInnes et al.

(2017) is executed on every L8 detection map to �nd out if large blobs of hot pixels are

present. HDBSCAN is a density-based clustering algorithm which keeps all the advantages

of the original DBSCAN (Ester et al. 1996), for example the capacity of �nding clusters of

arbitrary shapes. It also outperforms DBSCAN by being able tobuild clusters of varying

density (Burkov 2019). Further, to get the most accurate results in this case, haversine metric

is chosen to handle the great-circle distances between the hot pixels; leaf clustering is used

instead of the default Excess of Mass method to produce more �ne grained clusters. The

clustering results are illustrated in Figure 3.3.

To verify whether these clusters are really single 
ares or they are actually a large number

of neighboring wells (in which case each hot pixel still represents an individual 
are), they

are tracked down by looking further into each detection map (KMZ �le). It is found that

some large blobs of hot pixels are clustered and indeed represent single (huge) 
ares. One of

the examples is shown in Figure 3.4. This poses a challenge to situations where an accurate

estimate of the 
are count is needed.

The reason for this processing artifact is that, for large 
ares, there is glow surrounding the


are that was treated as many individual combustion sources. There are potential approaches
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(a) VIIRS performance (Elvidge et al. 2019)

(b) L8 performance; �gure provided by Mikhail N. Zhizhin (personal communication)

Figure 3.2: The nighttime combustion source detection limits of VIIRS (top) and L8 (bottom).
For natural gas 
aring whose temperature is generally greater than 1500 K, L8 detected 
ares
show source areas (around10� 2 m2) orders of magnitude less than that of VIIRS (around
1 m2).
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Figure 3.3: A count plot showing the distribution of cluster sizes: clearly there are a certain
number of large clusters (as shown by the tail to the right). For example, there exists2
clusters each of which contains 120 hot pixels and there is one cluster with 84 hot pixels.

(a) Band 6 (SWIR) (b) KMZ view

Figure 3.4: A large 
are consisting of many hot pixels (detections), which is found by running
the night�re algorithm on L8 images. Both the Band 6 (grayscale image) and the KMZ view
are shown and provided by Christopher D. Elvidge (personal communication).

to mitigate this to make the interpretation and estimation out of L8 more accurate. In this

work, the 
ares detected from VIIRS and the gas volumes estimated out of those are the

focus for analytics.
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3.3 Reverse Geocoding

By reverse geocoding, the county information of every VIIRS 
are that is in North Dakota

can be retrieved. For most of the 
ares, the oil�eld information is also retrievable. Thereafter,

the 
aring statistics from VIIRS and NDIC can be compared and contrasted at di�erent

levels, for a certain point or period of time.

Shape�les as discussed in Section 3.1.4 are used. With the help of GeoPandas, the

procedures for extracting counties and oil�elds are the same:

1. Read the VIIRS records into a geospatial data object, with their original coordinates in

WGS 84.

2. Read the shape�le into a geospatial data object, with its original coordinates in NAD

27.

3. Transform all the geometries in the shape�le to WGS 84 coordinates.

4. Perform a spatial join of the two data objects to get the county or oil�eld information

for each 
are, if a speci�c county/oil�eld's polygon and the 
are intersect, i.e., having

any boundary or interior point in common.

3.4 Correlational Analysis

To study the correlations between oil/gas prices, 
aring statistics, and production perfor-

mance, various time series are extracted for May 2015 to December 2018 (both inclusive).

The below list describes all the variables used with their associated labels:

VIIRS 
ared vol monthly 
ared gas volume from VIIRS

NDIC 
ared vol monthly 
ared gas volume from NDIC

WTI oil price WTI crude oil price given by EIA (2020b)

Henry Hub gas price Henry Hub natural gas price given by EIA (2020a)
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NDIC oil prod monthly oil production from NDIC

NDIC gas prod monthly gas production from NDIC

VIIRS 
are count monthly 
are detections count from VIIRS

NDIC 
aring well count monthly wells count which conduct 
ari ng from NDIC

NDIC GOR ratio of the NDIC gas production to the NDIC oil production

First, the monthly observations are extracted from each timeseries, and Spearman's�

is employed to measure the statistical dependence between the variables. Spearman's� is

a rank correlation, which quanti�es the correlation between the rankings of two variables.

Compared to Pearson'sr , it assesses monotonic relationships which can be nonlinear and is

more robust to outliers, therefore is used in this section. The pairwise correlations between

the variables are presented in Figure 3.5. Since a correlation matrix is always symmetric with

unit diagonals, only the lower triangular part without the diagonal is plotted to minimize the

information redundancy.

It can be observed that most pairs show positive correlations. Financial factors (i.e.,

the oil and gas prices) are not among any of the highly correlated pairs (e.g., above0:80).

Nevertheless, it is indicated that the NDIC and VIIRS reportings have a positive correlation,

and oil production is positively correlated with 
ared gas volume.

In this analysis, due to the nature of the procedure (i.e., extract the monthly data and

then measure the rank correlations), all the information onthe time scale is neglected. To

explore the correlations in the context of time series, the �rst di�erences (i.e., lag-1 di�erences)

are taken for each variable

y0
t = yt � yt � 1; (3.1)

and then pairwise Spearman's� is evaluated and visualized in Figure 3.6. In this case, there

aren't many pairs of variables which are highly correlated,except the oil and gas production

are shown to be monotonically related on the lag-1 di�erences, which is unsurprising. In the
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Figure 3.5: A heat map showing the pairwise Spearman correlations between the original
time series' monthly observations. The values are annotated in each cell, the corresponding
variables of which can be obtained by reading o� the tick labels from the vertical and
horizontal axes.

remainder of this dissertation, the focus is put on 
aring and production related statistics

instead of the �nancial factors.

25



Figure 3.6: A heat map showing the pairwise Spearman correlations between the time series
after applying the �rst di�erences. The values are annotated in each cell, the corresponding
variables of which can be obtained by reading o� the tick labels from the vertical and
horizontal axes.

3.5 State Level Flaring Model

In this section, a regression model is built for the purpose of investigating the statistical

relationships between the NDIC and VIIRS reportings. Data from both sources are visualized

in Figure 3.7, which demonstrate a positive correlation.

Assuming a Gaussian observation model for the NDIC reporting with the location

parameter encoding VIIRS' information, the model is speci�ed through Expressions 3.2a{
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Figure 3.7: Visualizations of both the NDIC and VIIRS reportings. Left �gure shows the
time series. Right �gure presents the scatterplot using thedata points of each month.

3.2e:

� � Half-Normal(0:2) (3.2a)

� � Gamma(2; 2) (3.2b)

� � Half-Cauchy(0:1) (3.2c)

� i = � + � � VIIRS i (3.2d)

NDIC i � N (� i ; � ) (3.2e)

where� is the intercept and� is the slope, both of which are constrained to be non-negative

based on the nature of 
aring volume;� is the standard deviation in the Gaussian likelihood

function, which has to be non-negative as well;� i is the expected NDIC reporting of month

i , while NDIC i and VIIRS i are the observed data (i.e., reported volumes) from NDIC and

VIIRS in month i , respectively. The notation used in de�ning this model communicates the

data generating process unambiguously and is adopted throughout this dissertation. Priors

and hyperpriors are on the top while the observation model isat the bottom. The prior

distributions for this model and all the others in this dissertation are chosen following the

principles below:
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1. Prefer weakly informative priors, i.e., choose the priors based on the domain expertise

at hand before observing any data. They should be strong enough to re
ect the domain

expertise and be weak enough to \let the data speak", i.e., let the likelihood dominate

when there is a decent amount of data. For example, a prior of agamma distribution

with mean E� = 2=2 = 1 is placed on� , re
ecting the assumption that the satellite

interpretation work
ow gives the same 
ared volume as the NDIC reporting, before

one observes any data.

2. Prefer priors with soft constraints as opposed to hard constraints, i.e., follow Cromwell's

rule. For example,� , � and � all have prior distributions with support on R> 0 or

R � 0. Counterexamples include using a triangular distributionor a continuous uniform

distribution as the prior for such quantities, for which theauthor does not recommend.

3. Prefer maximum entropy distributions, i.e., make the most conservative assumptions

based on all the information at hand (obeying all the known constraints). For example,

the Gaussian and the binomial distributions are maximum entropy distributions and

used in this dissertation, the fact of which can be formally shown leveraging the

de�nition of Kullback{Leibler (KL) divergence.

Once the priors and likelihood are established, four Markovchains of Hamiltonian Monte

Carlo are run in parallel to sample from the posterior. The parameter estimates are reported

in Table 3.1, and the posterior distributions and trace plots are presented in Figure 3.8. The

four chains are plotted separately with di�erent colors. The x-axis of the trace plot shows the

number of iterations. This layout is used consistently for the remainder of this dissertation.

Table 3.1: Parameter Estimates of State Level Flaring Model

Parameter Variable Point Estimate 90 % Credible Interval

� Intercept 0:061 (0.044, 0.079)
� Slope 0:535 (0.482, 0.590)
� Reporting variability 0:030 (0.024, 0.035)
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Figure 3.8: Posterior distributions (left column) and traceplots (right column) for the state
level 
aring model. Well mixing and convergence of the Markovchains have been achieved as
shown by the trace plots.

Utilizing the model and the trace, posterior predictive samples are generated to construct

the intervals (Figure 3.9). Point estimates and point predictions are easy to obtain for a

certain machine learning model, however it is the properly constructed intervals that will

provide insights into the uncertainty for decision making.The author would like to emphasize

the importance of quantifying uncertainties when using machine learning, no matter for

inference, prediction, or building intermediate models for integration into physics-based

models. This is unfortunately neglected or ignored in some of the applications/publications in

the petroleum engineering domain. The importance of properly quantifying the uncertainties

will also be stressed in the following chapters.

Whenever only one model speci�cation is needed for making point predictions, it can be

recovered by the parameter estimates from Table 3.1:

NDIC i = 0:061 + 0:535� VIIRS i ; (3.3)
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Figure 3.9: Intervals are constructed using posterior predictive samples. In both �gures, the
line shows the \best" �t using point estimates (posterior means) of � and � . Shaded area in
the left �gure presents the90 %credible interval (CI) of the regression mean. Shaded area in
the right �gure demonstrates the90 %prediction interval for the future NDIC reporting, for
which most of the existing observations fall within.

whereNDIC i and VIIRS i are 
ared volumes in bcm of monthi . The model also provides

clear interpretations for the NDIC reporting regression mean, on the whole state level:

1. The intercept indicates on average there is90 %probability that 0:04 bcmto 0:08 bcm

reported volume per month will not be captured by the currentVIIRS processing

work
ow. The posterior mean is 0:061 bcm (� 2150 MMcf).

2. The slope indicates on average when satellite estimated volume increases by one unit,

under 90 %probability the NDIC reporting will increase by 0:48 unit to 0:59 unit. The

posterior mean is 0:535 unit.

This model, while serving as a decent calibration and estimation tool for NDIC reporting

on the state level, makes the assumption that the heterogeneity within the state (e.g., among

di�erent counties) is negligible and all the monthly observations are conditionally independent
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and identically distributed (i.i.d.). For the scenarios inwhich these assumptions do not hold,

other types of models can be built and are discussed in Chapter 4 and Chapter 5.
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CHAPTER 4

COUNTY LEVEL FLARING MODEL

\Multilevel regression deserves to be the default form of regression."

| McElreath (2015)

4.1 Learning the Heterogeneity

In this chapter, the author explores the heterogeneity in correlations between the state-

reported and satellite-detected 
aring statistics, amongdi�erent counties in North Dakota.

The motivations are threefold:

1. Provide more granular insights than merely investigating the whole state's 
aring

statistics.

2. Compare and contrast di�erent counties' reporting consistencies with the baseline (i.e.,

the satellite detections).

3. Develop a dedicated model for each county for calibrationand prediction purposes.

4.2 Hierarchical Model

A common problem in learning from data is modeling individuals or units of a population.

For example, building models for di�erent counties in a state, or for di�erent well pads in

an oil�eld. Usually from domain expertise, it is expected that the units would demonstrate

some di�erences, however they do not necessarily representcompletely independent data

generating processes. In other words, the units are di�erent in some ways, while being similar

in others. Unfortunately, the following two common modelingapproaches are extreme and

not ideal:

1. Complete pooling
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ˆ This ignores heterogeneity and assumes that the observations from all the units are

generated/described by the exact same process. One set of parameters is learned

for the whole population. In this situation, the variance might be smaller, however

the bias could be huge.

2. No pooling

ˆ This lets each unit learn its own set of parameters from its own data. The

assumption is that the information from each unit tells one nothing about any

other unit. In this situation, the bias might be smaller, however the variance could

be huge.

In practice, neither of these approaches will be able to generalize well for insight extraction

or prediction tasks, due to the total generalization error being large. In fact, these two

extremes can be compromised by explicitly modeling the entire population of units. That

is, in order to investigate the correlations among the individual units, an explicit model is

introduced for the population. In the learning phase, the individual posteriors are used to �t

some population distribution, while the information of thepopulation is then fed back to the

individuals. What happens in this case is that the individuals with di�use likelihood functions

(e.g. with less data) are dragged more towards the population distribution, whereas the

individuals which are well informed by their data will have their posteriors mostly unchanged.

In this process, dynamic regularization is achieved, i.e.,the total generalization error is much

smaller by partially pooling the data and balancing betweenthe bias and variance.

In the context of county level model development, the question is now how might one model

the population. To motivate the choice of a particular classof models, some characteristics of

the counties have to be examined. In this work, the counties are considered to be exchangeable,

i.e., the joint probability p(� 1; � 2; : : : ; � n) is invariant to permutation of the indices, where

� i , i = 1; 2; : : : ; n is the parameters for thei -th county. That is, for any permutation � ,

p(� 1; � 2; : : : ; � n ) = p(� � 1 ; � � 2 ; : : : ; � � n ) : (4.1)
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Furthermore, the list of counties can grow, i.e., although one might only look at a few counties

at this point, in the future new counties in terms of 
aring activities might be considered.

If a population being modeled is exchangeable, and the population can grow arbitrarily

large, de Finetti's theorem shows that the only distributionthat respects exchangeability is a

hierarchical distribution:

p(� 1; � 2; : : : ; � n ) =
Z "

nY

i =1

p(� i j � )

#

p(� ) d� ; (4.2)

where� is a population parameter (which can be generalized to multiple population parame-

ters) and p(� ) is a population prior. It asserts an important fact that if exchangeable data is

used for analytics, there must exist a population model (Jordan and Broderick 2010). This

provides guidance for the development of the county level 
aring models in this chapter.

Equivalently, the individual and population parameters can be �tted jointly, achieving a

dynamic pooling of the data:

p(� 1; � 2; : : : ; � n ; � ) =

"
nY

i =1

p(� i j � )

#

p(� ) ; (4.3)

in which process not only the� 's but also � are learned. After adding the observations

component (D = f (x j ; yj ) j j = 1; : : : ; mg) to it, the joint model becomes:

p
� �

yj ; x j ; � county [j ];  j
	 m

j =1
; �

�
=

"
mY

j =1

p(yj j x j ; � county [j ];  j ) p(� county [j ] j � )

#

p(� ) ; (4.4)

where� county [j ] stands for the parameters for thej -th observation based on its county assign-

ment, and  are some other parameters in the likelihood function that are not necessarily

distributed according to a population model. Equation 4.4 characterizes a hierarchical model

that �ts nicely into the Bayesian framework and is exploitedfor building the models in this

chapter.

As a fundamental approach to model heterogeneity, hierarchical models have been de-

pended upon routinely in various �elds including ecological science (Bolker 2008), political

science (Gelman and Hill 2006), and biological science (McElreath 2015). The author believes
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that they should be widely accepted and utilized in the petroleum engineering domain as well,

where the dataset is usually presented in hierarchies. For example, the shale gas wells in a

given basin were completed by di�erent oil�eld service companies. The information can then

be pooled among the service companies. A further discussionis given in Section 7.3. One

caveat, though, is that de Finetti's theorem is based on the assumption that the population

(of units) is exchangeable and can grow arbitrarily large. Just like every other assumption

in machine learning, it should not be taken for granted and does not always hold. In the

context of county level 
aring model development, one mightargue that there are currently

53 counties in North Dakota and there might not be many new counties (as administrative

divisions) in any �nite amount of time. In that regard, the author agrees with the claim of

Box et al. (2009) that, since assumptions \are never exactlytrue", what shall be sought is the

useful models as opposed to thecorrect ones. That is the goal for applying the hierarchical

models in this chapter.

It is worth noting that the terminologies are not consistentwhen referring to these types of

models: some argue that hierarchical model and multilevel model are di�erent names for the

same modeling technique (Bolker 2008; McElreath 2015), while others tried to di�erentiate

them (Carpenter 2019). In this dissertation, the model assumptions are communicated via the

mathematical structures instead of the terminologies, by writing out the full model de�nitions

whenever possible.

4.3 Data Description

After performing the reverse geocoding as outlined in Section 3.3, there are twelve counties

found to have reported 
aring activities from both VIIRS and NDIC. For each county's

historical data from May 2015 to December 2018 (both inclusive), only the months that have

reported volumes from both sources are extracted. A scatterplot for each of the 12 counties

is presented in Figure 4.1, where the county abbreviations follow the convention from the

NDIC monthly production reports. Table 4.1 lists the full county names associated with each

abbreviation.
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Figure 4.1: Scatterplots of NDIC and VIIRS reportings for di�erent counties. Both thex-
and y-axis are shared among all the subplots. Thex-axis is the monthly VIIRS reporting of
the 
ared volume in bcm, and they-axis is for the NDIC reporting in the same unit.

It can be seen that the 
aring magnitudes in terms of the 
aredvolumes are quite diverse

for the di�erent counties. To better visualize all of them, azoomed-in view for each county is

shown in Figure 4.2. It becomes clear that most of the countiesexcept SLP and GV have

more than � 12 data points; however, only the four counties in the top row(i.e., MCK, DUN,

WIL and MTL) have the largest amount of data and indicate stronger positive correlations

between VIIRS and NDIC.

For the purpose of building county level models and investigating the heterogeneity among

the counties, the no pooling option discussed in the previous section will fail. Especially

with counties SLP (which has3 observations) and GV (which has2 observations), if a linear
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Table 4.1: North Dakota County Abbreviations

Abbreviation County

MCK McKenzie County
DUN Dunn County
WIL Williams County
MTL Mountrail County
BOW Bowman County
DIV Divide County
BRK Burke County
MCL McLean County
BIL Billings County
STK Stark County
SLP Slope County
GV Golden Valley County

model such as Equation 3.2d is �tted, the learned slope parameters � county will have point

estimates�̂ slp � 0 and �̂ gv � 0 with their associated samples. The interpretation of the

slope parameter (which was discussed right after Equation 3.3) implies that such inferences

are never possible. Some other counties, even with more datapoints (e.g., MCL), su�er

from the noise levels in their observations. Using their own dataset will frustrate accurate

inferences. Therefore, in order to build models robustly ata county level, the hierarchical

model discussed in the previous section is exploited.

4.4 Model Speci�cation

Motivated by the discussions in Section 4.2, partial pooling is performed by explicitly

modeling the entire population of counties. In this way, thecounties such as MCL can

leverage the information from other counties to learn theirown parameters. Counties with

\strong data" (i.e., very informative data which makes the likelihood dominate the structure

of the posterior), such as those in the top row of Figure 4.2, indicate a positive correlation

between VIIRS and NDIC. Therefore, a similar strategy as in Model 3.2 is adopted for the

counties, i.e., one set of slope and intercept is learned foreach county.
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Figure 4.2: Scatterplots of NDIC and VIIRS reportings for di�erent counties, without sharing
neither x- nor y-axis for all the subplots. Within each subplot, equal scaling and limits are
set for x- and y-axis. The axes' meanings are the same as in Figure 4.1.

Since the slope and intercept are very interpretable, the meanings of which were discussed

right after Equation 3.3, partial pooling is also enabled across parameter types (i.e., intercepts

and slopes). In other words, knowing how much 
ared volume ismissed from VIIRS (i.e.,

the information carried by the intercept) might improve learning how VIIRS and NDIC will

covary (i.e., the information carried by the slope). Speci�cally, a population model with a

multivariate normal density is used for the di�erent counties' parameters.

The hierarchical model is speci�ed through Expressions 4.5a{4.5j:

� � � Half-Normal(0:1) (4.5a)

� � � Gamma(2; 2) (4.5b)
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� � � Half-Normal(0:1) (4.5c)

� � � Half-Normal(0:1) (4.5d)

� � Half-Normal(0:05) (4.5e)

R � LKJcorr(2) (4.5f)

� =

 
� � 0
0 � �

!
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� j = � county [j ] + � county [j ] � VIIRS j (4.5i)

NDIC j � N (� j ; � ) (4.5j)

where:

� � is the average intercept for all the counties;

� � is the average slope for all the counties;

� � is the standard deviation among di�erent counties' intercepts;

� � is the standard deviation among di�erent counties' slopes;

� is the the standard deviation in NDIC reporting within the counties;

R is the correlation matrix distributed according to an LKJ distribution. It is 2-by-2

in size and encodes the correlation between the intercepts and slopes;

� is the covariance matrix for the population model, which is constructed by multi-

plying the correlation matrix from both sides by a diagonal matrix of standard

deviations;

� county and � county are the intercept and slope for each county, whose prior distributions

are de�ned by a two-dimensional Gaussian population model;

county [j ] (in the subscript) denotes the county index, i.e.,county [j ] 2 f k 2 N0 j

k � 11g, such that � county [j ] and � county [j ] are the intercept and slope for thej -th

observation based on its county assignment;

VIIRS j is the VIIRS reported volume of thej -th observation;
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� j denotes the underlying 
ared volume of thej -th observation;

NDIC j is the NDIC reported volume of thej -th observation.

The LKJ distribution due to Lewandowski, Kurowicka, and Joe (2009) is a distribution

over positive-de�nite symmetric matrices with unit diagonals, i.e., correlation matrices. In

the model speci�cation above, it directly in
uences the prior for the covariance matrix.

Before it was introduced and when HMC was not widely applicable, the usual choices for

modeling covariance matrices were Wishart or inverse-Wishart distributions, due to their

nice conjugacy properties. However, LKJ is better suited formodern Bayesian computational

settings (Betancourt 2015; Lambert 2018) and therefore employed in this work.

LKJ has a single parameter� , which can be interpreted as the shape parameter of a

symmetric beta distribution (Gelman et al. 2013). As� gets larger, the prior is more skeptical

of large correlations in the matrix, i.e., providing regularizing e�ects. The probability density

of LKJ with a few � values are displayed in Figure 4.3. In this work,LKJcorr (� = 2) is

chosen to de�ne a weakly informative and regularizing prior.

Figure 4.3: LKJcorr (� = eta ) probability density. As � increases, larger correlations become
less plausible.

Model 4.5, while being expressive in the data generating process, is acenteredparameter-

ization of the hierarchical structure (Papaspiliopoulos et al. 2007). In this parameterization,
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the hierarchical parameters (such as� county ) and the lower-level parameters in the prior (e.g.,

� � and � � ) are tightly coupled, and they are highly correlated in the posterior. Since this

model involves complex geometries and interactions in the posterior, HMC is leveraged

for sampling. When there is not a lot of data (which is the case for the current NDIC

and VIIRS reportings), this parameterization leads to very ine�cient sampling and non-

convergences (Stan Development Team 2020). Thenoncenteredparameterization is preferable

in these cases and therefore employed for building the county level models.

4.5 Model Reparameterization

Reparameterization of hierarchical models can be applied to any distribution in the

location-scale family, for which the normal distribution is a good candidate. In the case of

reparameterizing a multivariate normal prior, suppose theprior for � is a multivariate normal

with mean vector � and covariance matrix� (such as Expression 4.5h), then a noncentered

parameterization is given by:

e� � MVNormal(0n ; I n ) (4.6a)

' = � + L � e� (4.6b)

where e� has the same dimensions as� and all of its elements i.i.d. according toN (0; 1),

L satis�es L � L > = � , and ' recovers the exact same prior distribution for� . This

reparameterization leads to more e�cient sampling by reducing the dependence between

� , L , and e� . One choice forL is the Cholesky factor of� , which provides implementation

convenience for the multivariate normal cases (Stan Development Team 2020) and is adopted

in this work.

The noncentered county level model is speci�ed through Expressions 4.7a{4.7j, with the

reparameterized part (corresponding to Model 4.5) highlighted in blue:

� � � Half-Normal(0:1) (4.7a)

� � � Gamma(2; 2) (4.7b)
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� � � Half-Normal(0:1) (4.7c)

� � � Half-Normal(0:1) (4.7d)

� � Half-Normal(0:05) (4.7e)

L � LKJCholeskyCov
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� j = � county [j ] + � county [j ] � VIIRS j (4.7i)

NDIC j � N (� j ; � ) (4.7j)

where:

L is the Cholesky factor of the covariance matrix which has LKJdistributed correla-

tions;

z� and z� are the standardized intercept and slope for each county.

The rest of the symbols have the same meaning as in Model 4.5. The noncentered model

imposes the exact same probabilistic structure as in Model 4.5, and is implemented for making

inference on each county's parameters.

4.6 Model Fitting

Four chains are sampled from the posterior distributions. The posterior distributions

and trace plots for the slopes and intercepts are presented in Figure 4.4 and Figure 4.5,

respectively. Well mixing and convergence have been achieved as shown by the trace plots.

To better compare and contrast the di�erent counties' parameters, the forest plots of

90 % highest density intervals (HDI) for the slopes and intercepts are given in Figure 4.6

and Figure 4.7, respectively. In both �gures, counties are ordered by the VIIRS reported

volumes, and those with the least amount of estimated volumes(such as SLP and GV) are at

the bottom. The thin lines present the90 %HDI's and the thicker line segments stand for
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Figure 4.4: Posterior distributions and trace plots of the slopes for each county.
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Figure 4.5: Posterior distributions and trace plots of the intercepts for each county.
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the interquartile ranges (IQR). The points represent the posterior means.

Figure 4.6: A forest plot showing the uncertainties around each county's slope estimate. The
counties at the bottom have insu�cient or noisy datasets, therefore their estimates are largely
pulled towards the partially-pooled mean.

Figure 4.7: A forest plot showing the uncertainties around each county's intercept estimate.
The dotted line labels the zero intercept, for which some counties' estimates are not signi�cantly
di�erent from.

In the case of the slopes (Figure 4.6), it can be seen the top four counties are quite

diverse. MTL has the largest point estimate in the entire population ( �̂ mtl > 0:6) while
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DUN has the smallest one (̂� dun < 0:5). Furthermore, the HDI's for DUN and MTL rarely

overlap, indicating that it is almost certain that MTL has a larger slope than DUN. The

counties with fewer observations (remaining eight counties) have greater uncertainties in their

parameter estimates, while all of their point estimates arepulled towards the partially-pooled

mean which is between0:5 and 0:6. When there is not enough data for some counties, the

hierarchical model strives to reinforce information sharing among di�erent counties, thus

providing more sensible results and also quantifying the uncertainties in such processes. From

domain expertise, these results make more physical sense than the no-pooling estimates

discussed in Section 4.3 (i.e.,̂� slp � 0 and �̂ gv � 0).

In the case of the intercepts (Figure 4.7), there is also heterogeneity among the counties.

In particular, by plotting a dotted line labeling the zero intercept, some counties are found to

likely have zero intercept (e.g., zero is covered by the IQR or HDI) while others have intercepts

that are signi�cantly di�erent from zero. It might not be sur prising to get close-to-zero

intercepts and greater uncertainties for those counties with less data (such as SLP and GV),

however it is interesting to obtain the HDI for MTL that coverszero. Recall that the intercept

parameter can be interpreted as the NDIC reported volume which is not captured by VIIRS.

This �nding for MTL, along with the fact that MTL has the large st slope point estimate

(where a larger slope denotes closer proximity to the satellite estimation), convinces the

author that MTL used to have persistent and stronger gas 
ares. They kept VIIRS from

missing the 
aring events in general, and lead to the reported volumes from NDIC and

VIIRS being closer to each other. On the contrary, DUN's smallerslope and larger intercept

characterize its 
ares as sporadic and weaker. One thing worth mentioning is that, with

the current interpretation of the intercept, it does not make much physical sense to have

negative intercepts. Although every county has positive point estimates for their intercepts,

some counties' HDI's show coverage over the negative values.This is a limitation of choosing

a 2D Gaussian population model for the intercepts and slopes. Since the 2D Gaussian is

supported onR2, in the context of some counties having \weak data", negative values make
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an appearance in their HDI's.

The discussions above naturally lead to the question of whether the slopes and intercepts

are correlated. It turns out that, by partially pooling the di�erent types of parameters, a

probable negative correlation between the slopes and intercepts is revealed (Figure 4.8). The

correlation is learned from the heterogeneity in 
are characteristics among the counties:

ˆ Persistent 
ares yield smaller intercepts and larger slopes.

ˆ Sporadic 
ares yield larger intercepts and smaller slopes.

In other words, intercepts and slopes covary in the entire population of counties. By pooling

information across parameter types, what the model learns in the intercept can improve

learning about slopes, and vice versa. With this \experience" or \knowledge", the hierarchical

model will be able to quickly update its expectation for any new counties' parameters even

with just a few observations in the beginning. It should be noted that there is also some

probability mass for the positive correlation values, i.e., the negative correlation is not very

strong. This could be due to that some counties do not have a lot of data at this time. The

posterior will be updated as more data is brought in.

Finally, the parameter estimates are reported in Table 4.2, from which the parametric

model for each county can be recovered, and then deployed in calibration and prediction

usage scenarios.

4.7 Model Extensibility

Looking back at the hierarchical model and the reparameterization strategy from the

previous sections, there are four potential deployment scenarios that are worth discussing.

They demonstrate the extensibility and 
exibility of the chosen approach in the context of


aring data analytics:

1. New counties are present in terms of the reported 
aring statistics from both VIIRS

and NDIC.
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Figure 4.8: Correlation between the intercepts and slopes. Blue: Posterior distribution of
the correlation, the mode of which is below zero. Dashed: Prior distribution, the LKJcorr (2)
density.

At this time, there are 12 counties that have reported 
aring statistics from both VIIRS

and NDIC. If 
aring data becomes available for some other counties in the future, the

hierarchical model allows the population to be immediatelyexpanded to accommodate

the new counties. This can be seen from the conditional structure in Equation 4.3: by

taking a model forn + 1 counties

p(� 1; � 2; : : : ; � n ; � n+1 ; � ) =

"
n+1Y

i =1

p(� i j � )

#

p(� ) ; (4.8)

then pulling out the term for the (n + 1)-th county from the right-hand side (RHS)

p(� 1; � 2; : : : ; � n ; � n+1 ; � ) = p(� n+1 j � )

"
nY

i =1

p(� i j � )

#

p(� ) ; (4.9)

it can be recognized that the remaining part on the RHS is the hierarchical model for

n counties

p(� 1; � 2; : : : ; � n ; � n+1 ; � ) = p(� n+1 j � ) p(� 1; � 2; : : : ; � n ; � ) : (4.10)
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Table 4.2: Parameter Estimates of County Level Flaring Model

Parameter Variable County Point Estimate 90 % CI

� county Intercept

MCK 0:019 (0:015; 0:023)
DUN 0:008 (0:004; 0:013)
WIL 0 :010 (0:007; 0:013)
MTL 0 :002 (� 0:001; 0:006)
BOW 0:015 (0:013; 0:017)
DIV 0:003 (0:001; 0:005)
BRK 0:003 (0:001; 0:004)
MCL 0:000 (� 0:001; 0:002)
BIL 0:001 (� 0:001; 0:003)
STK 0:001 (� 0:003; 0:004)
SLP 0:001 (� 0:005; 0:007)
GV 0:002 (� 0:005; 0:009)

� county Slope

MCK 0:519 (0:493; 0:542)
DUN 0:464 (0:385; 0:547)
WIL 0 :549 (0:495; 0:605)
MTL 0 :623 (0:553; 0:693)
BOW 0:516 (0:370; 0:677)
DIV 0:554 (0:395; 0:719)
BRK 0:556 (0:389; 0:715)
MCL 0:563 (0:391; 0:730)
BIL 0:560 (0:395; 0:727)
STK 0:562 (0:393; 0:729)
SLP 0:561 (0:406; 0:752)
GV 0:560 (0:398; 0:731)

This indicates the newly introduced counties will only depend on the population

parameters� , i.e., how the new counties interact with the existing ones (from the initial

dataset) is not explicitly speci�ed but being mediated through � . This mechanism

allows the population (of counties) to be expanded arbitrarily. In practice, without any

modi�cation, Model 4.7 can be re-�tted with the new dataset as a whole.

2. More data are available for those counties which used to have very few observations.

In the event of more data becoming available for those counties with wide HDI's such

as SLP and GV, the posteriors will be updated according to thatinformation. Their
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HDI's would become narrower and narrower as more and more dataare available, and

since the hierarchical model pools information among the counties, these counties will

contribute to updating the population model's and other counties' parameters. Similar

to Item 1 above, Model 4.7 does not need modifying and can be re-�tted with the new

data.

3. Sample sizes among counties become more unbalanced.

In general, when there is a lot of data for each county, the centered parameterization

(Model 4.5) is more e�cient. When the sample size is not large,which is the case for

the current VIIRS and NDIC reportings, the noncentered parameterization (Model 4.7)

is better. However, the parameterization for hierarchical models is not a monolithic

tactic. If the reported 
aring data becomes very unbalancedacross counties, e.g., some

counties have a huge amount of data whereas others have very little data, then each

county can be parameterized di�erently. More speci�cally,

ˆ For the counties that have strong data such that their likelihood functions dominate,

centered parameterization can be applied through Expressions 4.5f{4.5h.

ˆ For the counties that have weak data such that their prior models dominate,

noncentered parameterization can be applied through Expressions 4.7f{4.7h.

All in all, this is still one hierarchical model which de�nes the exact same probabilistic

structure as Model 4.5 or Model 4.7, but avoids ine�cienciesand non-convergences in

the sampling from posteriors.

4. Oil�eld level heterogeneity needs to be examined.

Under the assumptions that the oil�elds in North Dakota are exchangeable and the

population of oil�elds (which conduct 
aring) can grow, thehierarchical model developed

in this chapter can be directly applied to investigate the heterogeneity in di�erent

oil�elds' parameters. Following the reverse geocoding as discussed in Section 3.3, there
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are 258oil�elds that have both NDIC and VIIRS reportings for the same study period

as in this chapter. Some oil�elds have very few observationsand can bene�t from the

hierarchical model through pooling information among the entire population of oil�elds.

Furthermore, due to the number of oil�elds being relativelylarge, the population

model could be learned with more ease (because more information is available for the

population). In the case of the county level model developedin this chapter, since

there are only12 individuals (counties) in the population, some uncertainties about the

population are inevitably present and re
ected through theposteriors.

The models developed in this chapter, while capturing the heterogeneity among the

di�erent counties in North Dakota, rely on the assumption that all the monthly observations

within a certain county are conditionally i.i.d. For situations where the temporal structure

has to be taken into consideration, other types of models canbe built and are discussed in

the next chapter.
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CHAPTER 5

FLARING TIME SERIES ANALYTICS

\Were neural networks over-hyped, or have we underestimated

the power of smoothing methods?

I think both these propositions are true."

| MacKay (2003)

5.1 Learning the Flaring Pattern and Behavior

In this chapter, the author develops a generic framework forrevealing 
aring patterns

and behaviors. The main challenges are fourfold:

1. Observed data are noisy.

ˆ Companies estimate the 
aring volumes and conduct self-reporting. Satellites

could miss some events. However, having knowledge about the underlying process

is vital in lots of situations including when the state and local governments need

to make key decisions based on the data. In the meantime, understanding the

underlying process helps with anomaly detection by di�erentiating between true

anomalies in reporting and ordinary noise or stochasticity.

2. A probabilistic approach is desirable to be adopted.

ˆ A set of most probable functions (characterizing the underlying process) are

preferable over one single best �t function.

3. The observations of a certain entity are time series.

ˆ The temporal structure is intrinsic to the dataset and thus must be harnessed.

4. The framework should be generic enough for automated insights extraction.
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ˆ There are more than200operators and500oil�elds operating in North Dakota.

Choosing a speci�c parametric form of model (e.g., ARIMA or LSTM) for each

entity and then �tting the model to the data is not only time consuming, but also

prevents easy integration into automation pipelines (for extracting insights for

example).

It is striking that the elegant properties of Gaussian process make it a natural choice to

tackle all of these challenges and is therefore employed in this chapter.

5.2 Gaussian Process

A Gaussian process (GP) can be viewed as a distribution over in�nite-dimensional

Hilbert space of functions. It is formally de�ned as \a collection of random variables, any

�nite number of which have a joint Gaussian distribution" (Rasmussen and Williams 2006).

Gaussian processes are extremely powerful nonparametric learning techniques, which provide

a composite of 
exibility and interpretability. They are well suited to problems which

necessitate principled handling of uncertainty and interpretation, in the presence of noisy

and dynamic datasets. Such scenarios include smoothing (Deisenroth et al. 2012) and time

series modeling (Roberts et al. 2013). They are also well established in di�erent �elds under

various names, for example kriging in geostatistics and Kalman �lters both correspond to

Gaussian processes (MacKay 1998).

In this work, the motivation is to develop a generic framework for recognizing the underly-

ing unknown processesf (x) which re
ect 
aring strategies and behaviors. Thus inference is

conducted directly in the function space employing GP as a prior. A Gaussian process is com-

pletely speci�ed by its mean functionm(x) and covariance functionk(x; x0) (Bandyopadhyay

2018), which are de�ned as:

m(x) = E[f (x)] ; (5.1)

k(x; x0) = E[(f (x) � m(x))( f (x0) � m(x0))] ; (5.2)
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and the function distributed as a Gaussian process is denoted by

f (x) � GP
�
m(x); k(x; x0)

�
: (5.3)

5.2.1 Mean Function

In this work, the mean functions are always chosen to be zero,since there is no prior

knowledge on the mean of the latent processes. In the meantime, for GPs with a zero

mean function, the mean of the posterior process is not con�ned to be zero (Rasmussen and

Williams 2006). All the latent functions modeled with a GP prior in this dissertation follow

f (x) � GP
�
0; k(x; x0)

�
; (5.4)

wherek is some covariance function.

5.2.2 Covariance Function

Covariance function, also known as kernel, is the crucial ingredient in a GP, as it encodes

one's assumptions about how the function should behave by de�ning similarity. The fun-

damental assumption is that data points with inputsx which are close would have similar

target valuesy. This assumption is usually very reasonable in areas including time series

modeling, and it is theoretically backed by Tobler's �rst law of geography. The covariance

functions used in this dissertation include:

1. The Mat�ern class of covariance functions, which is givenby:

k� (r ) =
21� �

�( � )

 
p

2�
r
`

! �

K �

 
p

2�
r
`

!

; (5.5)

where �( �) is the gamma function,K � is a modi�ed Bessel function of the second kind

of order � , r = kx � x0k, and ` is the lengthscale controlling the smoothness from one

perspective: largè characterizes functions which change slowly and can be reliably

extrapolated further away.

The Mat�ern covariance functions can be written as a productof an exponential and a

polynomial of orderp, when� is half-integer: � = p+1=2; p 2 N0. The hyperparameter
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� controls the smoothness from another perspective: when� = 1=2, the Mat�ern kernel

becomes the exponential kernel (continuous but not di�erentiable); as � ! 1 , it

becomes the exponentiated quadratic kernel (in�nitely di�erentiable). Rasmussen and

Williams (2006) argued that the most interesting cases for machine learning would be

� = 3=2 and � = 5=2.

For gas 
aring time series, as operators might change 
aringstrategy at any given time

due to policy changes, gas processing facility deployment,gas price 
uctuation, etc., the

latent process might not be as smooth as in�nitely di�erentiable. Instead the Mat�ern

kernel is harnessed which is capable of inducing non-smoothfunction realizations to

handle those discontinuities. Speci�cally the Mat�ern kernel with � = 5=2 is chosen for

this dissertation with the input spaceX � R1:

kmat �ern52 (x; x0; `) :=

 

1 +

p
5(x � x0)2

`
+

5(x � x0)2

3`2

!

exp

"

�

p
5(x � x0)2

`

#

; (5.6)

wherex vary over the time domain.

2. The standard periodic kernel due to MacKay (1998):

kperiodic (x; x0; T; `) := exp

 

�
sin2(� jx � x0j 1

T )
2`2

!

; (5.7)

whereT denotes the period. This kernel is used for modeling seasonal behaviors.

3. The white noise kernel, which is given by:

kWhiteNoise (x; x0; � ) := � 2I n ; (5.8)

where� 2 is the variance of the noise. In this dissertation, the usageof the white noise

kernel is for stabilizing the computation of the covariancematrix. Adding a small value

of diagonal shift will try to guarantee the resulting covariance matrix is always positive

semi-de�nite.
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A nice property is that the sum and product of the establishedkernels are still valid

kernels. This fact is also exploited in the model building process in this work.

5.2.3 Inference and Model Reparameterization

In practice, one always works with a dataset of �nite size. Insuch situations, a multivariate

normal prior distribution is placed on the vector of function valuesf ,

f � MVNormal(m x ; K xx ) ; (5.9)

where the vectorm x and the matrix K xx are the mean function and covariance function

evaluated over the inputsx.

A key question which has signi�cant impact on the inference is how to learn the hyperpa-

rameters from data. A natural (and popular) approach is to conduct maximum likelihood

estimation, i.e., generating point estimates leveraging the data. However, as Betancourt

(2017a) showed with experiment results, both regularized and unregularized maximum

marginal likelihood have limited performance in terms of �tting robustly and recovering

the true data generating process. Technically, given a particular kernel with particular

hyperparameters, a GP does not support an entire Hilbert space but only a slice through

that space; changing the hyperparameters by an in�nitesimal amount yields a di�erent slice

which has no overlap with the original one. Therefore in thisdissertation, a full Bayesian

approach is taken for the GP inference, i.e., the entire Hilbert space of functions is considered

by taking into account all of the possible hyperparameters for a speci�c kernel.

For the class of problems which have Gaussian observation models, GP has nice closed-form

posterior results. However, for the situations which do not have Gaussian observation models,

for examples the ones in this dissertation which employStudent-t or Poisson likelihood, there

does not exist analytical solutions. HMC as discussed in Section 2.3 is used to sample from

the posteriors.

Speci�cally, the noncentered parameterization of the latent multivariate Gaussian is

exploited. The reparameterized model is
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ef � MVNormal(0n ; I n ) (5.10a)

L = Cholesky(K xx ) (5.10b)

f = m x + L � ef (5.10c)

which de�nes the same distribution as Expression 5.9 but induces a nicer posterior geometry

for HMC to explore and sample from (Betancourt 2017a).

Once the learning on hyperparameters is done, posterior predictive distribution of the

latent function values which are not part of the original dataset is obtained by

f � j f � MVNormal
�

m � + K >
x� K � 1

xx (f � m x ); K �� � K >
x� K � 1

xx K x�

�
; (5.11)

wherem � is the mean function evaluated at the new inputs,K �� is the covariance between

the new inputs, andK x� is the covariance between the original inputs and the new inputs.

5.3 Suite of Models for Pattern Recognition

This section presents models built from various angles, with the goal of providing a

coherent framework for learning the 
aring pattern and behavior in a principled manner.

Each model is tested on real 
aring data from North Dakota. Whenever more granular

analytics capabilities are demonstrated through investigations at oil�eld level or operator

level, the data from a major producing �eld, the Blue Buttes Oil�eld (Alexeyev et al. 2017),

and one operator, denoted by `Operator A' are used.

5.3.1 Modeling Proportion of Gas Flared

The proportion of gas production that is 
ared is an indicator of 
aring intensity and energy

e�ciency. It is interesting to investigate whether the proportion has changed over a period of

time for certain operators and oil�elds. The model is speci�ed through Expressions 5.12a{

5.12i:

` � Gamma(2; 1) (5.12a)

� � Half-Cauchy(5) (5.12b)
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� � Gamma(2; 0:1) (5.12c)

�̂ 2 � Half-Cauchy(5) (5.12d)

k = � 2 � kmat �ern52 (x; x0; `) (5.12e)

f � GP (0; k) (5.12f)

� i = logit � 1�
f (x i )

�
(5.12g)

� i = � i � Gi (5.12h)

Fi � Student-t(�; � i ; 1=�̂ 2) (5.12i)

where:

` is the lengthscale for the Mat�ern kernel;

� is the marginal deviation parameter controlling how strongly the latent functions

vary in the output space;

� is the degrees of freedom for the Student-t likelihood;

�̂ 2 controls the inverse scaling parameter of theStudent-t likelihood (analogous to

the precision of a Gaussian distribution);

k is the covariance function for the GP;

f denotes the latent process, which is distributed accordingto the GP;

� i is the underlying 
aring gas proportion of monthi . Since proportion is bounded

between 0 and 1, the inverse-logit function is applied to thelatent process;

Gi is the total gas production of monthi ;

� i denotes the underlying 
ared volume of monthi ;

Fi is the reported 
ared volume, which is modeled using aStudent-t observation

model.

The reasoning behind choosing aStudent-t observation model is to make the model

speci�cation be able to generalize to as many entities as possible and be robust to (potentially

many) outliers and noisy data points. This is due to the fact that at this time, operators have

to estimate the 
ared volume by their own procedures and conduct reporting, in which case

inaccuracies are introduced unintentionally or intentionally. The heavier tail of Student's
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t-distribution is a natural decision in modeling to deal withthose phenomena. This line

of thought, i.e., design models that are generic and robust,is indeed re
ected in choosing

the half-Cauchy priors (which are heavy-tailed and very weakly informative) and GP as a

nonparametric regression technique.

To demonstrate this model's capability on real data, both the Blue Buttes Oil�eld and

Operator A are tested. The production and 
ared volumes coming from NDIC are used. For

the oil�eld, the posterior distributions and trace plots of the hyperparameters are presented

in Figure 5.1. The posterior predictive samples for the underlying process of gas 
aring

proportions (� i ) are demonstrated in Figure 5.2, which depict the trend very clearly. The

colored bands have the below coverage for the posterior samples:

ˆ The darkest colored band (in the center at a certainx location) represents the 49th

percentile to 51st percentile;

ˆ The lightest colored band (characterized by the widest interval at a certain x location)

represents the 1st percentile to 99th percentile.

Additionally, 30 random samples are drawn from the GP posterior and plotted onthe

same �gure, showing as thin lines. The latent functions do not go through all the observed

data points, in which case the model would have been over�tted; instead they present the

possible functions which are most compatible with the data as well as the assumptions

inherent in the model. On one hand, the insights are already obtained, i.e., the underlying

process is inferred. On the other hand, this serves as an anomaly detection tool. For example,

the state government might be interested to look into that observed data in the second half

of 2019 which deviated quite a lot from the \true" process, e.g. to audit the reporting for

that month or to investigate what had happened that led to a sudden huge drop in 
aring in

just one month.

With the exact same model speci�cation, the model is also run with the operator's data.

The posterior distributions and trace plots of the hyperparameters are presented in Figure 5.3.
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Figure 5.1: Posterior distributions and trace plots for the Blue Buttes Oil�eld gas 
aring
proportion model. Well mixing and convergence have been achieved.

Figure 5.2: Posterior predictive samples showing the gas 
aring proportion variations at the
Blue Buttes Oil�eld. Blue points are the observed data whilered lines present the posterior
samples.
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The posterior predictive samples for the underlying process of gas 
aring proportions (� i ) are

demonstrated in Figure 5.4. It can be seen this operator's 
aring proportion time series is

more jagged than the Blue Buttes Oil�eld (which is operated by more than �ve companies). A

operator can change 
aring strategies more swiftly which can be captured as well. Nevertheless

the long-term trend is also available. Comparing Figure 5.1 and Figure 5.3, it can be seen the

posterior distributions are very di�erent. However the priors for them were speci�ed in the

exact same way. This showcases the power of Bayesian approach. Taking ` as an example,

a Gamma(2; 1) prior is placed on it. However, after conditioning on the data, the operator

model reports smaller lengthscale values on average (indicating jagged processes), whereas

the oil�eld model reports larger lengthscale values (suggesting smoother processes).

Figure 5.3: Posterior distributions and trace plots for the Operator A gas 
aring proportion
model. Well mixing and convergence have been achieved. Notice the di�erences between
these inference results and those in Figure 5.1, both of whichare based on exactly the same
priors and likelihood, demonstrating the model speci�cation's wide applicability.
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Figure 5.4: Posterior predictive samples showing the gas 
aring proportion variations of
Operator A. Blue points are the observed data while red lines present the posterior samples.

Order 24665, which is established by the North Dakota Industrial Commission, de�nes

the gas capture percentagepcap as

pcap =
Gsold + Gused + Gproc

Gprod
; (5.13)

where:

Gsold is the monthly gas sold;

Gused is the monthly gas used on lease;

Gproc is the monthly gas processed;

Gprod is the monthly gas produced.

Since North Dakota bans the venting of natural gas (U.S. Department of Energy 2019b),

it is obvious the model developed in this section provides a powerful tool for NDIC to evaluate

compliance with the gas capture goals: at a given monthi , pcap = 1 � � i . Furthermore, when

looking at the model speci�cation, there is nothing specialthat encodes the data sources and

location information. A user of this model is free to use satellite estimation as the observed

data or apply it to the Permian Basin, and conduct inference on the 
aring proportion. This

is a bene�t from using nonparametric and interpretable models as opposed to black box
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models (such as the neural networks, in which case the learned weights and bias inside the

network provide little or no domain insights). The author hopes this section provides a

comprehensive view in terms of how and why to use GP, with realdata. Models built and

presented in later sections follow a similar 
ow.

5.3.2 Modeling Proportion of Wells Flaring

The proportion of wells that conduct 
aring in a month can re
ect a company's 
aring

strategy and is an indicator of 
aring magnitude. It is interesting to investigate how this

indicator varies for a certain entity in a certain time period. The model is speci�ed through

Expressions 5.14a{5.14f:

` � Gamma(2; 1) (5.14a)

� � Half-Cauchy(5) (5.14b)

k = � 2 � kmat �ern52 (x; x0; `) (5.14c)

f � GP (0; k) (5.14d)

pi = logit � 1�
f (x i )

�
(5.14e)

Wi � Binomial(N i ; pi ) (5.14f)

wherepi is the unobserved \true" proportion of wells that conduct 
aring in month i , N i

is the total number of active wells in monthi , and Wi is the observed (i.e., estimated and

reported by company) number of wells that conduct 
aring in month i . The rest of the

symbols have the same meaning as in Model 5.12.

To demonstrate this model's capability on actual data, boththe Blue Buttes Oil�eld

and Operator A are tested. For the oil�eld, the posterior distributions and trace plots

of the hyperparameters are presented in Figure 5.5. The posterior predictive samples for

the underlying process of well 
aring proportion (pi ) are demonstrated in Figure 5.6. The

visualization strategy (di�erent colors represent di�erent percentiles, etc.) is the same as in

Section 5.3.1.
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Figure 5.5: Posterior distributions and trace plots for the Blue Buttes Oil�eld well 
aring
proportion model. Well mixing and convergence have been achieved.

Figure 5.6: Posterior predictive samples showing the well 
aring proportion variations at the
Blue Buttes Oil�eld. Blue points are the observed data whilered lines present the posterior
samples.

With the exact same model speci�cation, this model is also tested with the operator's data.

The posterior distributions and trace plots of the hyperparameters are presented in Figure 5.7.

The posterior predictive samples for the underlying process of well 
aring proportion (pi )

are demonstrated in Figure 5.8. Comparing the two sets of �gures from the oil�eld and the

operator, it can be seen:
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1. With the same prior placed on the lengthscalè, the oil�eld model learns from the data

and gives a posterior mode around5:5, whereas the operator model gives a posterior

mode around 10:0. This is also re
ected in the posterior samples time seriesplot: the

oil�eld experienced some well 
aring proportion changes in relative shorter time periods,

whereas the operator underwent changes on a longer time span.

2. The oil�eld's posterior samples time series show narrower percentile bands while the

operator's show wider percentile bands. This is due to the fact that the operator chosen

here had smaller number of wells than the oil�eld. Since the binomial observation model

is used for each month's 
aring well count, this naturally represents and quanti�es the

uncertainties (i.e., binary data contains less information especially when the sample

size is small), as well as aligns with the expectation that when there is more data, there

should be less uncertainties; when there is less data, thereshould be more uncertainties.

Figure 5.7: Posterior distributions and trace plots for the Operator A well 
aring proportion
model. Well mixing and convergence have been achieved. Notice the di�erences between
these inference results and those in Figure 5.5, both of whichare based on exactly the same
priors and likelihood, demonstrating the model speci�cation's wide applicability.

This really showcases how and why to encode domain expertisein 
aring data analytics

while exploiting machine learning models, which is also thereason to choose the Bayesian

approach. One could �t a black box model either with target values Wi 2 R, or without

any probabilistic view (e.g., to optimize for the best deterministic function mapping in the
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Figure 5.8: Posterior predictive samples showing the well 
aring proportion variations of
Operator A. Blue points are the observed data while red lines present the posterior samples.

hypothesis space). But either of those would be fundamentally 
awed. Domain expertise

indicates the well count has to be a non-positive integer, i.e., Wi 2 N0. Furthermore, neither

the NDIC reporting nor the satellite estimation is ever produced in a noise-free environment,

and therefore probabilistic modeling is a must. Compared tofrequentist machine learning,

Bayesian learning is entirely probabilistic and gives one the capability and freedom to encode

his/her domain expertise.

5.3.3 Modeling Flare Detection Count

Satellite detected 
are count provides an unbiased indicator of 
aring intensity. How this

indicator varies in a certain time period for a certain entity is valuable information to obtain.

The model is speci�ed through Expressions 5.15a{5.15f. Essentially the latent process is

modeled as a Gaussian Cox process (Adams et al. 2009), where the Poisson process has

varying intensity across time domain and a GP prior is placedon this intensity.

` � Gamma(2; 1) (5.15a)

� � Half-Cauchy(5) (5.15b)

k = � 2 � kmat �ern52 (x; x0; `) (5.15c)
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f � GP (0; k) (5.15d)

� i = exp
�
f (x i )

�
(5.15e)

Ci � Poisson(� i ) (5.15f)

where� i is the unobserved 
aring intensity (\true" count) in month i and Ci is the reported

VIIRS detection count in month i . Since� i is bounded to be positive, the natural exponential

function is applied to the latent process. The rest of the symbols have the same meaning as

in Model 5.12.

For the task of 
aring pattern recognition, the author believes this approach (leveraging

a Gaussian Cox process) is a nicer surrogate than a popular change point model presented

in (Davidson-Pilon 2015; Salvatier et al. 2016; Stan Development Team 2020), which is

speci�ed by:

e � Exponential(re) (5.16a)

l � Exponential(r l ) (5.16b)

s � Uniform(1; T) (5.16c)

Ci � Poisson(i < s ? e : l) (5.16d)

wheree and l are the early and late rates respectively,re and r l controls the priors for the

early and late rates,s is the change point,T is the total time period, and the rate in the

Poisson likelihood is decided through a ternary conditional operator (?:). The reason is

that, although this model could be generalized to more than one change point, its usage

is restricted by the assumption that any period between two adjacent change points has a

constant rate. This limitation becomes obvious when analyzing the actual 
aring data in the

discussions below, and is a major disadvantage of the changepoint model.

The Gaussian Cox process model is tested with the Blue ButtesOil�eld's data. Since

only VIIRS data is used, the whole time series is analyzed beginning in 2012. The posterior

distributions and trace plots of the hyperparameters are presented in Figure 5.9. The

posterior predictive samples for the underlying process of
are count ( Ci ) are demonstrated
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in Figure 5.10. The visualization strategy (di�erent colorsrepresent di�erent percentiles, etc.)

is the same as in Section 5.3.1. From the time series plot, it can be seen the observations

from 2014 to 2017 can possibly be described by a change point model (with late 2015 being a

potential change point), but the steady growth before and after that time span will frustrate

accurate inference with such a model.

Figure 5.9: Posterior distributions and trace plots for the Blue Buttes Oil�eld 
are count
model. Well mixing and convergence have been achieved.

Figure 5.10: Posterior predictive samples showing the 
are count variations at the Blue Buttes
Oil�eld. Blue points are the observed data while red lines present the posterior samples.
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This model's inference results serve as a type of con�rmation, if not evidence, in terms of

whether or not an entity achieves the goal/target in reducing the number of wells 
aring,

when the detection count is used as a surrogate for the numberof wells 
aring. In practice,

reducing the number of wells 
aring is exactly the second goal of the regulatory policy

introduced by the North Dakota Industrial Commission in 2014. If the state government is

interested in this order's e�ectiveness from a macroscopicstandpoint, the model can also be

used to conduct inferences with the state level data. In thiscase, the posterior distributions

and trace plots of the hyperparameters are presented in Figure 5.11. The posterior predictive

samples for the underlying process of 
are count (Ci ) are demonstrated in Figure 5.12.

Figure 5.11: Posterior distributions and trace plots for theNorth Dakota 
are count model.
Well mixing and convergence have been achieved. Notice the di�erences between these
inference results and those in Figure 5.9, both of which are based on exactly the same priors
and likelihood, demonstrating the model speci�cation's wide applicability.

The percentile bands in this case are quite narrow, which indicate greater con�dence

in the inferences about the data generating process given the model assumptions. By not

(over)�tting to each and every observation, interesting patterns are discovered, for example

in every year there is one and only one peak that happened around June. It is worth

pointing out that there is no model that can tell the modeler if his/her assumptions are good,

only domain expertise might. This model employing a Poissonobservation model could be

considered \rigid" due to the fact that a Poisson likelihoodhas only one parameter� (to
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Figure 5.12: Posterior predictive samples showing the 
are count variations in North Dakota.
Blue points are the observed data while red lines present theposterior samples.

control both the mean and variance) and, furthermore, when� is large as in this scenario,

a Poisson distribution is well approximated by a normal distribution. Whenever the state

government believes that overdispersion might exist, other observation models such as the

negative binomial distribution could be considered. In such cases, only Expression 5.15f needs

to be changed to the negative binomial likelihood, with a prior added for the overdispersion

parameter. The speci�c parameterization is given by Equation 6.4 in Section 6.3. This

really showcases both the 
exibility and interpretability of taking a Bayesian approach for

high-stakes decision making areas including 
aring data analytics.

5.3.4 Modeling Proportion of Oil Flared

As crude oil (as opposed to natural gas) is the main commodity at this time, the amount

of gas in a barrel of oil equivalent (BOE) that is 
ared provides an indicator of production

e�ciency due to 
aring. In this work, the normalized quantit y, proportion of oil production

being 
ared, is used such that the model speci�cation is generic for large and small entities.

The model is speci�ed through Expressions 5.17a{5.17j:

` � Gamma(2; 1) (5.17a)
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� � Half-Cauchy(5) (5.17b)

� � Gamma(2; 0:1) (5.17c)

�̂ 2 � Half-Cauchy(5) (5.17d)

k = � 2 � kmat �ern52 (x; x0; `) (5.17e)

f � GP (0; k) (5.17f)

� i = logit � 1�
f (x i )

�
(5.17g)

� i = � i � Oi (5.17h)

c =
6 Mcf
1 BOE

(5.17i)

Fi =c=: E i � Student-t(�; � i ; 1=�̂ 2) (5.17j)

where:

� i is the underlying 
aring BOE proportion of month i ;

Oi is the total oil production of month i ;

� i denotes the \true" 
ared BOE of month i ;

c denotes the conversion factor that6 Mcf equals1 BOE, given by the United States

Geological Survey (2000);

E i is the reported 
ared BOE, which is modeled using aStudent-t observation model.

The rest of the symbols have the same meaning as in Model 5.12.To test this model's

performance on real data, both the Blue Buttes Oil�eld and Operator A are used. For the

oil�eld, the posterior distributions and trace plots of thehyperparameters are presented in

Figure 5.13. The posterior predictive samples for the underlying process ofBOE 
aring

proportion (� i ) are demonstrated in Figure 5.14. The visualization strategy (di�erent colors

represent di�erent percentiles, etc.) is the same as in Section 5.3.1.

With the exact same model speci�cation, this model is also tested with the operator's

data. The posterior distributions and trace plots of the hyperparameters are presented in

Figure 5.15. The posterior predictive samples for the underlying process ofBOE 
aring

proportion (� i ) are demonstrated in Figure 5.16.

Comparing the two sets of �gures from the oil�eld and the operator, it can be observed:
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Figure 5.13: Posterior distributions and trace plots for theBlue Buttes Oil�eld BOE 
aring
proportion model. Well mixing and convergence have been achieved.

Figure 5.14: Posterior predictive samples showing theBOE 
aring proportion variations
at the Blue Buttes Oil�eld. Blue points are the observed datawhile red lines present the
posterior samples.
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Figure 5.15: Posterior distributions and trace plots of theBOE 
aring proportion model
for Operator A. Well mixing and convergence have been achieved. Notice the di�erences
between these inference results and those in Figure 5.13, both of which are based on exactly
the same priors and likelihood, demonstrating the model speci�cation's wide applicability.

1. With the same prior placed on the lengthscalè, which has a mean of2 (months), both

models have updated the posterior to move away from this mean, re
ecting a long

range variation. The oil�eld has a posterior mode about1 year while the operator has

a mode around15 months. The operator has much larger reporting variability, shown

by the parameter ^� 2.

2. With a Student-t likelihood, both models demonstrate robustness to outliers and

over�tting. This can be seen from the oil�eld's late 2019 observations and the operator's

early 2016 observations. For the posterior function samples, shown as the thin lines,

some of them are indeed pulled towards those \outliers". However, the percentile plots
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Figure 5.16: Posterior predictive samples showing theBOE 
aring proportion variations of
Operator A. Blue points are the observed data while red lines present the posterior samples.

(shown as the colored bands) are not impacted and those really can be interpreted as

the trend which is most compatible with the data and the assumptions. This built-in

Occam's razor of the Bayesian approach when choosing appropriate priors is very

impressive. In many of the frequentist machine learning methods, if the regularization

strategy is not implemented well especially when the samplesize is not huge enough

for the asymptotic properties to kick in, outliers become \in
uential observations" that

will have a huge undesirable e�ect on the inference results.

5.3.5 Modeling Scale Factor between VIIRS and NDIC

Both NDIC and VIIRS reporting give (estimated) 
ared gas volume. The scale factor

between the two sources provides insights into whether NDIC reporting is consistent:

1. for di�erent entities (e.g., among a group of operators),and

2. for one entity when looking at a certain time period.

This is based on the fact that the satellite detection processing algorithm is unbiased and

consistent. Item 2 is particularly interesting in terms of time series analytics. The model is

speci�ed through Expressions 5.18a{5.18n:
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`mat � Gamma(8; 2) (5.18a)

� mat � Half-Cauchy(5) (5.18b)

T � N (12; 1) (5.18c)

`per � Gamma(4; 3) (5.18d)

� per � Half-Cauchy(5) (5.18e)

� � Gamma(2; 0:1) (5.18f)

�̂ 2 � Half-Cauchy(5) (5.18g)

kmat = � 2
mat � kmat �ern52 (x; x0; `mat ) (5.18h)

kper = � 2
per � kperiodic (x; x0; T; `per ) (5.18i)

kwn = kWhiteNoise (x; x0; � = 1e� 6) (5.18j)

f � GP (0; kmat + kper + kwn ) (5.18k)

� i = exp
�
f (x i )

�
(5.18l)

� i = � i � VIIRS i (5.18m)

NDIC i � Student-t(�; � i ; 1=�̂ 2) (5.18n)

where:

`mat is the lengthscale for the Mat�ern kernel;

� mat is the marginal deviation for the Mat�ern kernel;

T is the period for the periodic kernel;

`per is the lengthscale for the periodic kernel;

� per is the marginal deviation for the periodic kernel;

kmat is the Mat�ern kernel (component);

kper is the periodic kernel (component);

kwn is the white noise kernel (component);

f denotes the latent process, which is distributed accordingto a GP whose covariance

function is the sum of 3 kernels;

� i is the underlying scale factor between VIIRS and NDIC of monthi . Since this scale

factor is bounded to be positive, the natural exponential function is applied to
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the latent process;

VIIRS i is the VIIRS reported volume of monthi ;

� i denotes the underlying 
ared volume of monthi ;

NDIC i is the NDIC reported volume of monthi , which is modeled using aStudent-t

observation model.

The rest of the symbols have the same meaning as in Model 5.12.The reason for adding

a periodic kernel is to investigate if there are any seasonalpatterns. Maintaining a proper

Bayesian work
ow lets the data speak for itself, i.e., whether there exists seasonal behaviors

or not, as shown by the two case studies in this section.

The model is �rst �tted with the state level data to investigate the macroscopic reporting

consistency. The posterior distributions and trace plots of the hyperparameters are presented

in Figure 5.17. The posterior predictive samples for the underlying process of the scale factor

variations (� i ) are demonstrated in Figure 5.18. The visualization strategy (di�erent colors

represent di�erent percentiles, etc.) is the same as in Section 5.3.1. From the posterior time

series plot, it can be seen in general the volumes from NDIC reporting is smaller than that of

VIIRS reporting, except for the times when the total 
aring magnitude was small (indicated

by the smaller points). More importantly, within each and every year from 2015 to 2018,

there is a decreasing trend in the values of the scale factor (� i ) around midyear. Each year's

latent process from Q2 to Q3 can be viewed as a \seesaw", with July being the middle pivot

point and the months after July always going down. Note that within each year, the NDIC

reporting of 
ared volumes might increase steadily or a lot (which was actually happening

from the time series plot in Figure 3.7), however this scale factor declining trends indicate the

satellites observed much greater 
aring activities than what was reported by the companies!

This �nding suggests that the NDIC reporting is very likely not consistent throughout the

year, and the state government should be concerned that somecompanies might underreport

their 
ared volumes especially in the second half of the year.
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Figure 5.17: Posterior distributions and trace plots for theNorth Dakota VIIRS-NDIC scale
factor model. Well mixing and convergence have been achieved.
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Figure 5.18: Posterior predictive samples showing the scalefactor variations of North Dakota.
Blue points are the observed data while red lines present theposterior samples. Larger points
indicate greater 
aring magnitude as observed from VIIRS.

A interesting question arises: is this seasonal behavior universal across all the entities?

The answer is unfortunately no, which indicates some operators likely reported their 
ared

volume in an inconsistent manner throughout the entire year. In fact, if the Blue Buttes

Oil�eld data is used to �t the model, rather consistent behavior is observed. In this case, the

posterior distributions and trace plots of the hyperparameters are presented in Figure 5.19.

The posterior predictive samples for the underlying process of the scale factor variations (� i )

are demonstrated in Figure 5.20. With the exact same model speci�cation incorporating

the periodic kernel, no apparent seasonal behaviors are discerned by the inference process.

There are much uncertainties around the time of early 2016, where the point sizes indicate

the overall 
aring magnitudes were small as observed from VIIRS, and the NDIC reported

volumes were actually larger than that of VIIRS. This could bedue to the truncation e�ects

instead of the reporting inconsistencies, i.e., when the 
ares are sporadic and weaker, they are

not easily captured by the satellites, resulting in a truncated sample for the VIIRS processing

work
ow. By applying this model and work
ow to the other major producing �elds, it will

likely pick up the ones who have the \seesaw" behaviors in their reporting.
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Figure 5.19: Posterior distributions and trace plots for theBlue Buttes Oil�eld VIIRS-NDIC
scale factor model. Well mixing and convergence have been achieved. Notice the di�erences
between these inference results and those in Figure 5.17, both of which are based on exactly
the same priors and likelihood, demonstrating the model speci�cation's wide applicability.
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Figure 5.20: Posterior predictive samples showing the scalefactor variations in the Blue
Buttes Oil�eld. Blue points are the observed data while red lines present the posterior
samples. Larger points indicate greater 
aring magnitude as observed from VIIRS.

5.3.6 Predicting NDIC Flared Volume

GP is not only fully capable of making predictions once the model hyperparameters are

learned, but it can provide rigorously constructed intervals quantifying uncertainties as well

through Expression 5.11, for which many of the frequentist machine learning methods fail to

do. The author chooses to present one particular predictioncase study, that is to predict

NDIC reported volume based on the projected scale factor between VIIRS and NDIC. This

will be a particular interesting deployment scenario once fast satellite detection/estimation

is available, which takes less time than waiting on company reports followed by compiling

everything into an analytics-ready format.

The predictions are generated in the form of posterior predictive samples. Along with

the historical observations, the predictions of the scale factor for the next six months are

presented in Figure 5.21. The very wide percentile bands in the forecasting indicate that the

seasonal behaviors will likely take e�ect again, however with great uncertainties. If point

predictions (i.e., without the prediction intervals) are needed, one can always use the posterior

mean, mode, etc. to construct that \best" function; howeverthis showcases why predicting
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the future is generally very di�cult and uncertainties should always be properly characterized.

Figure 5.21: Posterior predictive samples showing predictions of the scale factor for the next
six months. Blue points are the observed data while red linespresent the posterior samples.
Larger points indicate greater 
aring magnitude as observed from VIIRS.

5.3.7 A Look Back at the Prior Choices

Looking back at the suite of models developed, the set of priors for the latent functions

have been the same (except the scale factor model where a periodic kernel is added). However

the posteriors are all updated (i.e., \learned") based on each dataset and modeling goal. This

means the below set of priors

` � Gamma(2; 1) (5.19a)

� � Half-Cauchy(5) (5.19b)

k = � 2 � kmat �ern52 (x; x0; `) (5.19c)

f � GP (0; k) (5.19d)

serves as a generic framework and can be recommended for 
aring time series analytics

in general, in a GP context. Notice this prior choice gives latent function values in the

unconstrained space, i.e.,f (x) 2 R. However, in many situations, the domain expertise
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indicates the quantities of interest live in constrained space, such as:

ˆ R> 0 for Poisson rate parameter when modeling count data, and

ˆ [0; 1] for binomial success probability when modeling 
aring well proportion.

To better re
ect the domain expertise, the link functions can be leveraged. For the above

scenarios, the log link function and the logit link functioncan be applied, respectively.

Although this prior con�guration is the result of several design iterations and tested with

real data, there is no reason to think that it is optimal for every entity. Indeed, the model

for scale factor between VIIRS and NDIC has bespoke componentsin its priors. The Stan

Development Team (2020) also gave some general prior choicerecommendations for GP.

The whole suite of models demonstrate full capability of harnessing the temporal structure

in 
aring time series at di�erent levels for di�erent entiti es. This provides huge potential for

extracting insights from noisy monthly data streams. For the situations where cross-sectional

data analytics is desirable, for example when the latest monthly data is available and the

state government needs insights from merely that month (before appending it to the whole

historical data for a longitudinal study), other types of models can be built. Such is discussed

in the next chapter.
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CHAPTER 6

UNSUPERVISED LEARNING FROM MULTIPLE PERSPECTIVES

\Estimation of densities is a universal problem of

statistics (knowing the densities one can solve

various problems)."

| Vapnik (2000)

6.1 Learning the Distribution

In this chapter, the author studies how to describe the 
aring related quantities' distribu-

tion among the oil�elds in North Dakota in a cross-sectional setting. That is, data collected

for one point or a period of time (such as a certain month or quarter) is analyzed. In this

setting, the data used for learning is unlabeled:

U = f x1; x2; : : : ; xN g; (6.1)

wherex i , i = 1; 2; : : : ; N , are the observations for thei -th oil�eld. Thus unsupervised learning

is naturally applied. The model to be learned is in the form ofa conditional probability

distribution P� (x j z) where z is some latent structure and� represents the parameters.

This has many application scenarios in practice. When the latest month's or quarter's

data is available, the government of North Dakota might need distributional insights of

the population (of oil�elds), preferably beyond some formsof the order statistics (such

as the �ve-number summary). This cross-sectional study is especially valuable and worth

conducting when a direct comparison with previous months/quarters (which can be either

the immediately previous one, or the same month/quarter in previous years) is desirable,

or deeper understanding of the population is needed, such aslooking for potential clusters

among the entities.
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6.2 Probability Model Estimation

The task of learning distributions is a probability model estimation problem in unsu-

pervised settings (Li 2019). It sometimes takes the form of density estimation, which is

considered by some statisticians as the most fundamental topic in probabilistic machine

learning (Yu 2017). A basic and common technique, the histogram, can be easily misused

which leads to biased understanding of the dataset (Figure 6.1).

Figure 6.1: E�ective usage of histograms can be surprisinglysubtle. With the exact same
dataset adapted from (VanderPlas et al. 2012), the two histograms with di�erent bin sizes
demonstrate di�erent multimodal features. Accepting some default con�guration from some
software package yields only one view of the distribution.

In general, assuming that the data is generated by a probability model, the structure

and parameters of that model are learned from the data. The type of the structure, i.e.,

the set of possible probability models is usually given (assumed), while the speci�cs of the

structure and the parameters have to be learned. The goal is to �nd the model structure and

the parameters which are most likely to have generated the data.

The probability model can be a mixture model or a graphical model. In this dissertation,

the mixture model is considered, where the assumption is that data comes from a mixture

of distributions. Mathematically, mixture models describe a distribution p(x) by a convex

combination of K base distributions:
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p(x) =
KX

k=1

� kpk(x) (6.2a)

KX

k=1

� k = 1; � k � 0; (6.2b)

wherepk are the components in the mixture and� k are the mixture weights. Mixture models

can be interpreted as the overall population being a combination of distinct subpopulations.

Mixture models can be generalized to the continuous cases aswell. For example, both the

negative binomial distribution and Student'st-distribution can be thought of a mixture of

some continuous distributions (Martin 2018).

In the model representationP� (x j z), x stands for the observations which can be discrete

or continuous quantities;z represents the latent structure which is a discrete random variable.

The model is parameterized by� . When the model is assumed to be a mixture type,z

represents the di�erent components. The knowledge of the model structure and parameters are

learned from the dataU = f x1; x2; : : : ; xN g, where in this workx i 2 X � R1, i = 1; 2; : : : ; N ,

is the observation for thei -th oil�eld.

6.3 Modeling VIIRS Detection Count

In Section 5.3.3, methods are developed for analyzing the time series of VIIRS detection

count for any given oil�eld. This section tackles the problem of how to extract insights from

any given month's 
are detection count in North Dakota's oil�elds. Speci�cally, by learning

from each oil�eld's detection count, the population of the oil�elds is summarized, through

which the state government can gain distributional insights.

Following the general form in Section 6.2, this problem becomes a special case that

the latent structure z does not exist, i.e., satisfyingP� (x j z) = P� (x), where x represents

the detection count. It is when estimating conditional probability distributions becomes

estimating probability distributions, therefore, only estimating the parameters ofP� (x) is

enough. Density estimation in classical statistics, for instance the Gaussian parameters
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estimation, is an example of such scenarios.

Since the count data is modeled, the author compares the fourobservation models below

with many randomly chosen months' data:

1. Poisson likelihood

2. Negative binomial likelihood

3. Zero-in
ated Poisson (ZIP) likelihood

4. Zero-in
ated negative binomial (ZINB) likelihood

Items 3 and 4 above are experimented with because many of the oil�elds in North Dakota

did not have detection records from VIIRS for a given month. Therefore, zero-in
ated models

are tried as well. Through the posterior predictive checks,it is found that the negative

binomial observation model �ts data in the most compatible manner, which is employed in

this work.

The model is speci�ed through Expressions 6.3a{6.3c:

� � Gamma(2; 1) (6.3a)

� � Exponential(1) (6.3b)

Ci � NegBinomial(�; � ) (6.3c)

whereCi denotes the detection count for thei -th oil�eld. The probability mass function of

the negative binomial likelihood is parameterized by a location parameter � 2 R> 0, and an

overdispersion parameter� 2 R> 0, in the following way:

P(X = n j �; � ) =
�( � + n)
n! �( � )

�
�

� + �

� n �
�

� + �

� �

for n 2 N0 ; (6.4)

where �( �) is the gamma function. Through this parameterization, theexpectation and

variance of a random variableX � P are:

E[X ] = � and V [X ] = � +
� 2

�
: (6.5)
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As the negative binomial distribution describes a Poisson random variable whose rate

parameter is gamma distributed, and due to the fact thatPoisson(� ) has variance� , the

learned parameters provide nice interpretations for the state government:

ˆ � indicates a mean intensity from the detection count's perspective, just like the

interpretation of a Poisson's rate parameter. The larger the value of� , the more 
are

detections are present on average at an oil�eld level.

ˆ � indicates the heterogeneity among the oil�elds in North Dakota. Speci�cally, � 2=� is

the additional variance above that of a Poisson with rate� . The smaller the value of� ,

the more oil�elds with extreme detection counts (away from� ) are present.

To demonstrate this model's compatibility with the observations, the data from October

2018 is used. There are 506 oil�elds in total. The distribution of the detection count for all

the oil�elds is illustrated in Figure 6.2.

Figure 6.2: A histogram for the distribution of the oil�eld detection counts from October
2018. There are lots of zeros (more than350) and a few oil�elds have relatively high detection
counts (e.g., greater than or equal to 20).
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After �tting Model 6.3, the posterior distributions and trac e plots of the hyperparameters

are presented in Figure 6.3. The parameter estimation results are reported in Table 6.1.

Figure 6.3: Posterior distributions and trace plots for the oil�eld detection counts distribution,
�tted with the data from October 2018. Well mixing and convergence have been achieved.

Table 6.1: Parameter Estimates of Oil�eld Detection Count Distribution

Parameter Variable Point Estimate 90 % CI

� Intensity 1:005 (0.814, 1.200)
� Heterogeneity 0:168 (0.135, 0.202)

The point estimate for the intensity parameter� is relatively small (�̂ � 1), which possibly

results from the model being overwhelmed by the large numberof zero counts. However,

by inspecting the histogram from Figure 6.2, the tail of the distribution de�nitely extends

far beyond �̂ . Therefore, posterior predictive checks are performed to scrutinize Model 6.3's

compatibility with the observations.

These types of checks substantially harness the information from the samples drawn from

the posterior distributions. By combining the uncertaintyabout the parameters, as described

by the posterior, with the uncertainty about the outcomes, as described by the likelihood, the

generative model is employed to simulate the implied observations. Subsequently, posterior

predictive plots are generated to display the model-based predictions along with the raw data.

Such a plot for the detection count distribution model is given in Figure 6.4.

88



Figure 6.4: Histograms for the distribution of the oil�eld detection counts from October
2018. Blue: original data observed from VIIRS. Gray: posterior predictive simulation
results obtained from Model 6.3. Each set of the simulation results is plotted using gray
with transparency via alpha blending (setting� = 0:15), such that the darker gray on the
histograms indicates the simulated data which is more aligned with the model's expectation.

In Figure 6.4, the histograms for the original VIIRS observations, as well as all of the

posterior predictive simulations are displayed. Each set of the parameter values (of� and � )

are used in simulating one synthetic snapshot of the oil�elds in North Dakota for October

2018, and there are in total12;000 snapshots (constructed by the samples from the four

Markov chains, each of which was setup for3000sampling iterations). Every histogram is

visualized through an un�lled line chart, i.e., rendering the \step" histogram.

Through Figure 6.4, it appears that the model is very compatible with the observations

from October 2018, in that there is no obvious and consistentdiscrepancy between the

observed and simulated data. To delve into the tail behaviors, i.e., beyond the zero count, a

zoomed-in view is depicted in Figure 6.5. A few discrepanciesare observed from this view,

for example, when the countCi = 11 and Ci = 12. One thing to note is that, with such a low

mean (̂� � 1), even with a relatively large overdispersion (̂� � 0:2), the model would still be

surprised by the high detection count, e.g., whenCi � 20.
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Figure 6.5: Histograms for the distribution of the oil�eld detection counts from October
2018, with they-axis clipped to better present those counts which are greater than zero. The
legend with the associated color scheme is the same as in Figure 6.4.

The thorough performance of Model 6.3 that is characterizedby a negative binomial

likelihood, and the complicatedness of the real data manifest themselves through the posterior

predictive checks. As discussed earlier in Section 6.3, the negative binomial likelihood was

compared with three other likelihoods (Poisson, ZIP and ZINB) on many randomly chosen

months, and found to outperform them in terms of the compatibility with the data in general.

In fact, there are some months' data that are distributed in a\cleaner" way, i.e., almost

perfectly described by Model 6.3. The author chooses not to cherry-pick those data, in the

hope of not misleading the readers about the performance of the developed model.

Nevertheless, the simplicity, interpretability, and e�ectiveness of Model 6.3 proves itself in

the mission of modeling detection count distribution. In practice, the state government can

bene�t from this model in the two use cases below:

1. When the latest month's data becomes available, Model 6.3 canbe �tted to obtain an

estimate for � and � . These parameter estimates along with the credible intervals can

be compared with those from the earlier times. In the case of the discussions above, the
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learned parameters can be compared either with August/September from 2018, or with

October from 2016/2017. From the comparison, it provides insights into whether there

are more detection counts on average (characterized by a larger � ), or if more oil�elds

with an atypical number of detections are spotted (characterized by a smaller� ).

2. After the model is �tted, it is recommended to perform the posterior predictive checks

as demonstrated in Figure 6.4 and Figure 6.5, to identify any issues of the �ts. The list

of the oil�elds which have large deviations from the simulated data, especially those on

the far tail (e.g., whenCi � 20), are worth tracking. That is, to investigate whether

the \anomalies" from each month are random samples from the population or do not

change from month to month. This provides further understanding of how the oil�elds

population behave, from the perspective of the detection count.

A distributional summary of the detection counts exhibits only one facet of the 
aring

landscape, while the 
ared volumes distribution provides another crucial one, which is

discussed next.

6.4 Modeling Flared Volume

In this section, the VIIRS estimated 
ared volumes for di�erent oil�elds are studied

from a distributional point of view. The dataset from a three-month period is analyzed

for demonstration purposes. Speci�cally, following the reverse geocoding as discussed in

Section 3.3, all the oil�elds' cumulative 
ared volumes during Q4 2018 are computed and

complied for analysis.

There are in total 152oil�elds that have VIIRS reported volumes in this time span. The

data is highly skewed (Figure 6.6). Therefore, for each oil�eld, the order of magnitude of

the 
ared volume (in bcm) is computed for the analysis, instead of working with the original

absolute volumes.

From an applied perspective, taking the log of a measure converts the measure into

magnitudes (McElreath 2015), which is applied to each oil�eld's 
ared volume:
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Figure 6.6: Histogram for the distribution of the oil�eld 
ared volumes from Q4 2018. Most
of the oil�elds have relatively small 
ared volumes (e.g., less than0:01 bcm), while a few
oil�elds have volumes that are greater than 0:1 bcm.

L i = log( Fi ); (6.6)

whereFi is the original 
ared volume in bcm, and L i is the 
ared volume magnitude, both of

which are for thei -th oil�eld. In this dissertation, base e is always used for the logarithm (i.e.,

natural logarithm). A univariate distribution of the magni tudes is visualized in Figure 6.7.

Among the three approaches used to visualize the distribution, only the rug plot does

not lead to subtleties due to the hyperparameters used. However, as a 1D scatter plot,

its representation ability is naturally limited. The histogram su�ers from the problem as

illustrated in Figure 6.1. The curve is generated by kernel density estimation (KDE). For a

given dataset as de�ned in Equation 6.1, KDE represents the underlying distribution as:

p̂(x) =
1

Nh

NX

i =1

K
� x � x i

h

�
; (6.7)

whereK (�) is a kernel function andh is a bandwidth parameter. To generate Figure 6.7, the

Gaussian kernel is used, which is given by:
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Figure 6.7: Distribution of the oil�eld 
ared volume magnitudes from Q4 2018. The rug
plot marks the value for each oil�eld. The histogram is generated with nine bins. The curve
displays a Gaussian kernel density estimate.

K (z) =
1

p
2�

exp
�

�
z2

2

�
; (6.8)

and h is chosen based on Scott's rule.

Since the bandwidth plays a similar role as the bin size in histograms, KDE can also

lead to the same issue as in histograms. Nevertheless, all three (the rug plot, histogram and

KDE) agree that a single Gaussian approximation of the density which generates this data

would be a poor approximation. Therefore, Gaussian mixturemodel (GMM) is employed

to represent the data, i.e. the base distributions in Model 6.2 are chosen to be Gaussians.

GMM provides more expressive modeling capabilities and also possibilities for clustering.

6.4.1 Model Speci�cation

As discussed earlier, since the 
ared volume is a continuous quantity, density estimation is

applicable and tackled with GMM. At �rst, the data generating process is considered, which

paves the way for potential clustering applications. That is, each data pointL i (de�ned in
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Equation 6.6) is assumed to be generated by exactly one mixture component. The number

of components,K , is unknown, and up to seven components are tried to �t the dataset

visualized in Figure 6.7. A relatively small number of components are experimented, because

as the number of components increases, it becomes more di�cult to interpret the modeling

results. The model is speci�ed through Expressions 6.9a{6.9i, 8K 2 f 2; : : : ; 7g:

� = ( � 1; : : : ; � K ) = 6 � 1K (6.9a)

p � Dirichlet( � ) (6.9b)

zi � Categorical(p) (6.9c)

l1 = min f L1; : : : ; Lng (6.9d)

l2 = maxf L1; : : : ; Lng (6.9e)

e� k = l1 + ( k � 1)
�

l2 � l1
K � 1

�
; k = 1; : : : ; K (6.9f)

� k � N (e� k ; 2); k = 1; : : : ; K (6.9g)

� k � Half-Normal(2); k = 1; : : : ; K (6.9h)

L i j (zi = j ) � N (� j ; � j ) j 2 f 1; : : : ; K g (6.9i)

where:

� is the vector of concentration parameters for the Dirichletdistribution, which is a

multivariate generalization of the beta distribution;

p is the simplex of probabilities for the mixture components,which is assigned

a Dirichlet prior. This prior with each value inside � being 6, is a weakly

informative prior, expecting anypk inside p could be bigger or smaller than

the others. Ten random draws fromDirichlet ([6; 6; 6; 6; 6; 6; 6]) are displayed in

Figure 6.8;

zi is the probable mixture component that thei -th oil�eld belongs to;

l1 and l2 are the lower and upper bound forf L i g
n
i =1 , respectively;

e� k is used in \initializing" the location of the k-th mixture component, andf e� kgK
k=1

essentially represent theK evenly spaced points between [l1; l2];
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� k is the mean for thek-th Gaussian component;

� k is the standard deviation for thek-th Gaussian component;

L i is the 
ared volume magnitude of thei -th oil�eld, which is generated by the

mixture componentzi .

Figure 6.8: Ten random draws from a Dirichlet prior with� = (6 ; 6; 6; 6; 6; 6; 6). One draw is
highlighted to show that this prior is weak, in that it does not force all the probabilities (in
any single draw) to be equal.

Model 6.9, while unambiguously expressing the assumed generative process, relies on

sampling the discrete latent variableszn , which is controlled by a categorical mixing dis-

tribution. This reliance causes slow mixing and ine�ectiveexploration of the posterior

distribution. An equivalent parameterization which addresses these problems is to marginal-

ize out thez parameter. The marginalized model is speci�ed through Expressions 6.10a{6.10h,

8K 2 f 2; : : : ; 7g:

� = ( � 1; : : : ; � K ) = 6 � 1K (6.10a)

w � Dirichlet( � ) (6.10b)

l1 = min f L1; : : : ; Lng (6.10c)

l2 = maxf L1; : : : ; Lng (6.10d)

e� k = l1 + ( k � 1)
�

l2 � l1
K � 1

�
; k = 1; : : : ; K (6.10e)
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� k � N (e� k ; 2); k = 1; : : : ; K (6.10f)

� k � Half-Normal(2); k = 1; : : : ; K (6.10g)

L i �
KX

j =1

wj N (� j ; � j ) (6.10h)

wherew are the mixture weights (i.e., mixing proportions), and therest of the symbols have

the same meaning as in Model 6.9. The likelihood function, de�ned in Expression 6.10h,

corresponds with the density of a mixture model expressed inits general form (Equation 6.2a).

Model 6.10 is implemented and �tted six times (8K 2 f 2; : : : ; 7g) to compare the inference

results with di�erent number of components speci�ed. For each K , rapid mixing and fast

convergence of the Markov chains are obtained. The modelingresults are displayed in

Figure 6.9, where the KDE (same as in Figure 6.7) and the Gaussian components inferred

are plotted along with the posterior samples.

It can be observed that, when using a mixture of Gaussians, the multimodal features

can be represented in a relative e�ortlessly way, and all themean �ts are quite close to

the one obtained with KDE. As the number of components increases, for example when

K = 6 or K = 7, the mean density estimation using GMM resembles KDE moreclosely, but

the samples from the posterior show more stochasticity, which is an indicator of potential

over�tting. This naturally leads to the question of how to decide the number of components

for this dataset.

6.4.2 Model Comparison

Choosing the bestK is a model comparison problem, for which there does not exista

silver bullet. In this dissertation, the author chooses to take the information criteria approach,

speci�cally leveraging the widely applicable informationcriterion (WAIC) introduced by

Watanabe (2010). Information criteria provide a theoretical estimate of the relative out-of-

sample KL divergence (McElreath 2020), and thus a lower value is better. Following Martin

(2018) and McElreath (2020), WAIC is computed by:
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Figure 6.9: GMM inference results with di�erent K 's. The thick blue line denotes the
posterior mean �t of the underlying density. The light blue lines show50 random samples
from the posterior. The dashed lines represent the posterior mean Gaussian components.
The red curve shows the �t using KDE.

WAIC( y; � ) = � 2 � lppd(y; � ) + 2 pwaic (6.11a)

= � 2
nX

i =1

log

 
1
S

SX

j =1

p(yi j � j )

!

+ 2
nX

i =1

V� [logp(yi j � j )] ; (6.11b)

where:

y denotes the observations andyi is the i -th observation;

� is the posterior distribution and � j is the j -th set of sampled parameter values;
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S is the number of posterior samples;

lppd(�) calculates the log pointwise predictive density;

pwaic is the penalty term given by summing up the variance in the log-likelihood over

the S posterior samples, for each observationi .

Fundamentally, model comparison is performed by leveraging Occam's razor, i.e., parsi-

monious models are preferred in light of predictive performance. The models are compared

based on their WAIC values, which are summarized using Figure 6.10.

Figure 6.10: WAIC values with di�erent K 's. The open points denote the WAIC values. The
long horizontal line segments represent the standard errorfor each WAIC. Standard error of
the di�erence in WAIC (between each model and the top-ranked one) is shown by the lighter
line segment with the triangle on it.

It can be seen that the model with two Gaussian components arethe best (smallest

WAIC), however, there are considerable overlaps among all ofthe models when the estimated

standard error is taken into consideration. Considering the fact that K = 2 gives the simplest

model, also that there are only152observations (oil�elds) in this dataset, the GMM with

two components would be the best choice.
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6.4.3 Clustering

When looking at the developed model from a latent variable perspective (Model 6.9), it

becomes obvious that the mixture model serves as a natural candidate for solving clustering

tasks, in that every observation (L i ) can be drawn from one of theK data generating

processes, each with its own set of parameters,N (L i j � k ; � k). Since a probabilistic model

is built, for the purpose of clustering, a reasonable choiceis to assign a data point to the

mixture component (i.e., cluster) with the highest posterior probabilities (which are also

interpreted as the responsibilities). In the case of the 2-component GMM trained from the

previous sections, for a particular observationx, the probability that it belongs to cluster

one (z = 1) can be computed using Bayes' theorem (Equation 2.3a):

p(z = 1 j x) =
p(z = 1) N (x j � 1; � 1)

p(z = 1) N (x j � 1; � 1) + p(z = 2) N (x j � 2; � 2)
; (6.12)

where every part in the formula can be obtained from the posterior samples (e.g., using the

posterior means).

Clustering, as an unsupervised approach, can be used to reveal the hidden groups in

the observations. In the case of the oil�eld 
aring magnitudes data in this chapter, the two

clusters can be directly mapped to concepts such as major andminor 
aring �elds. However,

it is usually the deeper insights into what caused these clusters that the state government

is mostly interested in, for the sake of decision- and policy-making for example. If the

oil�elds belonging to the major 
aring cluster seem to be a volatile membership when more

months/quarters data are analyzed, the variations in 
aredvolumes are possibly tied more

closely to company strategies and movements. On the other hand, if there exists a group of

oil�elds that are found to join the major 
aring cluster on a regular basis, this could provide

a perspective in regards to where to construct the next natural gas processing plants, i.e.,

the locations/capacities of the new gas plants should be optimized based on those oil�elds'

situations.
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In this chapter, the dataset complied for unsupervised learning is univariate, i.e.,x i 2

X � R1. GMM are also suitable for the density estimation and clustering tasks when the

data goes beyond 1D. As an example, for the same oil�elds studied for Q4 2018, if their oil

production volumes are extracted from NDIC, a scatterplot ofgas 
aring versus oil production

magnitudes is shown in Figure 6.11. It is very possible that the density of the underlying

distribution can be modeled by a bivariate normal distribution or a 2D GMM. In such

cases, the mixture components become multivariate normal distributions, and the component

covariance matrices can be constructed with the help of the LKJ distribution (which is

employed in Models 4.5 and 4.7). The developed density modelcan be used, for example,

in anomaly detections, looking for any oil�elds which have atendency to creep toward the

upper left corner (characterized by very little oil production and a huge 
aring magnitude).

Similar to all the inferences presented throughout this dissertation, one advantage of doing

such is that the decision making can be based on some consistent metrics (such as probability

scores), instead of some criteria based on human eyeballingor improvising.

Figure 6.11: A scatterplot of oil production and 
ared gas volumes for di�erent oil�elds
in Q4 2018. Both thex- and y-axis are in log scale, showing the relationship between the
magnitudes.
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This concludes the statistical modeling journey of this dissertation. In the next chapter,

discussions are presented on one extension scenario and onebigger picture viewpoint, from

applying Bayesian learning to 
aring data.
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CHAPTER 7

DISCUSSION

This chapter discusses the possibility of operator level monitoring and analytics, potential

result inconsistencies, and relates the endeavors of learning from 
aring data to the larger

process of applying machine learning in the petroleum engineering domain.

7.1 Operator Level Monitoring and Analytics

Up till this point, the satellite-detected 
aring statistic s have been applied to the state,

county, and oil�eld levels. This is made possible by the reverse geocoding discussed in

Section 3.3. An ideal application scenario is operator levelmonitoring and analytics by

leveraging the information from the satellite detections.

Unfortunately, assigning 
ares to corresponding companiesis not a straightforward

operation. One possible solution is to make use of the shape�les of the leases, which are

not provided by NDIC. Some data vendors have such �les in theirdatabase. However, after

spending some e�ort investigating the lease shape�les fromone vendor, the author believes it

is possible to create more problems than solving the existing ones, when bringing in such

information. In particular, some reasons include:

ˆ Multiple companies exist on a single lease.

ˆ The company names from the lease shape�les do not always correspond with those on

the NDIC monthly production reports.

ˆ Some leases in the vendor's database miss start date or end date data.

ˆ It takes time for the vendor to compile and digitize such information, which makes the

available lease shape�les not up to date.
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Nevertheless, for such an important use case, the author managed to develop a nearest-

neighbor-based approach which partly solves the problem (Algorithm 7.1). The essence of

this approach is to cautiously assign the closest well's operator to each satellite-detected


are. The closest wells are found based on the correspondingtime window. For example, for

the 
ares detected in January 2016, only the active wells reported on the NDIC production

report from the same month are looked up. The functionFindClosestOperator() returns

the closest operator (OPj ) for each VIIRS detection, as well as the calculated distance(dj )

between each pair (of 
are and well). The distance is calculated based on the haversine metric,

i.e., the great-circle distance, thus the Earth radius (RE ) is needed. The function is essentially

performing the k-nearest-neighbors (k-NN) search fork = 1. When the sample is as large as

in this case, i.e., there are usually a few hundred VIIRS detections and more than15;000

wells for each month, linear scanning each well's location for each VIIRS detection is too

slow. Therefore, in this work, the function internally depends on a ball tree implementation

from scikit-learn (Pedregosa et al. 2011) for speedup on thek-NN search.

Once the 2-tuple, (OPj ; dj ), is obtained for each VIIRS detection, some logics are imple-

mented to decide whether to drop or keep the operator assignment. The idea is straightforward:

the assignment is immediately kept or discarded, whendj is very small or very large, respec-

tively. If dj is mid-range, i.e.,dsecure � dj � dcutoff , the assignment will be in e�ect, only if

the 
are and the operator are found to be located on the same township/range/section. The

township/range/section shape�les, as part of the input forAlgorithm 7.1, are available from

the NDIC GIS Map Server. The reverse geocoding follows the exact same procedure as in

Section 3.3. After the processing is completed, a small portion of the VIIRS detections are

not used for operator level analytics, because either they are too far away from the reported

well locations, or the townships/ranges/sections fail to match. It should be noted that, the

pseudocode for Algorithm 7.1 is written in a way that illustrates the precise details in the data

processing logics. For the implementation in this work, some of the for-loops are replaced by

the vectorized operations for enhanced performance.
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Algorithm 7.1: Nearest-Neighbor-Based Flare Owner Assignment
Input: both VIIRS and NDIC reportings in WGS 84 coordinates, the

township/range/section shape�les for North Dakota,dsecure , dcutoff , RE

Output: operators being assigned to most VIIRS detections

1 n  number of months
2 for i  1 to n do
3 VIIRS i  the i -th month's observations from VIIRS
4 NDIC i  the i -th month's reportings from NDIC
5 (OP; d)  FindClosestOperator( VIIRS i , NDIC i , RE )

6 m  number of records in OP ord
7 for j  1 to m do
8 OPj  the closest operator found on thej -th record
9 dj  the distance between the 
are and the closest well, for thej -th record

10 if dj > d cutoff then
11 drop OPj

12 else if dj < d secure then
13 keep OPj

14 else
15 if township/range/section agreethen
16 keep OPj

17 else
18 drop OPj

19 end
20 end
21 end
22 end

The developed approach is tested with real 
aring data from North Dakota. For the

demonstrated cases in this section, the values below are chosen for Algorithm 7.1:

dsecure = 300 m (7.1a)

dcutoff = 800 m (7.1b)

RE = 6371 km (7.1c)

Some operators are found to show positive correlations between the NDIC and VIIRS

reported volumes. Examples of two operators, denoted by Operator B and Operator C, are

shown in Figure 7.1. The axes' meanings are the same as in the right panel of Figure 3.7. The
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legend shows the results of �tting Equation 3.2d by ordinaryleast squares (OLS).R2
adj stands

for the adjustedR2. Although the di�erences in �̂ operator indicate that there is heterogeneity

among the di�erent companies, these operators show some consistency in terms of their own

reporting and have good matches with the VIIRS data up to a scale factor (as the intercepts

are very close to zero).

(a) Operator B (b) Operator C

Figure 7.1: Examples of good �ts between the NDIC and VIIRS reported volumes, at the
operator level.

However, some operators (e.g., Operator D and Operator E) show discrepancies between

their reportings and the satellite-detected 
aring statistics, which are manifested through the

poor �ts (Figure 7.2). Certainly, a poor �t with the linear mod el does not indicate much on

its own. Nonetheless, there exists a pattern in both scatterplots that, some points seem to

be \pushed down" towards thex-axis. If the time series of these two operators are drawn,

it shows that this behavior is due to company-reported volumes leveling o� for a certain

period of time (Figure 7.3). The VIIRS curves in the time seriesimply that there were 
aring

intensity variations for those times. This work
ow, driven by Algorithm 7.1, is capable of

raising a 
ag when it comes across datasets like these, and can serve as a powerful monitoring
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and analytics tool, however, strong cautions need to be applied.

(a) Operator D (b) Operator E

Figure 7.2: Examples of poor �ts between the NDIC and VIIRS reported volumes, at the
operator level.

The introduced approach, although it looks promising, is byno means a one-stop solution

and has the potential for being misapplied. First, there is the possibility of misassigning the

satellite-detected 
ares to the operators. Whenever the concern is raised, further investigations

can be conducted by looking into the detection maps as well asthe satellite imagery of

the operators' production sites. In addition, this method is more e�ective for the relatively

large producing/
aring operators, because when a company conducts very little 
aring, the

truncation e�ects discussed for the peak in Figure 5.20 are magni�ed.

7.2 Warnings Regarding Inconsistencies

Given the resolution of the satellite imagery, assigning speci�c 
aring volumes to a given

operator is fraught with challenges. Although the VIIRS processing work
ow is capable of

picking up 
ares with areas around1 m2 (Figure 3.2(a)), the pixel footprint is much larger

(Table 2.1). Since the latitude and longitude of the pixel center is stored for each individual

VIIRS observation (Elvidge et al. 2015), when multiple operators have sub-pixel combustion
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The company-reported volumes
leveled off at small values.

(a) Operator D

The company-reported volumes 
leveled off at small values.

The company 
reported zero ßaring.

(b) Operator E

Figure 7.3: Time series of the two example operators whose reporting did not quite align
with the VIIRS detected trends/patterns. The points or periods in time for which the
company-reported data were signi�cantly di�erent from thesatellite detections are annotated.

sources, it makes 
are owner assignment extremely challenging. In such situations, conclusions

reached by merely benchmarking company reporting against VIIRS reporting would likely

be inaccurate. In fact, in the realm of NDIC reporting, warnings must be issued regarding

any inconsistencies in those results, with considerationsfrom three aspects. First, the report

from the U.S. Department of Energy (2019a) presents data supporting that North Dakota
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shows closer agreement between the NOAA estimations and statereportings (of 
ared gas

volumes), when compared with Texas and New Mexico. Second, 
aring is preferred over

venting because methane (the main component of natural gas)is more potent than carbon

dioxide which is the main product of 
aring (EIA 2019b). Since North Dakota bans venting,

the massive 
aring magnitude indicates that the direct release of gas into the atmosphere is

minimized. Third, estimation of 
aring volumes is inherently a di�cult task. When it is not

practicable to meter the 
ared gas, the Canadian Associationof Petroleum Producers (2002)

gives guidelines on available volume estimation methods. Every category of methods, no

matter using rules of thumb, or experimentally determined correlations, or process simulators,

has its own limitations and accuracy issues. Considering the fact that the VIIRS volumes

used in this work were largely calibrated using the Cedigaz reported data (Section 2.1), which

has its own error bars (Elvidge et al. 2015), the di�erence between company reporting and

VIIRS reporting is inconclusive and unsurprising, especially when the standard error of the

di�erence is larger than the di�erence itself.

By inspecting a more comprehensive pro�le of time series, both Operator D and Operator E

from the previous section are self-consistent in their reportings to the NDIC. Their time

series are displayed in Figure 7.4 and Figure 7.5, respectively. The variables and associated

labels (shown in the legends) follow the same de�nitions from Section 3.4. The units for

all the variables are given in Table 7.1. Clearly, the reported 
ared volumes show good

correspondence with the gas production and GOR pro�les. Some rapid variations in their


ared volumes match the 
uctuations in the gas prices, i.e.,when the gas price drops, the

operators tend to 
are more, whereas when the gas price reaches peak, there is little 
aring.

In summary, to nail down the decisions and conclusions with regard to operator reporting

quality, better resolution satellite data and a more comprehensive review of the time series

pro�les are required.
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Figure 7.4: A more comprehensive time series plot for Operator D. The increase in the
reported 
ared volume in early 2019 corresponds to the gas price declining in the same period.
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Figure 7.5: A more comprehensive time series plot for Operator E. The sudden drop in the
reported 
ared volume in late 2018 corresponds to the haltedgas production.
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Table 7.1: Units for Operator Time Series in Figures 7.4 and 7.5

Variable Unit

NDIC 
ared vol Mcf
WTI oil price $=bbl
Henry Hub gas price $=MMBtu
NDIC oil prod bbl
NDIC gas prod Mcf
NDIC 
aring well count 1
NDIC GOR Mcf =bbl

7.3 Caveats in Petroleum Data Analytics

As a petroleum engineer, the author is thrilled to witness theoil and gas industry and

academia are embracing data-driven mindsets and solutions, while being part of it through

writing this dissertation. However, there are certainly areas that could be continuously

improved, and this section provides a discussion on one of those. That is, extending a

cautious welcome to some black box models.

The pervasive in
uence of some black box models in the recentyears can be seen by

performing a rough search on OnePetro (Table 7.2). One thingto note is that, from an

algorithmic point of view, these methods are rather \glass boxes" as opposed to \black boxes",

i.e., everything under the hood in terms of implementation is well understood. For example,

backpropagation, which is the core of neural network training, is based on the chain rule.

However, for a given task, the learned parameters inside the network provide little or no

insights for the problem domain. Therefore, it is considered a black box.

The wide adoption of such models is largely due to the availability of the open source

libraries, for example in the Python ecosystem, construction and training of neural networks

become much simpler thanks to TensorFlow and PyTorch, and gradient boosting models can

be built within a few lines of code with the help of XGBoost, LightGBM, or CatBoost. In

other words, with the mathematical details of those statistical routines abstracted away, for

a practitioner, implementing those models is almost as easyas pushing aLearning button on
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Table 7.2: Publication Count Rise on OnePetro

Exact Phrase
Searched

Year Method
Introduced

Publication Count

2010{2014 2015{2019

neural network 1958„ 843 2044
gradient boosting 2001… 1 110
random forest 2001§ 9 245

„ Based on (Rosenblatt 1958)
…Based on (Friedman 2001)
§ Based on (Breiman 2001)

a GUI.

Unfortunately, easiness in the implementation does not imply appropriateness for the

problem. In particular, those black box models face the challenges below:

1. How to incorporate domain expertise.

A lot of the black box models in the frequentist framework make the assumption that

the observations are conditionally i.i.d. The hope is that by feeding a huge number of

i.i.d. samples to a universal approximator, such as a neuralnetwork, some function for

prediction can be optimized with a certain accuracy. For someapplications, the domain

expertise is often encoded in the feature selection process. For example, to train a

model to predict oil production, the analyst might choose some completion parameters

other than the API well number or well name, as input features.

However, in the author's opinion, this way of incorporating domain expertise is still

a shallow one, which is far from what the oil and gas industry have accumulated in

many decades. For example, the phenomena of well interference through fracture hits

leave the assumption of some neighboring wells being i.i.d.in an unfavorable position.

Another example would be, when looking at a populations of wells from one basin

that are completed byN oil�eld service companies, domain expertise might indicate

that, each company deserves its own model while each companyis not completely
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independent from others in terms of the completion technologies, etc. In this situation,

the hierarchical model employed in Chapter 4 might be a better choice, in which case a

lot of the prior knowledge about the di�erent service companies can be incorporated

into the population model.

2. How to interpret the results.

As discussed earlier, the black box models su�er from the interpretability issues. Using

the shale gas wells example from Item 1 above, if a black box model is trained, it is

impossible (at this point) to attribute the failure in capturing the well interference e�ects

to a certain part of the neural network, or to a certain portion of the decision trees (in

the case of gradient boosted trees or random forest). Rudin (2019) asserted that people

should \stop explaining black box machine learning models"and use interpretable

models for high-stakes decisions. In the petroleum industry, there are a number of

high-stakes decision scenarios, such as real-time well integrity anomaly detection and

production forecasting in a high well cost context. Blindlyapplying black box models

to those scenarios might involve serious losses. In terms of providing interpretability,

the Bayesian approach employed throughout this dissertation is much more e�ective.

Each and every assumption is expressed in the generative model through either the

priors or the likelihood.

3. How to quantify the uncertainties, especially in the contextof risk management and

decision making.

Along the lines of Item 2 above, error bars are vital, especially in high-stakes prediction

applications. In the case of predicting oil production using a trained data-driven model,

point prediction results such as1000 bbl=day are not really insightful. In fact, if the

95 %prediction interval (PI) is 1000� 50 bbl=day, that point prediction becomes more

informative. However, if the95 %PI is 1000� 1500 bbl=day, that same point prediction

is unhelpful or misleading. What shall be reported instead iseither the considered
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model yields much uncertainty in this given task, or there ispossibility that the entity

will not produce anything at all.

It should be noted that, the 9̀5' in the CI/PI is not a \magic number". A state govern-

ment or an oil company might want to make decisions based on73 %or 99:6 %con�dence,

or any other arbitrary choices. What really matters is the necessity of a principled

way to quantify the uncertainties in machine learning-based estimations/predictions,

such that any intervals can be computed. As presented throughout this dissertation,

the Bayesian approach provides full capacity and 
exibility is this regard. In fact, for

parameter estimates, the author chooses to give90 %CI instead of the \conventional"

95 %, to emphasize that this should be a domain's consideration rather than a statistical

one.

A lot of the black box models in the frequentist framework, however, fall short of this

requirement. Maximum likelihood estimation (MLE), which is fundamentally relied

upon by some frequentist learning methods, enjoys really nice properties and is capable

of quantifying uncertainties, but only when a massive amount of data is at hand such

that the asymptotic properties could take e�ect. Unfortunately, that is not the case in

many scenarios for the petroleum engineering domain, whichis discussed next.

4. How to mitigate over�tting when the data is not \big".

Two aspects are worth discussing here. For one thing, the bigdata is not everywhere.

Indeed, the author believes that the claim of Gelman (2015) that, \sample sizes are

never large", applies to a lot of problems in the petroleum industry. The reason is that,

if the data were large, the analyst would already be on to the next problem for which

more data is needed. For example, a sample of500 producing wells in the Bakken

Formation could make some general study possible. When the analyst has access to a

dataset of more than15;000wells, some granular insights are desirable. Especially, if

partial pooling is needed among the di�erent service companies/operators, di�erent
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members of the formation, or di�erent completion technologies, data for some units of

the population could be very small (which happens for the analysis in Chapter 4).

On the other hand, the sample size should be inspected in the light of model complexity.

The number of parameters provides one measure of such. For example, consider a

hypothetical classi�cation problem, whose goal is to determine if a given well will deliver

good or average or poor production performance. Ten completion parameters (features)

are available to train the multilayer perceptron illustrated in Figure 7.6.

x1

x2

x10

�A�M�T�m�i �H���v�2�`�,
�i�2�M �+�Q�K�T�H�2�i�B�Q�M

�T���`���K�2�i�2�`�b

h(1)
1

h(1)
2

h(1)
3

h(1)
20

�>�B�/�/�2�M
�H���v�2�` �R

h(2)
1

h(2)
2

h(2)
10

�>�B�/�/�2�M
�H���v�2�` �k

ŷ1
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Figure 7.6: A neural network designed for the hypothetical well performance classi�cation
problem. The input layer has10 neurons for the completion parameters. The �rst and second
hidden layer has20 and 10 neurons, respectively. The output layer has three neurons for
multiclass classi�cation.

In this (small) neural network, the number of parametersnp is given by:

np = 11 � 20 + 21 � 10 + 11 � 3 = 463; (7.2)

when considering a single bias node for every layer except the last one. To train this

model, a dataset of500wells would de�nitely be a small sample. There is still possibility

to train such a model with a small sample, however, great e�orts in regularization

have to be made, in the hope that the neural network will learnsomething that can be

generalized, instead of merely memorizing the observed samples (i.e., over�tting).
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By utilizing the regularizing priors, the Bayesian approach's built-in Occam's razor

greatly mitigate the risk of over�tting. In particular, Bay esian nonparametric models,

such as the Gaussian processes employed in Chapter 5, are very attractive in a sense

that the sizes of models are allowed to grow with the size of data (Orbanz and Teh

2010). This makes the developed model 
exible while being robust to over�tting.

Although the Bayesian learning models (such as the ones developed in this work) have

outstanding merits and deserve wider utilization in petroleum data analytics, they are not

cure-alls. Recently researchers have started to stress thenecessity ofbespokestatistical

models (Andorra 2020; McElreath 2020). The argument is that,o�-the-shelf models, no

matter neural networks or generalized linear models, interrupt the incorporation of domain

expertise. This is especially relevant in the �eld of petroleum engineering. For instance,

when conducting data-driven analysis for hydraulic fracturing performance, it makes sense

to bring in the fracture propagation models to the machine learning work
ow. That way,

statistical models are motivated by the physically informed models. The Bayesian framework,

as employed throughout this dissertation, readily embraces this strategy, in that the domain

knowledge, which is represented by di�erential equations for example, can be inserted into

the generative model. One advantage is that a lot of the parameters will have direct scienti�c

meanings, and more informative priors can be placed based onscienti�c constraints, �eld

experience, etc. The �nal outcome should be better inferences and predictions.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

In this dissertation, the e�ectiveness of a full Bayesian approach has been observed in

learning models from natural gas 
aring data. The author hopes this work contributes to the

understanding of the options and considerations when applying data-driven approaches to

gas 
aring. In closing, this chapter presents the major conclusions and recommendations for

future work.

8.1 Conclusions

The major conclusions are:

1. Bayesian learning implemented using Hamiltonian Monte Carlo can be e�ectively

applied to real problems in gas 
aring analytics, in both supervised and unsupervised

settings. The advantages of the Bayesian approach indicateit deserves wider usage in

the petroleum engineering domain in general; these advantages are listed below:

(a) Petrotechnical domain expertise can be incorporated ina principled way.

(b) Model interpretability is drastically improved, facilitating communications with

petroleum engineers.

(c) Quanti�cation of uncertainty leads to more robust decisionmaking, which is

important for oil exploration and production companies.

(d) The built-in Occam's razor makes the model less prone to over�tting, in the

context of noisy �eld measurements.

2. The development of a suite of models (Table 8.1), with both parametric and nonpara-

metric techniques, provides guidance on how insights can beextracted from various
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angles. The presented models are designed and tested to be able to generalize to

di�erent entities at various levels.

3. To investigate the heterogeneity among the di�erent entities (such as counties or

oil�elds), partial pooling is recommended, because some entities have very little data.

4. Gaussian processes demonstrate very attractive traits in revealing the patterns and

trends from 
aring time series. A set of priors with the Mat�ern 5=2 kernel works very

well across di�erent modeling goals, observation models, and data sources.

5. From a distributional point of view, the negative binomial and Gaussian mixture models

are good representations of the oil�eld 
are counts and 
ared volumes, respectively.

The learned parameters and structures are very interpretable. Hidden clusters are found

by �tting Gaussian mixture models.

6. A nearest-neighbor-based approach for operator level monitoring and analytics is

introduced. Its performance is tested on real data and defendable results are obtained.

However, better resolution satellite data is needed for the scenario of multiple operators'

wells being very close to each other.

7. All the dissertation objectives (Section 1.2) have been achieved. In particular, the 
ared

volumes missed from VIIRS for the state and each county are estimated via �tting the

intercept parameter and reported in Table 3.1 and Table 4.2.The nighttime combustion

source detection limits of Landsat 8, without being corrected for artifacts due to

glow, are determined and reported in Figure 3.2(b). Correlations between �nancial

factors, production performance, and 
ared volumes at a state level are computed using

Spearman's� and reported in Figure 3.5 and Figure 3.6 for the original data and lag-1

di�erences, respectively. Most pairs of the variables do not show strong correlations on

the lag-1 di�erences. Robust Gaussian process modeling serves as a generic framework

for addressing the rest of the objectives, including demonstrating operator approaches,
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evaluating if the goals of the North Dakota regulatory policy(Order 24665) have been

achieved, and predicting NDIC 
ared volumes.

Table 8.1: Models Developed in this Dissertation

Numbering Target of Modeling Page

Model 3.2 Associations between VIIRS and NDIC at a state level 27
Model 4.5 Associations between VIIRS and NDIC at a county level (centered) 38
Model 4.7 Associations between VIIRS and NDIC at a county level (noncentered) 41
Model 5.12 Proportion of gas production being 
ared as time series 57
Model 5.14 Proportion of wells that conduct 
aring as time series 63
Model 5.15 VIIRS detection count as time series 66
Model 5.17 Proportion of oil being 
ared as time series 70
Model 5.18 Scale factor between VIIRS and NDIC as time series 74
Model 6.3 VIIRS detection count distribution for oil�elds 86
Model 6.9 VIIRS volume distribution for oil�elds (latent discrete parameterization) 94
Model 6.10 VIIRS volume distribution for oil�elds (marginalized) 95

8.2 Future Work

A number of areas for future research include:

1. L8 processing work
ow.

The studies of Section 3.2 indicate that the inclusion of L8 information (using the

existing VIIRS work
ow) faces the challenges of the processing artifacts due to glow. It

would be interesting to tailor the processing algorithm forL8, which opens the door for

data fusion of VIIRS and L8, providing much better resolutioninterpretations.

2. Fast detection of 
ares on a monthly basis.

The development of a rapid 
are detection and volume estimation method (based on

satellite imagery) will lead to continuous monthly data streams. Since NDIC needs

about two months' turnaround time to compile and digitize the company reports, many

of the machine learning work
ows proposed in this dissertation will be able to provide

predictive insights with rapid detection data.
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3. Hierarchical Gaussian processes.

The models in Chapter 5 are learned from each entity's own data. It would be interesting

to see how far the scheme of partial pooling (Chapter 4) can betaken. Can pooling

across di�erent entities via hierarchical Gaussian processes improve the inferences?

4. Spatial-temporal analysis.

One step further from Item 3 above, the e�cacy of spatial-temporal models (which

allow for pooling information across time and space) are worth investigating. Are

neighboring entities exhibiting close resemblance in 
aring behaviors?

5. Unify everything under Bayesian nonparametrics.

The model comparison for GMMs in Chapter 6 depends on specifying the potential

numbers of clusters a priori. In fact, Dirichlet process, asan in�nite-dimensional gener-

alization of the Dirichlet distribution, is nonparametric and allows for automatically

choosing the number of necessary clusters. Considering thee�ectiveness of GP (Chap-

ter 5), it would be interesting to see how far the nonparametric models can be taken in


aring data analytics. Can all of the gas 
aring analytics problems be addressed in an

uni�ed framework of Bayesian nonparametrics?
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