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ABSTRACT

Currently in the petroleum industry, operators often are the produced gas instead of
commodifying it. The aring magnitudes are large in some stas, which constitute problems
with energy waste and CQ emissions. In North Dakota, operators are required to estirtea
and report the volume ared. The questions are, how good is ¢hquality of this reporting,
and what insights can be drawn from it?

Apart from the company-reported statistics, which are avadble from the North Dakota
Industrial Commission (NDIC), ared volumes can be estimate via satellite remote sensing,
serving as an unbiased benchmark. Since interpretation dfd Landsat 8 imagery is hindered
by artifacts due to glow, the estimated volumes based on the &/ble Infrared Imaging
Radiometer Suite (VIIRS) are used. Reverse geocoding is mermed for comparing and
contrasting the NDIC and VIIRS data at di erent levels, such ascounty and oil eld.

With all the data gathered and preprocessed, Bayesian leangi implemented by Markov
chain Monte Carlo methods is performed to address three piems: county level model
development, aring time series analytics, and distributbn estimation. First, there is
heterogeneity among the di erent counties, in the associans between the NDIC and VIIRS
volumes. In light of such, models are developed for each ctuhy exploiting hierarchical
models. Second, the aring time series, albeit noisy, contes information regarding trends
and patterns, which provide some insights into operator appaches. Gaussian processes are
found to be e ective in many di erent pattern recognition senarios. Third, distributional
insights are obtained through unsupervised learning. Theegative binomial and Gaussian
mixture models are found to e ectively describe the oil eldare count and ared volume
distributions, respectively. Finally, a nearest-neighbebased approach for operator level

monitoring and analytics is introduced.
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CHAPTER 1
INTRODUCTION

Currently in the petroleum industry, for wells which produ@ both crude oil and natural

gas, operators often choose to are the produced gas insteaficommodifying it. The

rationales behind such decisions are multifold. Variatianin natural gas price can be an

important factor, especially when the processing and trapsrtation cost is higher than

the value of gas (Srivastava et al. 2019). The amount of gasibg ared each year on a

national level is huge, and an increasing trend can be obsedvfor the top aring countries

(Figure 1.1).
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Figure 1.1: Top 30 countries ranked by ared gas volume in 2018 nited States ranks No. 4
and has a large increase from 2017 to 2018 (World Bank 2019).

Due to the boom of unconventional resources (e.g., shale gaservoirs) development

in the recent decade, the United States has been among the togring countries in terms



of total volume ared. This is backed by the data from the U.S. Errgy Information
Administration (EIA) (2019) showing North Dakota, which is underlain by the Bakken
Formation, and Texas, which houses the Permian Basin and theagle Ford Shale, are the
top two aring states since 2013. The two states' annual amg volume time series are
shown in Figure 1.2. Some aring sites can be clearly identiekefrom Google Earth's imagery

(Figure 1.3).

Figure 1.2: The time series show the trend of gas aring for theop two states in the United
States (EIA 2019a). Texas regained the lead in 2015.

Natural gas aring constitutes a problem of energy waste and @, emissions. In recent
years, various organizations and government agencies hagocated reducing or eliminating
routine gas aring. For example, the North Dakota Industrial Commission (NDIC) introduced
a gas aring regulatory policy (Order 24665) in 2014, with gals of reducing aring in di erent
aspects (e.g., volume of gas ared). The World Bank launchetie \Zero Routine Flaring
by 2030" initiative in 2015. To monitor and benchmark aring activity's magnitude, a
precise and accurate method to obtain quantitative aring ifiormation is desirable. However,

in certain situations, this information is only available tirough self-reporting mechanisms.



Figure 1.3: This Google Earth imagery shows gas aring beingrducted on a well location
in North Dakota (Google Earth 2019).

Inaccuracies might be introduced either intentionally or nintentionally.

Satellite remote sensing is one unbiased approach for sotyithis problem. It can help
detect active ares especially during nighttime and can besed to calibrate the estimation
for ared gas volume. For this work, two di erent types of seisors are considered, including
the Landsat 8 (L8)'s Operational Land Imager (OLI) and Thernal Infrared Sensor (TIRS),
as well as the Visible Infrared Imaging Radiometer Suite (VIIR) that is on the Suomi
National Polar-orbiting Partnership (NPP) and NOAA-20 satellites. In the remainder of this
dissertation, they are referred to as L8 and VIIRS, respecely. An example of detecting

aring with VIIRS low light imaging data is shown in Figure 1.4.
1.1 Research Goal

This research is undertaken to achieve the following goals:

A

Evaluate the methodology for estimating ared gas volume leraging satellite imagery;

and,



Figure 1.4: Part of the original poster (Earth Observation Goup at Payne Institute 2019)
which uses one year accumulation of VIIRS low light imaging ¢t to showcase human
activities, e.g., gas aring, shing, and city lights. As amotated, North Dakota's aring
activities are very visible from space at night.

~ Find insights into operators' gas aring behavior.
1.2 Dissertation Objectives
To achieve the goals outlined in Section 1.1, more speci c j@atives are listed below:
1. Compare and contrast the aring data from VIIRS and NDIC.
" Compare the VIIRS ared volumes to the NDIC, using the NDIC as a bechmark.

2. Evaluate the e ectiveness of using Landsat 8 nighttime imags to improve are detection

and volume estimation.

" Determine the detection limits of Landsat 8 and compare it \h VIIRS' capabili-

ties.

3. Investigate operator approaches for gas aring.



A

Determine the correlation between gas price / oil price / oiproduction and ared

gas volume.
" Evaluate if the North Dakota regulatory policy (Order 24665)achieved its goals.

" Develop a model that can predict ared gas volume at a state Vel.

4. Find any hidden structure/clusters from all the producingentities.
1.3 Outline and Contributions

The main contribution of this dissertation is demonstratig that Bayesian learning
implemented by Markov chain Monte Carlo methods is very e d@tve in aring data analytics.
A series of parametric and nonparametric machine learningadels are developed for various
analytics goals and granularities, providing direct guidace for future modeling endeavors.
To demonstrate the e ectiveness and robustness, they arel &tsted with real data. The
superiority of this approach is based on the fact that the ifrence stage is entirely probabilistic,
in that the parametric uncertainties arising from probablemodels as well as the stochastic
uncertainties arising from noisy observations are all preply characterized and quanti ed. It
makes the extracted insights robust and interpretable foretision- and policy-making by, for
example, a state government.

In Chapter 2, a literature review is given for the state of theart in satellite imagery
processing, Bayesian inference, Markov chain Monte Carlo theds, and machine learning.

In Chapter 3, the data gathering processes are discussed.s&es from some exploratory
data analysis are presented.

In Chapter 4, county level models are built to study the cordations between VIIRS and
NDIC, and to explore the heterogeneity among the counties in K Dakota.

In Chapter 5, aring time series analytics is presented forhte purposes of revealing trends
and patterns at di erent levels.

In Chapter 6, unsupervised learning is applied on aring dat to characterize the latent

structures.



In Chapter 7, a method of operator level monitoring and anatics is introduced, and
some discussions about applying Bayesian learning are give
In Chapter 8, major conclusions drawn are presented. Recorandations based on this

work are given. A number of future research areas are outlohe



CHAPTER 2
LITERATURE REVIEW

In the 1990s, the World Bank started gathering nighttime satllite images, from which
big cities and oil elds were both bright and needed to be scgtl using extra information. The
situation changed in 2012 when infrared data became availadrom VIIRS (Rassenfoss and
Zborowski 2018). One of the data products, VIIRS Night re (VNF) sgcializes in natural
gas aring observation and is even able to distinguish betwa biomass burning and gas
aring (Elvidge et al. 2017).

VNF's development was based upon VIIRS imagery. To improve the germance of
are detection and gas volume estimation, other sources afformation, such as L8 imagery,
can be leveraged. Table 2.1 presents a comparison of L8 andR8 spatial and temporal
resolutions (NASA 2019; Wikipedia 2019). Figure 2.1 illustrageL8's spatial resolution. In
addition, L8 collects data in11 di erent spectral bands of the electromagnetic spectrum.
VIIRS has 22 bands. Both L8 and VIIRS are in near-polar orbits of the earth ad can reveal
rich features in the landscape. Therefore, L8 should be alle identify smaller gas ares
compared to VIIRS' capability, although its longer satellie revisit time poses a challenge to
identify less persistent ares. More details on the procesg steps of VNF are discussed in

Section 2.1, the essence of which will be applied to L8.

Table 2.1: Resolutions of Landsat 8 and VIIRS

Resolution Type

Spatial [m] Temporal [d]

Landsat 8 15 to 100 16.0%
VIIRS 375 to 750 0:5

Y Depends on the band of the electro-
magnetic spectrum
Z For daytime mode



Figure 2.1: Landsat 8's spatial resolution (NASA 2020). Eachdndsat pixel 30 by 30 meter
area) is roughly the size of a baseball diamond.

Nowadays, one resource which is more than abundant is data.rFocertain discipline or
research eld, new sources of data bring in new dimensionsioformation, such as satellite
images are now playing a role in gas aring analytics. How to ayze data e ectively and
intelligently to gain insights is a central problem. In the @troleum engineering domain, for
example, data driven approaches have been proposed to azalgtimulation treatments (Kaza-
kov and Miskimins 2011) and predict screenouts (Yu et al. 20 Machine learning is a
powerful tool for this purpose. It is at the core of arti cial intelligence and data science,
and lies at the intersection of statistics and computer saiee (Jordan and Mitchell 2015).
Frameworks in computational learning theory, such as the R& learning proposed by Valiant
(1984), help provide a theoretical backbone for some leangi algorithms.

One subset of machine learning, deep learning (DL), had itslolg in 2006 when Hinton and
Salakhutdinov introduced Deep Belief Networks (DBN), but it dd not gain wide acceptance
until 2012 when AlexNet showed the breakthrough performancen @lassi cation accuracy

in the ImageNet competition (Krizhevsky et al. 2012). AlexNets a DL-based model (more



speci cally a convolutional neural network) and achieved ra error rate of 15.3%, which
is more than 10 % lower than the runner-up. DL dominated the competition theeafter,
and DL-based models nally surpassed human performance dmetclassi cation data set in
2015 (He et al. 2015).

Although neural network-based models have gained much sussén recent years, it should
be noted that no one type of model can always be the best candid for all problems. This
has been formally shown by Wolpert (1996), and is usually esfed to as the \no free lunch"
(NFL) theorem. More recently, Olson et al. (2017) empiricallyassessed 13 classi cation
algorithms on 165 di erent problem sets, and the results aned with the theorem: even the
union of the top ve best performing algorithms cannot domiate all of the problem sets.

In the following sections, a detailed review is given for thaspects below, which serve as

the foundation and inspiration for this work:

1. Satellite image processing

N

. Bayesian inference
3. Markov chain Monte Carlo

4. Machine learning

ol

. Analytics toolset
2.1 Satellite Image Processing

Satellite images are utilized to estimate ared gas volumelhe re detection algorithm
based on Planck curve tting and physical laws, known as VIIR®Night re (VNF) due to
Elvidge et al. (2013), serves as a starting point for analyzy L8 images in this research. The

method consists of several major steps:
1. Detection of hot pixels

During nighttime, the sensors mainly record instrument ngie which approximately

follows a Gaussian distribution, except for the few pixelshat contain an infrared



emitter such as a gas are. Therefore hot pixels can be idemd by setting a cuto on
the tail of the distribution, e.g., those pixels with digitd numbers exceeding the mean
plus four standard deviations.

. Noise ltering

Hot pixels that are detected in only one spectral band are tréad as noise and ltered
out.

. Atmospheric correction

Losses in radiance due to scattering and absorption e ectart be corrected. MOD-
TRAN ® 5 (Berk et al. 2006), parameterized with atmospheric waterapor and tem-

perature pro les, is used to derive the correction coe ciets for each spectral band.

. Planck curve tting

Planck curves are modeled for gas ares, which appear as gfagdies because they are
sub-pixel sources. Therefore the output of the tting is an @snate of the temperature
and an emission scaling factor(the emissivity term in the Planck function). The latter

is used subsequently to estimate the source area.

. Calculation of source area

The source ared is calculated using

S="A; (2.1)

where" is the emission scaling factor and is the size of the pixel footprint.

. Calculation of radiant heat

The radiant heat is calculated using the Stefan{Boltzmannaw:

RH= T°4S; (2.2)
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whereRH is the radiant heat in MW, is the Stefan{Boltzmmann constant,T is the

temperature in K, and S is the source area in

Once RH is obtained, previous work by Elvidge et al. (2015) develodea calibration for
estimating ared gas volume, utilizing nation-level aring reporting provided by Cedigaz
(2015) and state-level reporting from Texas and North DakotaThe developed calibration
can then be applied to each individual aring site worldwidefor estimation of ared gas

volume, etc.
2.2 Bayesian Inference

Bayesian inference leverages conditional probability tbey to establish a formal procedure
for learning from data (Betancourt 2018). Bayesian modelsrgvide full joint probability
distributions p(D; ) over observable dataDb and unobservable model parameters. The
essence of Bayesian analysis is to obtain the posterior distition p( j D), which characterizes
the conditional probability of parameters given some dataD. It can be derived through

Bayes' theorem:

.y _ p(Dj )p()
p( jD)= T D) (2.3a)
_p PMDOj )p()
= %o 9 9d ° (2.30)
I p(Dj )p(); (2.3¢)

wherep(D j ) is the likelihood (also referred to as the observation mobjevhich denotes
how likely the data is given a certain set of parameters, ang( ) is the prior which models
the probability of the parameters before observing any dataThe prior encodes domain
expertise. Once some observations are given, it is updatexoi a posterior which quanti es
how consistent the model con gurations are with both the domin knowledge and the observed
data (Betancourt 2018). After the posterior is obtained, mdsf not all inferential questions

can then be answered with posterior expectation values ofrtan functions (Betancourt
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2019):
y4

Eolg( )= 9( )p( jD)d ; (2.4)
where g( ) is the function encoding some inferential question (e.gwhere in the model
con guration space the posterior concentrates).

Predictions can be made in the form of a posterior predictiveistribution:
z

p(y jx ;D)= ply j ;x)p( jD)d ; (2.5)
wherey is the predictions based on the training seD for a test input x . Essentially this
is integrating the predictionp(y j ;x ) over the posterior distribution of parameters (Ras-
mussen and Williams 2006). Note that by giving the nal resultsn terms of a probability
distribution, richer information and more reliable infer@ices are accessed compared to merely
giving a point estimate through MLE or MAP (as some machine leaing models do under
the frequentist framework). This is achieved by incorporatg into the inference process the
uncertainty in the posterior parameter estimate. Other beats include posterior predictive
checks, which are conducted by checking for auto-consistgroetween generated datay( )

and observed datay).
2.3 Markov Chain Monte Carlo

Many of the integration problems central to Bayesian statitcs, including those in
Equations 2.4 and 2.5, are analytically intractable. A clasof sampling algorithms, known as
Markov chain Monte Carlo (MCMC), can be applied to approximée these (Andrieu et al.
2003). Suppose for some function of intere$i(x), the objective is to obtain its integral,
with respect to a non-standard target distributionp(x) from which samples cannot be drawn

directly:
z

[(f)=f(x)p(x)dx: (2.6)

By constructing Markov chains that havep(x) as the invariant distribution, MCMC samplers,

while traversing the sample spac¥ , are able to generate samples” that mimic samples

12



drawn directly from the target distribution p(x). In other words, this mechanism makes it
possible to draw a set of samplesx (g, from p(x).

Then, by the Monte Carlo principle, the integrall (f ) can be approximated with a sum

In (F):
1)(\' _ as Z
In(f) = N f(X(I))!l\h ' .1 [(f)= f(X)p(x)dx: (2.7)

i=1
That is, the estimate Iy (f ) is unbiased and by the strong law of large numbers, it will

converge almost surely (a.s.) to(f). That's why MCMC is a powerful tool in Bayesian
analysis. In practice, the Metropolis-Hastings (MH) algoritm and Gibbs sampling have been
popular MCMC methods (Andrieu et al. 2003), but only when the arameter space is not
too high-dimensional (McElreath 2020).

Due to limited computing resources, it is impossible to run rkov chains in nitely long.
In other words, inference has to be made based on nitely margraws. One approach,
which is e ectively leveraged in this research, is to run mtiple chains in parallel and
monitor various statistics for diagnosing non-convergeac Besides the e ective sample size
per transition of the Markov chain, the Gelman-Rubin statiic (Gelman and Rubin 1992),
denoted byR, is used in this dissertation. TheR statistic quanti es whether the ensemble
of Markov chains initialized from di use points in paramete space nally converge to the
same equilibrium phase (Betancourt 2017b). WheR is su ciently close to 1 (for example
R < 1:05), convergence is declared to be achieved. As an examplepuFég2.2 presents how
four chains are started in di erent corners but approach stgonarity and convergence after a
certain number of iterations.

For many of the problems in practice, including the models ithis dissertation, the
parameter space is very high-dimensional and involves higlturving regions. The Metropolis-
Hastings algorithm and Gibbs sampling are far from e cient in hese situations. Hamiltonian
Monte Carlo (HMC), originally proposed by Duane et al. (1987)really outshines the other

algorithms at this point and is the main sampling strategy adpted in this dissertation.
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Figure 2.2: The evolution of four random walk Metropolis Mar&v chains (Carpenter 2020),
each started in a di erent location. The target density is a bvariate normal with unit variance
and correlation0:9. After M = 5000 iterations, the four chains have mixed well and expled
most of the target density.

Speci cally, No-U-Turn Sampler (NUTS) introduced by Ho man and Gelman (2014), which

is an extension to HMC, is employed for sampling from posteridlistributions.
2.4 Machine Learning

Machine learning was de ned by Mitchell (1997) as computelisnproving automatically
through experience. It can also be viewed as a function esttion problem (Vapnik 2000),
or as the process of extracting important patterns and trerglfrom data (Hastie et al. 2009).

In terms of tasks, common types of learning consist of sup&®d, unsupervised, semi-
supervised, and reinforcement (Burkov 2019). Let; 2 X  RY represent input, andy; 2 Y

represent target, then the goals of the rst two types are:

" Supervised learning aims to use the dataset, consistingXf= fx;g’; andy = fy,gyL,,
to produce a model that is able to predict an outputy;) given some new/unseen input

(xj), i.e., learning the underlying mappingf : X I'Y

" Unsupervised learning is used to nd the hidden patterns iiX; in this case there does

not exist any labels ) or prede ned targets.
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Another variation of learning is online learning, in which cse training data is fed to the
algorithm continuously or one example at a time (Abu-Mostafat al. 2012). In other words,
streaming data is available that the algorithm has to proceson the run. This is di erent
from batch learning, where data is provided beforehand andrbzen" during the learning
process. Online learning can be applied to the di erent taskas discussed above (supervised
and others).

In terms of model characteristics, machine learning modetsan be categorized into
parametric and nonparametric models. Parametric models earcharacterized by a xed
number of parameters, whereas nonparametric models haveiamite-dimensional parameter
space. For example, in the latter case the parameter spacendae the set of continuous
functions in a regression setting (Orbanz and Teh 2010). Iris dissertation, supervised and
unsupervised learning are leveraged while exploiting borarametric and nonparametric
models.

From Bayesian's perspective, machine learning is essefljiacomputing the posterior (de
Freitas 2013), which is then used for inference and predioti tasks. This is conducted
exactly through Equation 2.3a. In practice, machine learng conducted under Bayesian's
framework follows a principled work ow (Figure 2.3), which $ adapted for the modeling in

this dissertation.
2.5 Analytics Toolset

For the past ve to ten years, prosperity in contributions ard progress in the open
source community has been witnessed. Ecosystems aroundiyt, R, and Julia have been
prototyped, tested, and deployed in production environmes in various industries. Powerful
probabilistic programming languages (PPL), for example &h (Carpenter et al. 2017) and
PyMC3 (Salvatier et al. 2016), have become the workhorse fBayesian machine learning.

The majority of this work is implemented in Python. Speci cdly, Bayesian learning
is performed by leveraging PyMC3. Some analytic visualizans are produced employing

ArviZ (Kumar et al. 2019). Geospatial operations are perfored with the help of GeoPan-
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Figure 2.3: The owchart adapted from (Betancourt 2020) show/ a principled Bayesian
work ow.

das (Jordahl et al. 2020). Satellite imagery is processed aadalyzed in MATLAB, with

implementations mainly following Elvidge et al. (2013).
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CHAPTER 3
DATA PREPROCESSING AND EXPLORATORY DATA ANALYSIS

In this chapter, an overview of the aring data is given. Somether variables which might
be correlated with the aring statistics are also considere Exploratory data analysis is
performed for choosing the subset of the variables as the disan this dissertation. A state

level model is developed in the end which motivates the work the next two chapters.
3.1 Data Gathering

Four sources of data, L8 satellite images, VIIRS estimated ad volumes, NDIC monthly
production reports, and county/oil eld shape les for North Dakota were gathered for the

analysis used in this research.
3.1.1 Landsat 8 Images

In total, 167 images (since 2013) were downloaded from Go®@loud using the criteria

below:
"~ From ve Path/Row's: 126/216, 126/217, 126/218, 127/216, ad 127/217.

According to the Worldwide Reference System (WRS), the satgé imagery of any
portion of the world can be queried using Path and Row number3hese ve Path/Row's
cover the majority of the areas in North Dakota that have prodation and aring
activities.

~ Nighttime images.

Only nocturnal Landsat 8 imagery are used for the purpose ofre detection.

~ Cloud cover less than 10 %.

Images with low cloud cover percentages reveal more cleddyd features including gas

ares, and thus are ideal for validating the developed methinlogies.
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~ GeoTIFF Data Product.

Both the georeferencing information and the raw images ofl dhe spectral bands are

preserved through the GeoTIFF format, which are necessaryrfthe analysis.
3.1.2 VIIRS Estimated Volumes

The VIIRS are inventory and estimated volume dataset obtaied from Mikhail N. Zhizhin
(personal communication) are used in this dissertation. T dataset includes monthly are
detection records in North America from March 2012 to Decemb@018 (both inclusive) with

their associated:

~ Timestamps giving the speci ¢ month

" Latitudes and longitudes in WGS 84 coordinates

~ Flared volume estimations in bcm
3.1.3 NDIC Monthly Production Reports

All the monthly production reports from May 2015 to April 2020(both inclusive) which
have aring information have been downloaded from NDIC. Ther is one Excel spreadsheet
per month; each row corresponds to a well (that was active ithat month), and columns
are for various types of information, including ared gas vimme (estimated and reported
by operator), oil eld, oil production, etc. A screenshot ofthe top 50 rows in one of the

spreadsheets is displayed in Figure 3.1.
3.1.4 NDIC Shape les

The shape les for the counties and oil elds in North Dakota a& downloaded from the
NDIC GIS Map Server. All the polygons are described in NAD 27 coarthtes. The shape les
are for reverse geocoding the satellite detection locat®to readable addresses, speci cally

which county and oil eld is a are located in.
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Figure 3.1: A screenshot of the top 50 rows in the October 2018 production report. Each row cosponds to a well. There are
in total 17;135 rows in this spreadsheet, with the rst row being the heaa.



3.2 Satellite Image Processing

As discussed in Section 3.1.1, all the available L8 images haween downloaded. They
are processed in batch, following the work ow as outlined i®ection 2.1. To compare and
contrast with VIIRS' performance, speci cally the nighttime combustion source detection
limits, all the ares detected from all of the L8 images are ghered and used to generate the
source area versus temperature scattergram shown in Figur@.3

Although it is expected that L8 would pick up smaller ares than VIIRS (which is
capable of detecting ares around the size of a whole cooktepea), the majority of the
detections as indicated on the scattergram are too small foatural gas aring. To verify
if some hot pixels are clustered together and actually rementing a single are or aring
site, HDBSCAN (Campello et al. 2013) with an implementation dudgo Mcinnes et al.
(2017) is executed on every L8 detection map to nd out if larg blobs of hot pixels are
present. HDBSCAN is a density-based clustering algorithm wth keeps all the advantages
of the original DBSCAN (Ester et al. 1996), for example the caeity of nding clusters of
arbitrary shapes. It also outperforms DBSCAN by being able tbuild clusters of varying
density (Burkov 2019). Further, to get the most accurate rasts in this case, haversine metric
is chosen to handle the great-circle distances between thet Ipixels; leaf clustering is used
instead of the default Excess of Mass method to produce moree grained clusters. The
clustering results are illustrated in Figure 3.3.

To verify whether these clusters are really single ares ohey are actually a large number
of neighboring wells (in which case each hot pixel still repsents an individual are), they
are tracked down by looking further into each detection mapKMZ le). It is found that
some large blobs of hot pixels are clustered and indeed reg@st single (huge) ares. One of
the examples is shown in Figure 3.4. This poses a challenge itaaions where an accurate
estimate of the are count is needed.

The reason for this processing artifact is that, for large ees, there is glow surrounding the

are that was treated as many individual combustion sourcesThere are potential approaches
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(&) VIIRS performance (Elvidge et al. 2019)

(b) L8 performance; gure provided by Mikhail N. Zhizhin (personal communication)

Figure 3.2: The nighttime combustion source detection limstof VIIRS (top) and L8 (bottom).
For natural gas aring whose temperature is generally great than 1500 K L8 detected ares
show source areas (arounti0 2 m?) orders of magnitude less than that of VIIRS (around

11m2).
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Figure 3.3: A count plot showing the distribution of cluster iges: clearly there are a certain
number of large clusters (as shown by the tail to the right). & example, there exist
clusters each of which contains 120 hot pixels and there iseonluster with 84 hot pixels.

(a) Band 6 (SWIR) (b) KMZ view

Figure 3.4: A large are consisting of many hot pixels (deteatns), which is found by running
the night re algorithm on L8 images. Both the Band 6 (graysck image) and the KMZ view
are shown and provided by Christopher D. Elvidge (personabmmunication).

to mitigate this to make the interpretation and estimation ait of L8 more accurate. In this

work, the ares detected from VIIRS and the gas volumes estined out of those are the

focus for analytics.
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3.3 Reverse Geocoding

By reverse geocoding, the county information of every VIIRSare that is in North Dakota
can be retrieved. For most of the ares, the oil eld informaton is also retrievable. Thereatfter,
the aring statistics from VIIRS and NDIC can be compared and cotrasted at di erent
levels, for a certain point or period of time.

Shape les as discussed in Section 3.1.4 are used. With thephef GeoPandas, the

procedures for extracting counties and oil elds are the san

1. Read the VIIRS records into a geospatial data object, with theoriginal coordinates in

WGS 84.

2. Read the shape le into a geospatial data object, with its oginal coordinates in NAD

27.
3. Transform all the geometries in the shape le to WGS 84 codinates.

4. Perform a spatial join of the two data objects to get the coumnt or oil eld information
for each are, if a speci c county/oil eld's polygon and the are intersect, i.e., having

any boundary or interior point in common.
3.4 Correlational Analysis

To study the correlations between oil/gas prices, aring stistics, and production perfor-
mance, various time series are extracted for May 2015 to Dedser 2018 (both inclusive).

The below list describes all the variables used with their asciated labels:

VIIRS ared vol monthly ared gas volume from VIIRS
NDIC ared vol monthly ared gas volume from NDIC
WTI oil price WTI crude oil price given by EIA (2020b)

Henry Hub gas price Henry Hub natural gas price given by EIA (202pa
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NDIC oil prod monthly oil production from NDIC

NDIC gas prod monthly gas production from NDIC

VIIRS are count monthly are detections count from VIIRS

NDIC aring well count monthly wells count which conduct ari ng from NDIC

NDIC GOR ratio of the NDIC gas production to the NDIC oil production

First, the monthly observations are extracted from each timseries, and Spearman'’s
is employed to measure the statistical dependence betwedr tvariables. Spearman's is
a rank correlation, which quanti es the correlation betwee the rankings of two variables.
Compared to Pearson's, it assesses monotonic relationships which can be nonlinead is
more robust to outliers, therefore is used in this section. He pairwise correlations between
the variables are presented in Figure 3.5. Since a correlatimatrix is always symmetric with
unit diagonals, only the lower triangular part without the diagonal is plotted to minimize the
information redundancy.

It can be observed that most pairs show positive correlatien Financial factors (i.e.,
the oil and gas prices) are not among any of the highly corrééal pairs (e.g., aboved:80).
Nevertheless, it is indicated that the NDIC and VIIRS reporting have a positive correlation,
and oil production is positively correlated with ared gas wlume.

In this analysis, due to the nature of the procedure (i.e., ¢éract the monthly data and
then measure the rank correlations), all the information othe time scale is neglected. To
explore the correlations in the context of time series, therst di erences (i.e., lag-1 di erences)

are taken for each variable
ytO: Yo Yt 1s (3.1)

and then pairwise Spearman's is evaluated and visualized in Figure 3.6. In this case, there
aren't many pairs of variables which are highly correlatedexcept the oil and gas production

are shown to be monotonically related on the lag-1 di erencewhich is unsurprising. In the
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Figure 3.5: A heat map showing the pairwise Spearman corrdlats between the original
time series' monthly observations. The values are annotaten each cell, the corresponding
variables of which can be obtained by reading o the tick labde from the vertical and

horizontal axes.

remainder of this dissertation, the focus is put on aring ad production related statistics

instead of the nancial factors.
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Figure 3.6: A heat map showing the pairwise Spearman correlatis between the time series
after applying the rst di erences. The values are annotatd in each cell, the corresponding
variables of which can be obtained by reading o the tick labde from the vertical and
horizontal axes.

3.5 State Level Flaring Model

In this section, a regression model is built for the purposd mvestigating the statistical
relationships between the NDIC and VIIRS reportings. Data frm both sources are visualized
in Figure 3.7, which demonstrate a positive correlation.

Assuming a Gaussian observation model for the NDIC reportingith the location

parameter encoding VIIRS' information, the model is speci@ through Expressions 3.2a{
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Figure 3.7: Visualizations of both the NDIC and VIIRS reportings Left gure shows the
time series. Right gure presents the scatterplot using thelata points of each month.

3.2e:
Half-Normal(0:2) (3.2a)
Gamma(2 2) (3.2b)
Half-Cauchy(Q:1) (3.2¢)
=+ VIIRS; (3.2d)
NDIC; N ( ;) (3.2e)

where is the intercept and is the slope, both of which are constrained to be non-negagiv
based on the nature of aring volume; is the standard deviation in the Gaussian likelihood
function, which has to be non-negative as well;; is the expected NDIC reporting of month
i, while NDIC; and VIIRS; are the observed data (i.e., reported volumes) from NDIC and
VIIRS in month i, respectively. The notation used in de ning this model comomicates the
data generating process unambiguously and is adopted thighout this dissertation. Priors
and hyperpriors are on the top while the observation model &t the bottom. The prior
distributions for this model and all the others in this dissegation are chosen following the

principles below:
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1. Prefer weakly informative priors, i.e., choose the priorsased on the domain expertise
at hand before observing any data. They should be strong ergiuto re ect the domain
expertise and be weak enough to \let the data speak”, i.e.,tléhe likelihood dominate
when there is a decent amount of data. For example, a prior ofgamma distribution
with mean E =2=2 =1 is placed on , re ecting the assumption that the satellite
interpretation work ow gives the same ared volume as the NDC reporting, before

one observes any data.

2. Prefer priors with soft constraints as opposed to hard corrsiints, i.e., follow Cromwell's
rule. For example, , and all have prior distributions with support on R, or
R o. Counterexamples include using a triangular distributioror a continuous uniform

distribution as the prior for such quantities, for which theauthor does not recommend.

3. Prefer maximum entropy distributions, i.e., make the most@nservative assumptions
based on all the information at hand (obeying all the known ctstraints). For example,
the Gaussian and the binomial distributions are maximum enbpy distributions and
used in this dissertation, the fact of which can be formallyl®wn leveraging the

de nition of Kullback{Leibler (KL) divergence.

Once the priors and likelihood are established, four Markashains of Hamiltonian Monte
Carlo are run in parallel to sample from the posterior. The pameter estimates are reported
in Table 3.1, and the posterior distributions and trace pla are presented in Figure 3.8. The
four chains are plotted separately with di erent colors. Tle x-axis of the trace plot shows the

number of iterations. This layout is used consistently forlte remainder of this dissertation.

Table 3.1: Parameter Estimates of State Level Flaring Model

Parameter Variable Point Estimate 90 % Credible Interval
Intercept 0:061 (0.044, 0.079)
Slope 0535 (0.482, 0.590)
Reporting variability 0:030 (0.024, 0.035)
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Figure 3.8: Posterior distributions (left column) and traceplots (right column) for the state
level aring model. Well mixing and convergence of the Markoehains have been achieved as
shown by the trace plots.

Utilizing the model and the trace, posterior predictive samies are generated to construct
the intervals (Figure 3.9). Point estimates and point preditons are easy to obtain for a
certain machine learning model, however it is the properlyoostructed intervals that will
provide insights into the uncertainty for decision making.The author would like to emphasize
the importance of quantifying uncertainties when using maéne learning, no matter for
inference, prediction, or building intermediate models fointegration into physics-based
models. This is unfortunately neglected or ignored in somé the applications/publications in
the petroleum engineering domain. The importance of proggrquantifying the uncertainties
will also be stressed in the following chapters.

Whenever only one model speci cation is needed for making popredictions, it can be

recovered by the parameter estimates from Table 3.1:

NDIC; =0:061 + 0:535 VIIRS;; (3.3)
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Figure 3.9: Intervals are constructed using posterior prective samples. In both gures, the
line shows the \best" t using point estimates (posterior mans) of and . Shaded area in
the left gure presents the 90 % credible interval (Cl) of the regression mean. Shaded area i
the right gure demonstrates the 90 % prediction interval for the future NDIC reporting, for
which most of the existing observations fall within.

whereNDIC; and VIIRS; are ared volumes in bcm of monthi. The model also provides

clear interpretations for the NDIC reporting regression mag on the whole state level:

1. The intercept indicates on average there i80 % probability that 0:04 bcmto 0:08 bcm
reported volume per month will not be captured by the currentVIIRS processing

work ow. The posterior mean is 0061 bcm ( 2150 MMcf).

2. The slope indicates on average when satellite estimated wole increases by one unit,
under 90 % probability the NDIC reporting will increase by 0:48 unit to 0:59 unit. The

posterior mean is 635 unit.

This model, while serving as a decent calibration and estirtian tool for NDIC reporting
on the state level, makes the assumption that the heterogatyewithin the state (e.g., among

di erent counties) is negligible and all the monthly observaons are conditionally independent
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and identically distributed (i.i.d.). For the scenarios inwhich these assumptions do not hold,

other types of models can be built and are discussed in Chap#&and Chapter 5.
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CHAPTER 4
COUNTY LEVEL FLARING MODEL

\Multilevel regression deserves to be the default form of regressiah

| McElreath (2015)

4.1 Learning the Heterogeneity

In this chapter, the author explores the heterogeneity in ccelations between the state-
reported and satellite-detected aring statistics, amongli erent counties in North Dakota.

The motivations are threefold:

1. Provide more granular insights than merely investigatingle whole state's aring

statistics.

2. Compare and contrast di erent counties' reporting consigncies with the baseline (i.e.,

the satellite detections).

3. Develop a dedicated model for each county for calibraticand prediction purposes.

4.2 Hierarchical Model

A common problem in learning from data is modeling individua or units of a population.
For example, building models for di erent counties in a stag, or for di erent well pads in
an oil eld. Usually from domain expertise, it is expected thathe units would demonstrate
some di erences, however they do not necessarily represenimpletely independent data
generating processes. In other words, the units are di erem some ways, while being similar
in others. Unfortunately, the following two common modelingpproaches are extreme and

not ideal:

1. Complete pooling
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" This ignores heterogeneity and assumes that the observatfrom all the units are
generated/described by the exact same process. One set ofgpaeters is learned
for the whole population. In this situation, the variance mght be smaller, however

the bias could be huge.
2. No pooling

" This lets each unit learn its own set of parameters from its awdata. The
assumption is that the information from each unit tells one athing about any
other unit. In this situation, the bias might be smaller, hovever the variance could

be huge.

In practice, neither of these approaches will be able to gaaéze well for insight extraction
or prediction tasks, due to the total generalization error éing large. In fact, these two
extremes can be compromised by explicitly modeling the ergi population of units. That
is, in order to investigate the correlations among the indidual units, an explicit model is
introduced for the population. In the learning phase, the idividual posteriors are used to t
some population distribution, while the information of thepopulation is then fed back to the
individuals. What happens in this case is that the individuad with di use likelihood functions
(e.g. with less data) are dragged more towards the populatiadistribution, whereas the
individuals which are well informed by their data will have heir posteriors mostly unchanged.
In this process, dynamic regularization is achieved, i.g¢he total generalization error is much
smaller by partially pooling the data and balancing betweethe bias and variance.

In the context of county level model development, the questn is now how might one model
the population. To motivate the choice of a particular classf models, some characteristics of

the counties have to be examined. In this work, the countieseconsidered to be exchangeable,

i, 1 =1;2;:::;nis the parameters for thei-th county. That is, for any permutation
P( 15 25013 n) = RO 45 ity ) (4.1)
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Furthermore, the list of counties can grow, i.e., althoughre might only look at a few counties
at this point, in the future new counties in terms of aring adivities might be considered.

If a population being modeled is exchangeable, and the poptibn can grow arbitrarily
large, de Finetti's theorem shows that the only distributionthat respects exchangeability is a
hierarchical distribution:

z" \ #
P( 15 25011 n) = p( i) ) p()d; (4.2)

i=1

where is a population parameter (which can be generalized to mytlie population parame-
ters) and p( ) is a population prior. It asserts an important fact that if exchangeable data is
used for analytics, there must exist a population model (Joeth and Broderick 2010). This
provides guidance for the development of the county level reng models in this chapter.

Equivalently, the individual and population parameters ca be tted jointly, achieving a
dynamic pooling of the data:

" #
Y1 .
P( 15 250005 n )= pCij ) p(); (4.3)
i=1
in which process not only the 's but also are learned. After adding the observations

m " Yﬂ . . #
PYisXis comy 15§ j=g0 = PO %55 couny 15 1) PCcoumy 1§ ) PC )5 (4.4)
j=1

where .., j] Stands for the parameters for thg -th observation based on its county assign-
ment, and are some other parameters in the likelihood function that @rnot necessarily
distributed according to a population model. Equation 4.4ltaracterizes a hierarchical model
that ts nicely into the Bayesian framework and is exploitedfor building the models in this
chapter.

As a fundamental approach to model heterogeneity, hierarcdal models have been de-

pended upon routinely in various elds including ecologidacience (Bolker 2008), political

science (Gelman and Hill 2006), and biological science (Mcgdth 2015). The author believes
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that they should be widely accepted and utilized in the petdleum engineering domain as well,
where the dataset is usually presented in hierarchies. Foxanple, the shale gas wells in a
given basin were completed by di erent oil eld service comgmies. The information can then
be pooled among the service companies. A further discussisrgiven in Section 7.3. One
caveat, though, is that de Finetti's theorem is based on the asmption that the population
(of units) is exchangeable and can grow arbitrarily large. 3 like every other assumption
in machine learning, it should not be taken for granted and d&s not always hold. In the
context of county level aring model development, one mighargue that there are currently
53 counties in North Dakota and there might not be many new courgis (as administrative
divisions) in any nite amount of time. In that regard, the author agrees with the claim of
Box et al. (2009) that, since assumptions \are never exactlyue", what shall be sought is the
useful models as opposed to theorrect ones. That is the goal for applying the hierarchical
models in this chapter.

It is worth noting that the terminologies are not consistentwhen referring to these types of
models: some argue that hierarchical model and multileveladel are di erent names for the
same modeling technique (Bolker 2008; McElreath 2015), Waniothers tried to di erentiate
them (Carpenter 2019). In this dissertation, the model assoptions are communicated via the
mathematical structures instead of the terminologies, by fting out the full model de nitions

whenever possible.
4.3 Data Description

After performing the reverse geocoding as outlined in Seati®.3, there are twelve counties
found to have reported aring activities from both VIIRS and NDIC. For each county's
historical data from May 2015 to December 2018 (both inclug), only the months that have
reported volumes from both sources are extracted. A scatfdot for each of the 12 counties
is presented in Figure 4.1, where the county abbreviationsliimwv the convention from the
NDIC monthly production reports. Table 4.1 lists the full coumnty names associated with each

abbreviation.
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Figure 4.1: Scatterplots of NDIC and VIIRS reportings for di eent counties. Both thex-
and y-axis are shared among all the subplots. The-axis is the monthly VIIRS reporting of
the ared volume in bcm, and they-axis is for the NDIC reporting in the same unit.

It can be seen that the aring magnitudes in terms of the aredvolumes are quite diverse
for the di erent counties. To better visualize all of them, azoomed-in view for each county is
shown in Figure 4.2. It becomes clear that most of the countiexcept SLP and GV have
more than 12 data points; however, only the four counties in the top rowi.e., MCK, DUN,
WIL and MTL) have the largest amount of data and indicate stromger positive correlations
between VIIRS and NDIC.

For the purpose of building county level models and investging the heterogeneity among
the counties, the no pooling option discussed in the previstsection will fail. Especially

with counties SLP (which has3 observations) and GV (which ha2 observations), if a linear
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Table 4.1: North Dakota County Abbreviations

Abbreviation County

MCK McKenzie County
DUN Dunn County
WIL Williams County
MTL Mountrail County
BOW Bowman County
DIV Divide County
BRK Burke County
MCL McLean County
BIL Billings County
STK Stark County
SLP Slope County
GV Golden Valley County

model such as Equation 3.2d is tted, the learned slope paraters .., Wwill have point
estimates”y, 0and "y 0 with their associated samples. The interpretation of the
slope parameter (which was discussed right after Equation33 implies that such inferences
are never possible. Some other counties, even with more da@ints (e.g., MCL), su er
from the noise levels in their observations. Using their ownathset will frustrate accurate
inferences. Therefore, in order to build models robustly & county level, the hierarchical

model discussed in the previous section is exploited.
4.4 Model Speci cation

Motivated by the discussions in Section 4.2, partial poolmis performed by explicitly
modeling the entire population of counties. In this way, thecounties such as MCL can
leverage the information from other counties to learn theiown parameters. Counties with
\strong data" (i.e., very informative data which makes the ikelihood dominate the structure
of the posterior), such as those in the top row of Figure 4.2,dicate a positive correlation
between VIIRS and NDIC. Therefore, a similar strategy as in Maal 3.2 is adopted for the

counties, i.e., one set of slope and intercept is learned feach county.
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Figure 4.2: Scatterplots of NDIC and VIIRS reportings for di eent counties, without sharing
neither x- nor y-axis for all the subplots. Within each subplot, equal scalmpand limits are
set for x- and y-axis. The axes' meanings are the same as in Figure 4.1.

Since the slope and intercept are very interpretable, the ragings of which were discussed
right after Equation 3.3, partial pooling is also enabled aoss parameter types (i.e., intercepts
and slopes). In other words, knowing how much ared volume mmissed from VIIRS (i.e.,
the information carried by the intercept) might improve leaning how VIIRS and NDIC will
covary (i.e., the information carried by the slope). Speccally, a population model with a
multivariate normal density is used for the di erent counties' parameters.

The hierarchical model is speci ed through Expressions 481.5;:

Half-Normal(0:1) (4.5a)
Gamma(2 2) (4.5b)
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Half-Normal(0:1) (4.5¢c)

Half-Normal(0:1) (4.5d)
Half-Normal(0:05) (4.5e)
R LKJcorr(2) (4.5f)
! !

_ 0 0
-0 R 0 (4.59)

" # Ow 4 1
=™ MVNormal@ ;A (4.5h)

county

i =  county [j] + county [j] V”RSJ (45')

NDIC; N ( ;) (4.5))

where:

is the average intercept for all the counties;
is the average slope for all the counties;
is the standard deviation among di erent counties' intercpts;
is the standard deviation among di erent counties' slopes;
is the the standard deviation in NDIC reporting within the counties;
R is the correlation matrix distributed according to an LKJ distribution. It is 2-by-2
in size and encodes the correlation between the interceptsdaslopes;
is the covariance matrix for the population model, which isanstructed by multi-
plying the correlation matrix from both sides by a diagonal ratrix of standard
deviations;
oy aNd ., are the intercept and slope for each county, whose prior digiutions
are de ned by a two-dimensional Gaussian population model,
county [j] (in the subscript) denotes the county index, i.e.county [] 2 fk 2 Ng j
k  11g, such that . 7 and ..y ] are the intercept and slope for thg -th
observation based on its county assignment;

VIIRS; is the VIIRS reported volume of thej -th observation;

39



j denotes the underlying ared volume of thg -th observation;

NDIC; is the NDIC reported volume of thej -th observation.

The LKJ distribution due to Lewandowski, Kurowicka, and Joe 2009) is a distribution
over positive-de nite symmetric matrices with unit diagorals, i.e., correlation matrices. In
the model speci cation above, it directly in uences the pror for the covariance matrix.
Before it was introduced and when HMC was not widely applicagl the usual choices for
modeling covariance matrices were Wishart or inverse-Wishatistributions, due to their
nice conjugacy properties. However, LKJ is better suited fanodern Bayesian computational
settings (Betancourt 2015; Lambert 2018) and therefore engyed in this work.

LKJ has a single parameter , which can be interpreted as the shape parameter of a
symmetric beta distribution (Gelman et al. 2013). As gets larger, the prior is more skeptical
of large correlations in the matrix, i.e., providing regulézing e ects. The probability density
of LKJ with a few values are displayed in Figure 4.3. In this worki_KJcorr( = 2) is

chosen to de ne a weakly informative and regularizing prior

Figure 4.3: LKJcorr( = eta) probability density. As increases, larger correlations become
less plausible.

Model 4.5, while being expressive in the data generating mess, is aentered parameter-

ization of the hierarchical structure (Papaspiliopoulosteal. 2007). In this parameterization,
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the hierarchical parameters (such as.,.., ) and the lower-level parameters in the prior (e.g.,
and ) are tightly coupled, and they are highly correlated in the psterior. Since this
model involves complex geometries and interactions in theogterior, HMC is leveraged
for sampling. When there is not a lot of data (which is the caseoif the current NDIC
and VIIRS reportings), this parameterization leads to veryne cient sampling and non-
convergences (Stan Development Team 2020). Thencenteredparameterization is preferable

in these cases and therefore employed for building the counével models.
4.5 Model Reparameterization

Reparameterization of hierarchical models can be applied &any distribution in the
location-scale family, for which the normal distribution $ a good candidate. In the case of
reparameterizing a multivariate normal prior, suppose therior for is a multivariate normal
with mean vector and covariance matrix (such as Expression 4.5h), then a noncentered

parameterization is given by:

€  MVNormal(0,; I,) (4.6a)
‘o= + L € (46b)

where € has the same dimensions as and all of its elements i.i.d. according taN (0; 1),

L satisesL L> = , and' recovers the exact same prior distribution for . This
reparameterization leads to more e cient sampling by reduag the dependence between
, L, and €. One choice forlL is the Cholesky factor of , which provides implementation
convenience for the multivariate normal cases (Stan Develment Team 2020) and is adopted

in this work.
The noncentered county level model is speci ed through Expssions 4.7a{4.7j, with the

reparameterized part (corresponding to Model 4.5) highliged in blue:

Half-Normal(0:1) (4.78)
Gamma(2 2) (4.7b)
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Half-Normal(0:1) (4.7¢c)

Half-Normal(0:1) (4.7d)
Half-Normal(0:05) (4.7€)
h [
|
LKJCholeskyCov = 2; (4.71)
# On % 11
z 0 10
: A
z MVNormal @ 0 0 1 (4.79)
! # " # "#
R (4.7h)
county z
i = county [j] + county [j] V”RSJ (47')
NDIC; N ( ;) (4.7))

where:

L is the Cholesky factor of the covariance matrix which has LKdlistributed correla-
tions;

z andz are the standardized intercept and slope for each county.

The rest of the symbols have the same meaning as in Model 4.5heTnoncentered model
imposes the exact same probabilistic structure as in Models4.and is implemented for making

inference on each county's parameters.

4.6 Model Fitting

Four chains are sampled from the posterior distributions. Ae posterior distributions
and trace plots for the slopes and intercepts are presented Figure 4.4 and Figure 4.5,
respectively. Well mixing and convergence have been aclegdvas shown by the trace plots.

To better compare and contrast the di erent counties' parareters, the forest plots of
90 % highest density intervals (HDI) for the slopes and intercest are given in Figure 4.6
and Figure 4.7, respectively. In both gures, counties are dered by the VIIRS reported
volumes, and those with the least amount of estimated volumésuch as SLP and GV) are at

the bottom. The thin lines present the90 % HDI's and the thicker line segments stand for
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Figure 4.4: Posterior distributions and trace plots of the sipes for each county.
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Figure 4.5: Posterior distributions and trace plots of the itercepts for each county.
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the interquartile ranges (IQR). The points represent the psterior means.

Figure 4.6: A forest plot showing the uncertainties around eh county's slope estimate. The
counties at the bottom have insu cient or noisy datasets, tlerefore their estimates are largely
pulled towards the partially-pooled mean.

Figure 4.7: A forest plot showing the uncertainties around e€a county's intercept estimate.
The dotted line labels the zero intercept, for which some caties' estimates are not signi cantly
di erent from.

In the case of the slopes (Figure 4.6), it can be seen the top fazounties are quite

diverse. MTL has the largest point estimate in the entire papation (g > 0:6) while
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DUN has the smallest one '{dun < 0:5). Furthermore, the HDI's for DUN and MTL rarely
overlap, indicating that it is almost certain that MTL has a larger slope than DUN. The
counties with fewer observations (remaining eight count¢ have greater uncertainties in their
parameter estimates, while all of their point estimates arpulled towards the partially-pooled
mean which is betweer®:5 and 0:6. When there is not enough data for some counties, the
hierarchical model strives to reinforce information shang among di erent counties, thus
providing more sensible results and also quantifying the gartainties in such processes. From
domain expertise, these results make more physical sensartithe no-pooling estimates
discussed in Section 4.3 (i.ey, Oand”’y  0).

In the case of the intercepts (Figure 4.7), there is also hetageneity among the counties.
In particular, by plotting a dotted line labeling the zero irtercept, some counties are found to
likely have zero intercept (e.g., zero is covered by the IQR bIDI) while others have intercepts
that are signi cantly di erent from zero. It might not be sur prising to get close-to-zero
intercepts and greater uncertainties for those counties thiless data (such as SLP and GV),
however it is interesting to obtain the HDI for MTL that coverszero. Recall that the intercept
parameter can be interpreted as the NDIC reported volume whids not captured by VIIRS.
This nding for MTL, along with the fact that MTL has the large st slope point estimate
(where a larger slope denotes closer proximity to the saié#l estimation), convinces the
author that MTL used to have persistent and stronger gas are They kept VIIRS from
missing the aring events in general, and lead to the reportevolumes from NDIC and
VIIRS being closer to each other. On the contrary, DUN's smalleslope and larger intercept
characterize its ares as sporadic and weaker. One thing whrmentioning is that, with
the current interpretation of the intercept, it does not malke much physical sense to have
negative intercepts. Although every county has positive poi estimates for their intercepts,
some counties' HDI's show coverage over the negative valudsis is a limitation of choosing
a 2D Gaussian population model for the intercepts and slopeSince the 2D Gaussian is

supported onR?, in the context of some counties having \weak data", negatesvalues make
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an appearance in their HDI's.

The discussions above naturally lead to the question of whetr the slopes and intercepts
are correlated. It turns out that, by partially pooling the di erent types of parameters, a
probable negative correlation between the slopes and intepts is revealed (Figure 4.8). The

correlation is learned from the heterogeneity in are chaideristics among the counties:

" Persistent ares yield smaller intercepts and larger slofe

" Sporadic ares yield larger intercepts and smaller slopes.

In other words, intercepts and slopes covary in the entire palation of counties. By pooling
information across parameter types, what the model learns the intercept can improve
learning about slopes, and vice versa. With this \experienter \knowledge", the hierarchical
model will be able to quickly update its expectation for any ew counties' parameters even
with just a few observations in the beginning. It should be rted that there is also some
probability mass for the positive correlation values, i.ethe negative correlation is not very
strong. This could be due to that some counties do not have atlof data at this time. The
posterior will be updated as more data is brought in.

Finally, the parameter estimates are reported in Table 4.2rdm which the parametric
model for each county can be recovered, and then deployed aliloration and prediction

usage scenarios.
4.7 Model Extensibility

Looking back at the hierarchical model and the reparametemtion strategy from the
previous sections, there are four potential deployment swarios that are worth discussing.
They demonstrate the extensibility and exibility of the chosen approach in the context of

aring data analytics:

1. New counties are present in terms of the reported aring stagtics from both VIIRS

and NDIC.
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Figure 4.8: Correlation between the intercepts and slopes.lUg: Posterior distribution of
the correlation, the mode of which is below zero. Dashed: Bridistribution, the LKJcorr(2)
density.

At this time, there are 12 counties that have reported aring statistics from both VIIRS
and NDIC. If aring data becomes available for some other coties in the future, the
hierarchical model allows the population to be immediatelgxpanded to accommodate
the new counties. This can be seen from the conditional stiuce in Equation 4.3: by

taking a model forn + 1 counties
n Ml #
P( 15 20015 ns neas )= p( i) ) p(); (4.8)
i=1
then pulling out the term for the (n + 1)-th county from the right-hand side (RHS)

! #
A

P( 1 20::15 ny ney )= P ) pCid ) p(C); (4.9)
i=1
it can be recognized that the remaining part on the RHS is the @érarchical model for

n counties

PC 15 200705 s nexs )= PCnsa ) )PC 25 200005 s ) (4.10)
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Table 4.2: Parameter Estimates of County Level Flaring Model

Parameter Variable County Point Estimate 90% ClI
MCK 0:019 (0015 0:023)
DUN 0:008 (0004 0:013)
WIL 0:010 (0007 0:013)
MTL 0:002 ( 0:00% 0:006)
BOW 0:015 (0013 0:017)
Intercept DIV 0:003 (0001, 0:005)
couny BRK 0:003 (0001 0:004)
MCL 0:000 ( 0:00% 0:002)
BIL 0:001 ( 0:00% 0:003)
STK 0:001 ( 0:003 0:004)
SLP 0001 ( 0:005 0:007)
GV 0:002 ( 0:005 0:009)
MCK 0:519 (0493 0:542)
DUN 0:464 (0385 0:547)
WIL 0:549 (0495 0:605)
MTL 0:623 (0553 0:693)
BOW 0:516 (0370 0:677)
Slope DIV 0:554 (0395 0:719)
county BRK 0:556 (0389 0:715)
MCL 0:563 (0391 0:730)
BIL 0:560 (0395 0:727)
STK 0:562 (0393 0:729)
SLP 0561 (0406 0:752)
GV 0:560 (0398 0:731)

This indicates the newly introduced counties will only dep®d on the population

parameters , i.e., how the new counties interact with the existing onesr@m the initial

dataset) is not explicitly speci ed but being mediated thraagh . This mechanism

allows the population (of counties) to be expanded arbitrdy. In practice, without any

modi cation, Model 4.7 can be re- tted with the new dataset & a whole.

. More data are available for those counties which used toveavery few observations.

In the event of more data becoming available for those couat with wide HDI's such

as SLP and GV, the posteriors will be updated according to thahformation. Their

49



HDI's would become narrower and narrower as more and more dadee available, and
since the hierarchical model pools information among the waties, these counties will
contribute to updating the population model's and other conties' parameters. Similar
to Item 1 above, Model 4.7 does not need modifying and can be re- ttedtiv the new

data.

. Sample sizes among counties become more unbalanced.

In general, when there is a lot of data for each county, the ciemed parameterization
(Model 4.5) is more e cient. When the sample size is not largeyhich is the case for
the current VIIRS and NDIC reportings, the noncentered paranterization (Model 4.7)
is better. However, the parameterization for hierarchical odels is not a monolithic
tactic. If the reported aring data becomes very unbalance@cross counties, e.g., some
counties have a huge amount of data whereas others have vetifd data, then each

county can be parameterized di erently. More speci cally,

" For the counties that have strong data such that their likelhood functions dominate,

centered parameterization can be applied through Expressis 4.5f{4.5h.

A~

For the counties that have weak data such that their prior modls dominate,

noncentered parameterization can be applied through Exmsions 4.7f{4.7h.

All in all, this is still one hierarchical model which de nes he exact same probabilistic
structure as Model 4.5 or Model 4.7, but avoids ine ciencieand non-convergences in

the sampling from posteriors.

. Oil eld level heterogeneity needs to be examined.

Under the assumptions that the oil elds in North Dakota are exkangeable and the
population of oil elds (which conduct aring) can grow, the hierarchical model developed
in this chapter can be directly applied to investigate the herogeneity in di erent

oil elds' parameters. Following the reverse geocoding assdussed in Section 3.3, there
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are 2580il elds that have both NDIC and VIIRS reportings for the same sudy period
as in this chapter. Some oil elds have very few observatiorand can bene t from the
hierarchical model through pooling information among thergire population of oil elds.
Furthermore, due to the number of oil elds being relativelylarge, the population
model could be learned with more ease (because more inforiatis available for the
population). In the case of the county level model developed this chapter, since
there are only12 individuals (counties) in the population, some uncertaines about the

population are inevitably present and re ected through theposteriors.

The models developed in this chapter, while capturing the kerogeneity among the
di erent counties in North Dakota, rely on the assumption thd all the monthly observations
within a certain county are conditionally i.i.d. For situations where the temporal structure

has to be taken into consideration, other types of models cdne built and are discussed in

the next chapter.
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CHAPTER 5
FLARING TIME SERIES ANALYTICS

\Were neural networks over-hyped, or have we underestimated
the power of smoothing methods?

| think both these propositions are true."
| MacKay (2003)

5.1 Learning the Flaring Pattern and Behavior

In this chapter, the author develops a generic framework faevealing aring patterns

and behaviors. The main challenges are fourfold:
1. Observed data are noisy.

" Companies estimate the aring volumes and conduct self-reging. Satellites
could miss some events. However, having knowledge about thedarlying process
is vital in lots of situations including when the state and loal governments need
to make key decisions based on the data. In the meantime, umsi&nding the
underlying process helps with anomaly detection by di erdrating between true

anomalies in reporting and ordinary noise or stochasticity
2. A probabilistic approach is desirable to be adopted.

" A set of most probable functions (characterizing the undefing process) are

preferable over one single best t function.
3. The observations of a certain entity are time series.
" The temporal structure is intrinsic to the dataset and thus mst be harnessed.

4. The framework should be generic enough for automated igkts extraction.
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" There are more than200 operators and500 oil elds operating in North Dakota.
Choosing a speci ¢ parametric form of model (e.g., ARIMA or LBM) for each
entity and then tting the model to the data is not only time consuming, but also
prevents easy integration into automation pipelines (forxracting insights for

example).

It is striking that the elegant properties of Gaussian pros make it a natural choice to

tackle all of these challenges and is therefore employed g chapter.
5.2 Gaussian Process

A Gaussian process (GP) can be viewed as a distribution over nite-dimensional
Hilbert space of functions. It is formally de ned as \a colletion of random variables, any
nite number of which have a joint Gaussian distribution” (Rasmussen and Williams 2006).
Gaussian processes are extremely powerful nonparametgarhing techniques, which provide
a composite of exibility and interpretability. They are well suited to problems which
necessitate principled handling of uncertainty and inten@tation, in the presence of noisy
and dynamic datasets. Such scenarios include smoothing {8nroth et al. 2012) and time
series modeling (Roberts et al. 2013). They are also well @slished in di erent elds under
various names, for example kriging in geostatistics and Kahn lIters both correspond to
Gaussian processes (MacKay 1998).

In this work, the motivation is to develop a generic framewdrfor recognizing the underly-
ing unknown processet (x) which re ect aring strategies and behaviors. Thus inferace is
conducted directly in the function space employing GP as ajor. A Gaussian process is com-
pletely speci ed by its mean functionm(x) and covariance functionk(x; x% (Bandyopadhyay

2018), which are de ned as:

m(x) = E[f (X)]; (5.1)
k(;x9 = E[(f (x) mOO)(F(x) mxI]; (5.2)
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and the function distributed as a Gaussian process is dendtby
f(x) GP m(x); k(x;x9 : (5.3)
5.2.1 Mean Function

In this work, the mean functions are always chosen to be zersince there is no prior
knowledge on the mean of the latent processes. In the meangipfor GPs with a zero
mean function, the mean of the posterior process is not cored to be zero (Rasmussen and

Williams 2006). All the latent functions modeled with a GP prig in this dissertation follow
f(x) GP O k(x;x9 (5.4)
wherek is some covariance function.

5.2.2 Covariance Function

Covariance function, also known as kernel, is the crucialgredient in a GP, as it encodes
one's assumptions about how the function should behave by dimg similarity. The fun-
damental assumption is that data points with inputsx which are close would have similar
target valuesy. This assumption is usually very reasonable in areas incing time series
modeling, and it is theoretically backed by Tobler's rst lav of geography. The covariance

functions used in this dissertation include:

1. The Maern class of covariance functions, which is giveby:
! !

l — —
2()p2£|< Pt (5.5)

where () is the gamma function,K is a modi ed Bessel function of the second kind

k (r) =

of order ,r =kx x%, and" is the lengthscale controlling the smoothness from one
perspective: large characterizes functions which change slowly and can be adliy

extrapolated further away.

The Makrn covariance functions can be written as a producof an exponential and a

polynomial of orderp, when is half-integer: = p+1=2; p2 No. The hyperparameter
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controls the smoothness from another perspective: wherr 1=2, the Maern kernel
becomes the exponential kernel (continuous but not di erdiable); as ! 1 it
becomes the exponentiated quadratic kernel (in nitely dierentiable). Rasmussen and
Williams (2006) argued that the most interesting cases for nchine learning would be

=3=2and =5=2.

For gas aring time series, as operators might change aringtrategy at any given time
due to policy changes, gas processing facility deploymeggs price uctuation, etc., the
latent process might not be as smooth as in nitely di erentable. Instead the Magrn
kernel is harnessed which is capable of inducing non-smodtimction realizations to
handle those discontinuities. Speci cally the Maern kenel with = 5=2 is chosen for

this dissertation with the input spaceX R*:

Kmat ems2 (X; XO; ‘) = 1+ exp —— ; (5.6)

wherex vary over the time domain.

. The standard periodic kernel due to MacKay (1998):
!
sil( jx  x§3)
2\2 )

I<periodic (X; XO; T; \) =exp (5.7)

whereT denotes the period. This kernel is used for modeling seasbbhahaviors.

. The white noise kernel, which is given by:

kWhiteNoise (Xl XO; ) = 2' n; (58)

where ? is the variance of the noise. In this dissertation, the usag# the white noise
kernel is for stabilizing the computation of the covariancenatrix. Adding a small value
of diagonal shift will try to guarantee the resulting covar@nce matrix is always positive

semi-de nite.
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A nice property is that the sum and product of the established&ernels are still valid

kernels. This fact is also exploited in the model building jrcess in this work.
5.2.3 Inference and Model Reparameterization

In practice, one always works with a dataset of nite size. lisuch situations, a multivariate

normal prior distribution is placed on the vector of functim valuesf,

f MVNormal(my; Ky); (5.9)

where the vectorm, and the matrix K,, are the mean function and covariance function
evaluated over the inputsx.

A key question which has signi cant impact on the inferencesihow to learn the hyperpa-
rameters from data. A natural (and popular) approach is to ceduct maximum likelihood
estimation, i.e., generating point estimates leveraginghé data. However, as Betancourt
(2017a) showed with experiment results, both regularizednd unregularized maximum
marginal likelihood have limited performance in terms of ting robustly and recovering
the true data generating process. Technically, given a pactilar kernel with particular
hyperparameters, a GP does not support an entire Hilbert spadut only a slice through
that space; changing the hyperparameters by an in nitesimamount yields a di erent slice
which has no overlap with the original one. Therefore in thidissertation, a full Bayesian
approach is taken for the GP inference, i.e., the entire Hilloespace of functions is considered
by taking into account all of the possible hyperparameterof a speci ¢ kernel.

For the class of problems which have Gaussian observation dets, GP has nice closed-form
posterior results. However, for the situations which do notdve Gaussian observation models,
for examples the ones in this dissertation which empldytudent-t or Poisson likelihood, there
does not exist analytical solutions. HMC as discussed in Siett 2.3 is used to sample from
the posteriors.

Speci cally, the noncentered parameterization of the latg multivariate Gaussian is

exploited. The reparameterized model is
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¢ MVNormal(0y; I,) (5.10a)
L = Cholesky(K x«) (5.10b)

f=my+L ¢ (5.10c)

which de nes the same distribution as Expression 5.9 but ingtes a nicer posterior geometry
for HMC to explore and sample from (Betancourt 2017a).
Once the learning on hyperparameters is done, posterior gretive distribution of the

latent function values which are not part of the original daaset is obtained by
f jf  MVNormal m + K K, M(f my); K K; KoKy (5.11)

wherem is the mean function evaluated at the new inputsK is the covariance between

the new inputs, andK , is the covariance between the original inputs and the new ings.

5.3 Suite of Models for Pattern Recognition

This section presents models built from various angles, \Witthe goal of providing a
coherent framework for learning the aring pattern and behwaor in a principled manner.
Each model is tested on real aring data from North Dakota. Wheaver more granular
analytics capabilities are demonstrated through investagions at oil eld level or operator
level, the data from a major producing eld, the Blue Buttes Gl eld (Alexeyev et al. 2017),

and one operator, denoted by "Operator A" are used.

5.3.1 Modeling Proportion of Gas Flared

The proportion of gas production that is ared is an indicate of aring intensity and energy
e ciency. It is interesting to investigate whether the proportion has changed over a period of
time for certain operators and oil elds. The model is speced through Expressions 5.12a{

5.12i:

Gamma(2 1) (5.12a)
Half-Cauchy(5) (5.12b)
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Gamma(2 0:1) (5.12¢)

A2 Half-Cauchy(5) (5.12d)
k= % Knaems2 (x5%") (5.12¢)
f GP (0;k) (5.12f)
i = logit * f(x;) (5.129)
i= i G (5.12h)
F,  Studentt(; ;;1="?) (5.12i)

where:

" is the lengthscale for the Maern kernel;
is the marginal deviation parameter controlling how stronly the latent functions
vary in the output space;
is the degrees of freedom for the Studenthkelihood;
A2 controls the inverse scaling parameter of th8tudent-t likelihood (analogous to
the precision of a Gaussian distribution);
k is the covariance function for the GP;
f denotes the latent process, which is distributed accordirtg the GP;
i Is the underlying aring gas proportion of monthi. Since proportion is bounded
between 0 and 1, the inverse-logit function is applied to thiatent process;
G; is the total gas production of monthi;
i denotes the underlying ared volume of month;
F; is the reported ared volume, which is modeled using &tudent-t observation

model.

The reasoning behind choosing &tudentt observation model is to make the model
speci cation be able to generalize to as many entities as saisle and be robust to (potentially
many) outliers and noisy data points. This is due to the facthat at this time, operators have
to estimate the ared volume by their own procedures and conatt reporting, in which case

inaccuracies are introduced unintentionally or intentioally. The heavier tail of Student's
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t-distribution is a natural decision in modeling to deal withthose phenomena. This line
of thought, i.e., design models that are generic and robuss indeed re ected in choosing
the half-Cauchy priors (which are heavy-tailed and very wédy informative) and GP as a
nonparametric regression technique.

To demonstrate this model's capability on real data, both te Blue Buttes Oil eld and
Operator A are tested. The production and ared volumes comg from NDIC are used. For
the oil eld, the posterior distributions and trace plots ofthe hyperparameters are presented
in Figure 5.1. The posterior predictive samples for the undiging process of gas aring
proportions ( ;) are demonstrated in Figure 5.2, which depict the trend verylearly. The

colored bands have the below coverage for the posterior sdeg

" The darkest colored band (in the center at a certaix location) represents the 49th

percentile to 51st percentile;

" The lightest colored band (characterized by the widest intgal at a certain x location)

represents the 1st percentile to 99th percentile.

Additionally, 30 random samples are drawn from the GP posterior and plotted ahe
same gure, showing as thin lines. The latent functions do i@o through all the observed
data points, in which case the model would have been over ttk instead they present the
possible functions which are most compatible with the datasawell as the assumptions
inherent in the model. On one hand, the insights are alreadybtained, i.e., the underlying
process is inferred. On the other hand, this serves as an arayndetection tool. For example,
the state government might be interested to look into that oberved data in the second half
of 2019 which deviated quite a lot from the \true" process, g. to audit the reporting for
that month or to investigate what had happened that led to a sdden huge drop in aring in
just one month.

With the exact same model speci cation, the model is also runith the operator's data.

The posterior distributions and trace plots of the hyperpaameters are presented in Figure 5.3.
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Figure 5.1: Posterior distributions and trace plots for the Rie Buttes Oil eld gas aring
proportion model. Well mixing and convergence have been aeted.

Figure 5.2: Posterior predictive samples showing the gas iag proportion variations at the
Blue Buttes Oil eld. Blue points are the observed data whilaed lines present the posterior
samples.

60



The posterior predictive samples for the underlying procef gas aring proportions ( ;) are
demonstrated in Figure 5.4. It can be seen this operator's arg proportion time series is
more jagged than the Blue Buttes Oil eld (which is operated ¥ more than ve companies). A
operator can change aring strategies more swiftly which caebe captured as well. Nevertheless
the long-term trend is also available. Comparing Figure 5.1na Figure 5.3, it can be seen the
posterior distributions are very di erent. However the priags for them were speci ed in the
exact same way. This showcases the power of Bayesian apphoakaking = as an example,
a Gamma2; 1) prior is placed on it. However, after conditioning on the da, the operator
model reports smaller lengthscale values on average (iratiog jagged processes), whereas

the oil eld model reports larger lengthscale values (suggiéng smoother processes).

Figure 5.3: Posterior distributions and trace plots for the @erator A gas aring proportion
model. Well mixing and convergence have been achieved. Netitie di erences between
these inference results and those in Figure 5.1, both of whiaehe based on exactly the same
priors and likelihood, demonstrating the model speci catin's wide applicability.
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Figure 5.4: Posterior predictive samples showing the gas iag proportion variations of
Operator A. Blue points are the observed data while red linegg@sent the posterior samples.

Order 24665, which is established by the North Dakota Indusal Commission, de nes

the gas capture percentagpeap as

_ Gsold + c':‘used + Gproc

Peap = ; (5.13)

Gprod

where:

Gsoig IS the monthly gas sold;
Gused IS the monthly gas used on lease;
Gproc IS the monthly gas processed,

Gprod  Is the monthly gas produced.

Since North Dakota bans the venting of natural gas (U.S. Departent of Energy 2019b),
it is obvious the model developed in this section provides awerful tool for NDIC to evaluate
compliance with the gas capture goals: at a given monih peap = 1 i. Furthermore, when
looking at the model speci cation, there is nothing specighat encodes the data sources and
location information. A user of this model is free to use sdtige estimation as the observed
data or apply it to the Permian Basin, and conduct inferencerothe aring proportion. This

is a benet from using nonparametric and interpretable mode as opposed to black box
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models (such as the neural networks, in which case the leadneeights and bias inside the
network provide little or no domain insights). The author hges this section provides a
comprehensive view in terms of how and why to use GP, with redata. Models built and

presented in later sections follow a similar ow.
5.3.2 Modeling Proportion of Wells Flaring

The proportion of wells that conduct aring in a month can re ect a company's aring
strategy and is an indicator of aring magnitude. It is interesting to investigate how this
indicator varies for a certain entity in a certain time peria. The model is speci ed through

Expressions 5.14a{5.14f:

Gamma(2 1) (5.14a)
Half-Cauchy(5) (5.14b)
k= 2 Knaems2 (;x%") (5.14c)
f GP (0;k) (5.14d)
p =logit * f(x;) (5.14e)
W;  Binomial(N;; p;) (5.14f1)

wherep; is the unobserved \true" proportion of wells that conduct aring in month i, N;
is the total number of active wells in monthi, and W; is the observed (i.e., estimated and
reported by company) number of wells that conduct aring in nonth i. The rest of the
symbols have the same meaning as in Model 5.12.

To demonstrate this model's capability on actual data, boththe Blue Buttes Oil eld
and Operator A are tested. For the oil eld, the posterior ditgributions and trace plots
of the hyperparameters are presented in Figure 5.5. The posgte predictive samples for
the underlying process of well aring proportion ;) are demonstrated in Figure 5.6. The
visualization strategy (di erent colors represent di erent percentiles, etc.) is the same as in

Section 5.3.1.
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Figure 5.5: Posterior distributions and trace plots for the Bie Buttes Oil eld well aring
proportion model. Well mixing and convergence have been aeted.

Figure 5.6: Posterior predictive samples showing the well reng proportion variations at the
Blue Buttes Oil eld. Blue points are the observed data whilaed lines present the posterior
samples.

With the exact same model speci cation, this model is also tesd with the operator's data.
The posterior distributions and trace plots of the hyperpaameters are presented in Figure 5.7.
The posterior predictive samples for the underlying procesf well aring proportion (p;)
are demonstrated in Figure 5.8. Comparing the two sets of ges from the oil eld and the

operator, it can be seen:
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1. With the same prior placed on the lengthscale, the oil eld model learns from the data
and gives a posterior mode aroun8:5, whereas the operator model gives a posterior
mode around 1@. This is also re ected in the posterior samples time serigdot: the
oil eld experienced some well aring proportion changes inelative shorter time periods,

whereas the operator underwent changes on a longer time span

2. The oil eld's posterior samples time series show narrowerepcentile bands while the
operator's show wider percentile bands. This is due to thedathat the operator chosen
here had smaller number of wells than the oil eld. Since theithomial observation model
is used for each month's aring well count, this naturally r@resents and quanti es the
uncertainties (i.e., binary data contains less informatio especially when the sample
size is small), as well as aligns with the expectation that vem there is more data, there

should be less uncertainties; when there is less data, thet®uld be more uncertainties.

Figure 5.7: Posterior distributions and trace plots for the @erator A well aring proportion
model. Well mixing and convergence have been achieved. Netite di erences between
these inference results and those in Figure 5.5, both of whiaehe based on exactly the same
priors and likelihood, demonstrating the model speci catin's wide applicability.

This really showcases how and why to encode domain expertisearing data analytics
while exploiting machine learning models, which is also theason to choose the Bayesian
approach. One could t a black box model either with target vluesW; 2 R, or without

any probabilistic view (e.g., to optimize for the best deteninistic function mapping in the
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Figure 5.8: Posterior predictive samples showing the well reng proportion variations of
Operator A. Blue points are the observed data while red linegg@sent the posterior samples.

hypothesis space). But either of those would be fundamentalawed. Domain expertise
indicates the well count has to be a non-positive integerei, W; 2 Nqo. Furthermore, neither
the NDIC reporting nor the satellite estimation is ever produed in a noise-free environment,
and therefore probabilistic modeling is a must. Compared tisequentist machine learning,
Bayesian learning is entirely probabilistic and gives onéné capability and freedom to encode

his/her domain expertise.
5.3.3 Modeling Flare Detection Count

Satellite detected are count provides an unbiased indicat of aring intensity. How this
indicator varies in a certain time period for a certain enty is valuable information to obtain.
The model is speci ed through Expressions 5.15a{5.15f. Esgially the latent process is
modeled as a Gaussian Cox process (Adams et al. 2009), where Boisson process has

varying intensity across time domain and a GP prior is placedn this intensity.

Gamma(2 1) (5.15a)
Half-Cauchy(5) (5.15b)
k= 2 kmat ern52 (X; XO; \) (5-15C)
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f GP (0;k) (5.15d)
i =exp f(x) (5.15e)
Ci Poisson( ) (5.15f)

where ; is the unobserved aring intensity (\true" count) in month i and C; is the reported
VIIRS detection count in monthi. Since ; is bounded to be positive, the natural exponential
function is applied to the latent process. The rest of the sybols have the same meaning as
in Model 5.12.

For the task of aring pattern recognition, the author believes this approach (leveraging
a Gaussian Cox process) is a nicer surrogate than a populaaolge point model presented

in (Davidson-Pilon 2015; Salvatier et al. 2016; Stan Devglment Team 2020), which is

speci ed by:
e Exponential(re) (5.16a)
| Exponential(r;) (5.16b)
s Uniform(1;T) (5.16c¢)
Ci Poisson(<s ?e : 1) (5.16d)

wheree and | are the early and late rates respectively,, and r, controls the priors for the
early and late rates,s is the change point, T is the total time period, and the rate in the
Poisson likelihood is decided through a ternary conditiomaperator (?:). The reason is
that, although this model could be generalized to more thanne change point, its usage
is restricted by the assumption that any period between twodjacent change points has a
constant rate. This limitation becomes obvious when analyr the actual aring data in the
discussions below, and is a major disadvantage of the chamment model.

The Gaussian Cox process model is tested with the Blue Butt€dl eld's data. Since
only VIIRS data is used, the whole time series is analyzed beging in 2012. The posterior
distributions and trace plots of the hyperparameters are psented in Figure 5.9. The

posterior predictive samples for the underlying process @fre count (C;) are demonstrated
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in Figure 5.10. The visualization strategy (di erent colorsrepresent di erent percentiles, etc.)
is the same as in Section 5.3.1. From the time series plot, &rc be seen the observations
from 2014 to 2017 can possibly be described by a change poimdel (with late 2015 being a
potential change point), but the steady growth before and &r that time span will frustrate

accurate inference with such a model.

Figure 5.9: Posterior distributions and trace plots for the RBie Buttes Oil eld are count
model. Well mixing and convergence have been achieved.

Figure 5.10: Posterior predictive samples showing the areant variations at the Blue Buttes
Oil eld. Blue points are the observed data while red lines msent the posterior samples.
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This model's inference results serve as a type of con rmatipif not evidence, in terms of
whether or not an entity achieves the goal/target in reducig the number of wells aring,
when the detection count is used as a surrogate for the numbafrwells aring. In practice,
reducing the number of wells aring is exactly the second gbaf the regulatory policy
introduced by the North Dakota Industrial Commission in 2014 If the state government is
interested in this order's e ectiveness from a macroscopstandpoint, the model can also be
used to conduct inferences with the state level data. In thisase, the posterior distributions
and trace plots of the hyperparameters are presented in Figub.11. The posterior predictive

samples for the underlying process of are count}) are demonstrated in Figure 5.12.

Figure 5.11: Posterior distributions and trace plots for théNorth Dakota are count model.
Well mixing and convergence have been achieved. Notice theedences between these
inference results and those in Figure 5.9, both of which are ¢&d on exactly the same priors
and likelihood, demonstrating the model speci cation's wid applicability.

The percentile bands in this case are quite narrow, which ifghte greater con dence
in the inferences about the data generating process giveretinodel assumptions. By not
(over) tting to each and every observation, interesting p#terns are discovered, for example
in every year there is one and only one peak that happened armmuJune. It is worth
pointing out that there is no model that can tell the modelerfi his/her assumptions are good,
only domain expertise might. This model employing a Poissarbservation model could be

considered \rigid" due to the fact that a Poisson likelihoochas only one parameter (to
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Figure 5.12: Posterior predictive samples showing the areoant variations in North Dakota.
Blue points are the observed data while red lines present tip@sterior samples.

control both the mean and variance) and, furthermore, when is large as in this scenario,
a Poisson distribution is well approximated by a normal distbution. Whenever the state
government believes that overdispersion might exist, oth@bservation models such as the
negative binomial distribution could be considered. In sinccases, only Expression 5.15f needs
to be changed to the negative binomial likelihood, with a por added for the overdispersion
parameter. The speci c parameterization is given by Equatn 6.4 in Section 6.3. This
really showcases both the exibility and interpretability of taking a Bayesian approach for

high-stakes decision making areas including aring data aytics.
5.3.4 Modeling Proportion of Oil Flared

As crude oil (as opposed to natural gas) is the main commaodityt ¢his time, the amount
of gas in a barrel of oil equivalent BOE) that is ared provides an indicator of production
e ciency due to aring. In this work, the normalized quantit y, proportion of oil production
being ared, is used such that the model speci cation is gene for large and small entities.

The model is speci ed through Expressions 5.17a{5.17j:

Gamma(2 1) (5.17a)
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Half-Cauchy(5) (5.17b)

Gamma(2 0:1) (5.17¢c)
A2 Half-Cauchy(5) (5.17d)
k= 2 Kmat ems2 (X; XO; Y (5.17e)
f GP (0;k) (5.17f)
i =logit * f(x) (5.179)
i= Oi (517h)
6 Mcf .
c= 1BOE (5.17i)
Fi=c=:E; Studentt(; ;;1="?) (5.17j)

where:

i is the underlying aring BOE proportion of month i;
O; is the total oil production of month i;
i denotes the \true" ared BOE of month i;
¢ denotes the conversion factor thaé Mcf equals1 BOE, given by the United States
Geological Survey (2000);

E; is the reported ared BOE, which is modeled using &tudent-t observation model.

The rest of the symbols have the same meaning as in Model 5.1 test this model's
performance on real data, both the Blue Buttes Oil eld and Oprator A are used. For the
oil eld, the posterior distributions and trace plots of the hyperparameters are presented in
Figure 5.13. The posterior predictive samples for the undgmhg process oBOE aring
proportion ( ;) are demonstrated in Figure 5.14. The visualization stratgg(di erent colors
represent di erent percentiles, etc.) is the same as in Séun 5.3.1.

With the exact same model speci cation, this model is also tesd with the operator's
data. The posterior distributions and trace plots of the hyprparameters are presented in
Figure 5.15. The posterior predictive samples for the undgmhg process oBOE aring
proportion ( ;) are demonstrated in Figure 5.16.

Comparing the two sets of gures from the oil eld and the opedtor, it can be observed:
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Figure 5.13: Posterior distributions and trace plots for theéBlue Buttes Oil eld BOE aring
proportion model. Well mixing and convergence have been aeted.

Figure 5.14: Posterior predictive samples showing trR®OE aring proportion variations
at the Blue Buttes Oil eld. Blue points are the observed datawhile red lines present the
posterior samples.
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Figure 5.15: Posterior distributions and trace plots of th@8OE aring proportion model
for Operator A. Well mixing and convergence have been achielveNotice the di erences
between these inference results and those in Figure 5.13, lbof which are based on exactly
the same priors and likelihood, demonstrating the model spiecation's wide applicability.

1. With the same prior placed on the lengthscale, which has a mean of (months), both
models have updated the posterior to move away from this meare ecting a long
range variation. The oil eld has a posterior mode aboul year while the operator has
a mode aroundl5 months. The operator has much larger reporting variabilityshown

by the parameter 2.

2. With a Studentt likelihood, both models demonstrate robustness to outlierand
over tting. This can be seen from the oil eld's late 2019 obarvations and the operator's
early 2016 observations. For the posterior function sampeshown as the thin lines,

some of them are indeed pulled towards those \outliers". Hower, the percentile plots
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Figure 5.16: Posterior predictive samples showing tH@OE aring proportion variations of

Operator A. Blue points are the observed data while red linegg@sent the posterior samples.
(shown as the colored bands) are not impacted and those rgatlan be interpreted as
the trend which is most compatible with the data and the assuptions. This built-in
Occam's razor of the Bayesian approach when choosing appiape priors is very
impressive. In many of the frequentist machine learning miebds, if the regularization
strategy is not implemented well especially when the sampdéze is not huge enough
for the asymptotic properties to kick in, outliers become W uential observations" that

will have a huge undesirable e ect on the inference results.

5.3.5 Modeling Scale Factor between VIIRS and NDIC

Both NDIC and VIIRS reporting give (estimated) ared gas volune. The scale factor

between the two sources provides insights into whether NDI@porting is consistent:
1. for di erent entities (e.g., among a group of operators)and
2. for one entity when looking at a certain time period.

This is based on the fact that the satellite detection procesg algorithm is unbiased and
consistent. Item 2 is particularly interesting in terms of ime series analytics. The model is

speci ed through Expressions 5.18a{5.18n:
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‘ma Gamma(§ 2) (5.18a)

maa  Half-Cauchy(5) (5.18b)
T N (121) (5.18c)
per  Gamma(4 3) (5.18d)
per  Half-Cauchy(5) (5.18e)
Gamma(2 0:1) (5.18f)

A2 Half-Cauchy(5) (5.189)
Kmat = ot Kmatems2 (% X5 " mat) (5.18h)
Keer = 2er  Kperiodic (Xi X% T per) (5.18i)
kwn = Kanienase (X; X5 = 1€ 6) (5.18)
f GP (0;Kma + Kper + Kwn) (5.18K)

i =exp f(xi) (5.18l)

i = i VIIRS; (5.18m)
NDIC; Studentt(; ;:1="?) (5.18n)

where:

"mat IS the lengthscale for the Makrn kernel;
mat 1S the marginal deviation for the Maern kernel,
T is the period for the periodic kernel;
“per IS the lengthscale for the periodic kernel,
per 1S the marginal deviation for the periodic kernel;
Kmat is the Magern kernel (component);
Kper is the periodic kernel (component);
kwn Is the white noise kernel (component);
f denotes the latent process, which is distributed according a GP whose covariance
function is the sum of 3 kernels;
i is the underlying scale factor between VIIRS and NDIC of month Since this scale

factor is bounded to be positive, the natural exponential fuction is applied to
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the latent process;
VIIRS; is the VIIRS reported volume of monthi;
i denotes the underlying ared volume of month;
NDIC; is the NDIC reported volume of monthi, which is modeled using &tudent-t

observation model.

The rest of the symbols have the same meaning as in Model 5.he reason for adding
a periodic kernel is to investigate if there are any seasonadtterns. Maintaining a proper
Bayesian work ow lets the data speak for itself, i.e., whe#r there exists seasonal behaviors
or not, as shown by the two case studies in this section.

The model is rst tted with the state level data to investigate the macroscopic reporting
consistency. The posterior distributions and trace plotsfadhe hyperparameters are presented
in Figure 5.17. The posterior predictive samples for the undging process of the scale factor
variations ( ) are demonstrated in Figure 5.18. The visualization stratgg(di erent colors
represent di erent percentiles, etc.) is the same as in Sémh 5.3.1. From the posterior time
series plot, it can be seen in general the volumes from NDIC m@ting is smaller than that of
VIIRS reporting, except for the times when the total aring magnitude was small (indicated
by the smaller points). More importantly, within each and eery year from 2015 to 2018,
there is a decreasing trend in the values of the scale factor\ around midyear. Each year's
latent process from Q2 to Q3 can be viewed as a \seesaw", withlyleing the middle pivot
point and the months after July always going down. Note that whin each year, the NDIC
reporting of ared volumes might increase steadily or a lotwhich was actually happening
from the time series plot in Figure 3.7), however this scaledtr declining trends indicate the
satellites observed much greater aring activities than wat was reported by the companies!
This nding suggests that the NDIC reporting is very likely nd consistent throughout the
year, and the state government should be concerned that sormempanies might underreport

their ared volumes especially in the second half of the year
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Figure 5.17: Posterior distributions and trace plots for théNorth Dakota VIIRS-NDIC scale
factor model. Well mixing and convergence have been achidve
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Figure 5.18: Posterior predictive samples showing the scadéetor variations of North Dakota.
Blue points are the observed data while red lines present tip®sterior samples. Larger points
indicate greater aring magnitude as observed from VIIRS.

A interesting question arises: is this seasonal behavioriuersal across all the entities?
The answer is unfortunately no, which indicates some operas likely reported their ared
volume in an inconsistent manner throughout the entire yearln fact, if the Blue Buttes
Oil eld data is used to t the model, rather consistent behavor is observed. In this case, the
posterior distributions and trace plots of the hyperparanters are presented in Figure 5.19.
The posterior predictive samples for the underlying procesf the scale factor variations (;)
are demonstrated in Figure 5.20. With the exact same model speation incorporating
the periodic kernel, no apparent seasonal behaviors areatimned by the inference process.
There are much uncertainties around the time of early 2016,h&re the point sizes indicate
the overall aring magnitudes were small as observed from RIS, and the NDIC reported
volumes were actually larger than that of VIIRS. This could belue to the truncation e ects
instead of the reporting inconsistencies, i.e., when theras are sporadic and weaker, they are
not easily captured by the satellites, resulting in a trunci@d sample for the VIIRS processing
work ow. By applying this model and work ow to the other major producing elds, it will

likely pick up the ones who have the \seesaw" behaviors in tlgeporting.
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Figure 5.19: Posterior distributions and trace plots for théBlue Buttes Oil eld VIIRS-NDIC
scale factor model. Well mixing and convergence have beeiniaged. Notice the di erences
between these inference results and those in Figure 5.17, lbof which are based on exactly
the same priors and likelihood, demonstrating the model spiecation’s wide applicability.
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Figure 5.20: Posterior predictive samples showing the scdbector variations in the Blue
Buttes Oil eld. Blue points are the observed data while redihes present the posterior
samples. Larger points indicate greater aring magnitudesobserved from VIIRS.

5.3.6 Predicting NDIC Flared Volume

GP is not only fully capable of making predictions once the nu®l hyperparameters are
learned, but it can provide rigorously constructed intervis quantifying uncertainties as well
through Expression 5.11, for which many of the frequentist athine learning methods fail to
do. The author chooses to present one particular predictiorase study, that is to predict
NDIC reported volume based on the projected scale factor been VIIRS and NDIC. This
will be a particular interesting deployment scenario oncea$t satellite detection/estimation
is available, which takes less time than waiting on companyeports followed by compiling
everything into an analytics-ready format.

The predictions are generated in the form of posterior prective samples. Along with
the historical observations, the predictions of the scaladtor for the next six months are
presented in Figure 5.21. The very wide percentile bands indlforecasting indicate that the
seasonal behaviors will likely take e ect again, however thi great uncertainties. If point
predictions (i.e., without the prediction intervals) are reeded, one can always use the posterior

mean, mode, etc. to construct that \best" function; howevethis showcases why predicting
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the future is generally very di cult and uncertainties shoud always be properly characterized.

Figure 5.21: Posterior predictive samples showing prediotis of the scale factor for the next
six months. Blue points are the observed data while red linggesent the posterior samples.
Larger points indicate greater aring magnitude as obsergefrom VIIRS.

5.3.7 A Look Back at the Prior Choices

Looking back at the suite of models developed, the set of prsofor the latent functions
have been the same (except the scale factor model where a paig kernel is added). However
the posteriors are all updated (i.e., \learned") based on eh dataset and modeling goal. This

means the below set of priors

Gamma(2 1) (5.19a)
Half-Cauchy(5) (5.19b)
k= 2 Knatemsz (x%7) (5.19¢)
f GP (0;Kk) (5.19d)

serves as a generic framework and can be recommended forngriime series analytics
in general, in a GP context. Notice this prior choice gives laht function values in the

unconstrained space, i.ef (x) 2 R. However, in many situations, the domain expertise
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indicates the quantities of interest live in constrained sgce, such as:
" R for Poisson rate parameter when modeling count data, and
~ [0; 1] for binomial success probability when modeling aring wieproportion.

To better re ect the domain expertise, the link functions ca be leveraged. For the above
scenarios, the log link function and the logit link functioncan be applied, respectively.
Although this prior con guration is the result of several degyn iterations and tested with
real data, there is no reason to think that it is optimal for eery entity. Indeed, the model
for scale factor between VIIRS and NDIC has bespoke componeitsts priors. The Stan
Development Team (2020) also gave some general prior chaeeommendations for GP.
The whole suite of models demonstrate full capability of haessing the temporal structure
in aring time series at di erent levels for di erent entiti es. This provides huge potential for
extracting insights from noisy monthly data streams. For tle situations where cross-sectional
data analytics is desirable, for example when the latest mttly data is available and the
state government needs insights from merely that month (befe appending it to the whole
historical data for a longitudinal study), other types of malels can be built. Such is discussed

in the next chapter.
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CHAPTER 6
UNSUPERVISED LEARNING FROM MULTIPLE PERSPECTIVES

\Estimation of densities is a universal problem of
statistics (knowing the densities one can solve

various problems)."
| Vapnik (2000)

6.1 Learning the Distribution

In this chapter, the author studies how to describe the arig related quantities' distribu-
tion among the oil elds in North Dakota in a cross-sectionaletting. That is, data collected
for one point or a period of time (such as a certain month or quir) is analyzed. In this

setting, the data used for learning is unlabeled:

U= X1 X500 X005 (6.1)
wherex;, i =1;2;:::;N, are the observations for tha-th oil eld. Thus unsupervised learning
is naturally applied. The model to be learned is in the form of conditional probability
distribution P (x j z) where z is some latent structure and represents the parameters.

This has many application scenarios in practice. When the last month's or quarter's
data is available, the government of North Dakota might needistributional insights of
the population (of oil elds), preferably beyond some form®f the order statistics (such
as the ve-number summary). This cross-sectional study isspecially valuable and worth
conducting when a direct comparison with previous monthsigarters (which can be either
the immediately previous one, or the same month/quarter inqgvious years) is desirable,

or deeper understanding of the population is needed, suchlasking for potential clusters

among the entities.
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6.2 Probability Model Estimation

The task of learning distributions is a probability model esmation problem in unsu-
pervised settings (Li 2019). It sometimes takes the form ofedsity estimation, which is
considered by some statisticians as the most fundamentalpic in probabilistic machine
learning (Yu 2017). A basic and common technique, the histogm, can be easily misused

which leads to biased understanding of the dataset (Figurel§.

Figure 6.1: E ective usage of histograms can be surprisinggubtle. With the exact same
dataset adapted from (VanderPlas et al. 2012), the two hisgwams with di erent bin sizes
demonstrate di erent multimodal features. Accepting some efault con guration from some
software package yields only one view of the distribution.

In general, assuming that the data is generated by a probaityl model, the structure
and parameters of that model are learned from the data. The pe of the structure, i.e.,
the set of possible probability models is usually given (agmed), while the speci cs of the
structure and the parameters have to be learned. The goal is thd the model structure and
the parameters which are most likely to have generated the @a

The probability model can be a mixture model or a graphical nael. In this dissertation,
the mixture model is considered, where the assumption is thdata comes from a mixture
of distributions. Mathematically, mixture models descrile a distribution p(x) by a convex

combination of K base distributions:
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p(x) = kPk(X) (6.2a)

k=1, « O (6.2b)

wherepy are the components in the mixture and  are the mixture weights. Mixture models
can be interpreted as the overall population being a combihan of distinct subpopulations.
Mixture models can be generalized to the continuous casesveal. For example, both the
negative binomial distribution and Student'st-distribution can be thought of a mixture of
some continuous distributions (Martin 2018).

In the model representationP (x j z), x stands for the observations which can be discrete
or continuous quantities;z represents the latent structure which is a discrete randomaviable.
The model is parameterized by . When the model is assumed to be a mixture type,
represents the di erent components. The knowledge of the rdel structure and parameters are
learned from the dataU = fXxq;X5;:::;Xn g, Where in this workx; 2 X RYL,i=1:2::::N,

is the observation for thei-th oil eld.
6.3 Modeling VIIRS Detection Count

In Section 5.3.3, methods are developed for analyzing thent series of VIIRS detection
count for any given oil eld. This section tackles the proble of how to extract insights from
any given month's are detection count in North Dakota's oil elds. Speci cally, by learning
from each oil eld's detection count, the population of the @ elds is summarized, through
which the state government can gain distributional insigt.

Following the general form in Section 6.2, this problem beotes a special case that
the latent structure z does not exist, i.e., satisfyind® (x j z) = P (x), wherex represents
the detection count. It is when estimating conditional prohbility distributions becomes
estimating probability distributions, therefore, only esimating the parameters ofP (x) is

enough. Density estimation in classical statistics, for gtance the Gaussian parameters
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estimation, is an example of such scenarios.
Since the count data is modeled, the author compares the foabservation models below

with many randomly chosen months' data:
1. Poisson likelihood
2. Negative binomial likelihood
3. Zero-in ated Poisson (ZIP) likelihood
4. Zero-in ated negative binomial (ZINB) likelihood

Items 3 and 4 above are experimented with because many of thketds in North Dakota
did not have detection records from VIIRS for a given month. Térefore, zero-in ated models
are tried as well. Through the posterior predictive checkst is found that the negative
binomial observation model ts data in the most compatible ranner, which is employed in
this work.

The model is speci ed through Expressions 6.3a{6.3c:

Gamma(2 1) (6.3a)
Exponential(1) (6.3b)
Ci NegBinomial(; ) (6.3c)

where C; denotes the detection count for the-th oil eld. The probability mass function of
the negative binomial likelihood is parameterized by a lotan parameter 2 R.,, and an

overdispersion parameter 2 R, in the following way:

( +n "

PX=ni: )= ey %

forn 2 Ng; (6.4)

where () is the gamma function. Through this parameterization, theexpectation and

variance of a random variableX P are:

E[X]= and V[X]= + —2: (6.5)
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As the negative binomial distribution describes a Poisson mdom variable whose rate
parameter is gamma distributed, and due to the fact thaPoissor{ ) has variance , the

learned parameters provide nice interpretations for the ate government:

indicates a mean intensity from the detection count's pergztive, just like the
interpretation of a Poisson's rate parameter. The larger thvalue of , the more are

detections are present on average at an oil eld level.

indicates the heterogeneity among the oil elds in North Daka. Specically, 2= is
the additional variance above that of a Poisson with rate . The smaller the value of ,

the more olil elds with extreme detection counts (away from ) are present.

To demonstrate this model's compatibility with the observéions, the data from October
2018 is used. There are 506 oil elds in total. The distributin of the detection count for all

the oil elds is illustrated in Figure 6.2.

Figure 6.2: A histogram for the distribution of the oil eld detection counts from October
2018. There are lots of zeros (more tha3b0 and a few oil elds have relatively high detection
counts (e.g., greater than or equal to 20).
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After tting Model 6.3, the posterior distributions and trace plots of the hyperparameters

are presented in Figure 6.3. The parameter estimation resslare reported in Table 6.1.

Figure 6.3: Posterior distributions and trace plots for the ibeld detection counts distribution,
tted with the data from October 2018. Well mixing and convegence have been achieved.

Table 6.1: Parameter Estimates of Oil eld Detection Count Dstribution

Parameter Variable Point Estimate 90% CI
Intensity 1:005 (0.814, 1.200)
Heterogeneity 0168 (0.135, 0.202)

The point estimate for the intensity parameter is relatively small (* 1), which possibly
results from the model being overwhelmed by the large numbef zero counts. However,
by inspecting the histogram from Figure 6.2, the tail of the ditribution de nitely extends
far beyond *. Therefore, posterior predictive checks are performed tarsitinize Model 6.3's
compatibility with the observations.

These types of checks substantially harness the informatidrom the samples drawn from
the posterior distributions. By combining the uncertaintyabout the parameters, as described
by the posterior, with the uncertainty about the outcomes, a described by the likelihood, the
generative model is employed to simulate the implied obsations. Subsequently, posterior
predictive plots are generated to display the model-basedealictions along with the raw data.

Such a plot for the detection count distribution model is gign in Figure 6.4.
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Figure 6.4: Histograms for the distribution of the oil eld deection counts from October
2018. Blue: original data observed from VIIRS. Gray:. postar predictive simulation
results obtained from Model 6.3. Each set of the simulatioresults is plotted using gray
with transparency via alpha blending (setting = 0:15), such that the darker gray on the
histograms indicates the simulated data which is more aliga with the model's expectation.

In Figure 6.4, the histograms for the original VIIRS observatins, as well as all of the
posterior predictive simulations are displayed. Each sef the parameter values (of and )
are used in simulating one synthetic snapshot of the oil eklin North Dakota for October
2018, and there are in totall2,000 snapshots (constructed by the samples from the four
Markov chains, each of which was setup f000sampling iterations). Every histogram is
visualized through an un lled line chart, i.e., rendering he \step" histogram.

Through Figure 6.4, it appears that the model is very compatie with the observations
from October 2018, in that there is no obvious and consistewliscrepancy between the
observed and simulated data. To delve into the tail behavisr i.e., beyond the zero count, a
zoomed-in view is depicted in Figure 6.5. A few discrepanciase observed from this view,
for example, when the counC; = 11 and C; = 12. One thing to note is that, with such a low
mean (* 1), even with a relatively large overdispersion’Y  0:2), the model would still be

surprised by the high detection count, e.g., whe@; 20.
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Figure 6.5: Histograms for the distribution of the oil eld detction counts from October
2018, with they-axis clipped to better present those counts which are greatthan zero. The
legend with the associated color scheme is the same as in Fey6r4.

The thorough performance of Model 6.3 that is characterizeloy a negative binomial
likelihood, and the complicatedness of the real data mangethemselves through the posterior
predictive checks. As discussed earlier in Section 6.3, thegative binomial likelihood was
compared with three other likelihoods (Poisson, ZIP and ZINBon many randomly chosen
months, and found to outperform them in terms of the compatiitity with the data in general.
In fact, there are some months' data that are distributed in acleaner” way, i.e., almost
perfectly described by Model 6.3. The author chooses not tbearry-pick those data, in the
hope of not misleading the readers about the performance dfet developed model.

Nevertheless, the simplicity, interpretability, and e eciveness of Model 6.3 proves itself in
the mission of modeling detection count distribution. In pactice, the state government can

bene t from this model in the two use cases below:

1. When the latest month's data becomes available, Model 6.3 cée tted to obtain an
estimate for and . These parameter estimates along with the credible interigacan

be compared with those from the earlier times. In the case dig discussions above, the
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learned parameters can be compared either with August/Septder from 2018, or with
October from 2016/2017. From the comparison, it provides sights into whether there
are more detection counts on average (characterized by adar ), or if more oil elds

with an atypical number of detections are spotted (charactezed by a smaller ).

2. After the model is tted, it is recommended to perform the poserior predictive checks
as demonstrated in Figure 6.4 and Figure 6.5, to identify anysses of the ts. The list
of the oil elds which have large deviations from the simulad data, especially those on
the far tail (e.g., whenC; 20), are worth tracking. That is, to investigate whether
the \anomalies” from each month are random samples from theopulation or do not
change from month to month. This provides further understaging of how the oil elds

population behave, from the perspective of the detection gnt.

A distributional summary of the detection counts exhibits aly one facet of the aring
landscape, while the ared volumes distribution provides rother crucial one, which is

discussed next.
6.4 Modeling Flared Volume

In this section, the VIIRS estimated ared volumes for di erent oil elds are studied
from a distributional point of view. The dataset from a threemonth period is analyzed
for demonstration purposes. Speci cally, following the reerse geocoding as discussed in
Section 3.3, all the oil elds’ cumulative ared volumes dumg Q4 2018 are computed and
complied for analysis.

There are in total 152 oil elds that have VIIRS reported volumes in this time span. The
data is highly skewed (Figure 6.6). Therefore, for each oill@, the order of magnitude of
the ared volume (in bcm) is computed for the analysis, instead of working with the aginal
absolute volumes.

From an applied perspective, taking the log of a measure cams the measure into

magnitudes (McElreath 2015), which is applied to each oilld's ared volume:
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Figure 6.6: Histogram for the distribution of the oil eld ared volumes from Q4 2018. Most
of the oil elds have relatively small ared volumes (e.g.,éss than0:01 bcm), while a few
oil elds have volumes that are greater than @ bcm.

Li = log(Fy); (6.6)

whereF; is the original ared volume inbcm, and L; is the ared volume magnitude, both of
which are for thei-th oil eld. In this dissertation, base e is always used for the logarithm (i.e.,
natural logarithm). A univariate distribution of the magnitudes is visualized in Figure 6.7.
Among the three approaches used to visualize the distributip only the rug plot does
not lead to subtleties due to the hyperparameters used. Howey as a 1D scatter plot,
its representation ability is naturally limited. The histogram su ers from the problem as
illustrated in Figure 6.1. The curve is generated by kernel dsity estimation (KDE). For a

given dataset as de ned in Equation 6.1, KDE represents thenderlying distribution as:

1 X X X
p(x)—m. K h (6.7)

whereK () is a kernel function andh is a bandwidth parameter. To generate Figure 6.7, the

Gaussian kernel is used, which is given by:
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Figure 6.7: Distribution of the oil eld ared volume magnitudes from Q4 2018. The rug
plot marks the value for each oil eld. The histogram is genated with nine bins. The curve
displays a Gaussian kernel density estimate.

K@= pexp % 6.8)
2 2
and h is chosen based on Scott's rule.

Since the bandwidth plays a similar role as the bin size in egrams, KDE can also
lead to the same issue as in histograms. Nevertheless, alla@r(the rug plot, histogram and
KDE) agree that a single Gaussian approximation of the dengiwhich generates this data
would be a poor approximation. Therefore, Gaussian mixturemodel (GMM) is employed
to represent the data, i.e. the base distributions in Model.B are chosen to be Gaussians.

GMM provides more expressive modeling capabilities and alpossibilities for clustering.
6.4.1 Model Speci cation

As discussed earlier, since the ared volume is a continuousantity, density estimation is
applicable and tackled with GMM. At rst, the data generating process is considered, which

paves the way for potential clustering applications. Thatd, each data pointL; (de ned in
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Equation 6.6) is assumed to be generated by exactly one mixtucomponent. The number
of components,K, is unknown, and up to seven components are tried to t the daiset
visualized in Figure 6.7. A relatively small number of compamnts are experimented, because

as the number of components increases, it becomes more diltto interpret the modeling

=( niin k)=6 1k (6.9)

p Dirichlet( ) (6.9b)

z; Categorical(p) (6.9¢)

l; =minflLy;:::;Lag (6.9d)

l, =maxfLq;:::;Lng (6.9e)
ec=li+(k 1) 2 I © k=1;:1::K (6.9f)

K 1

k N (ex2); k=1;:::;;K (6.90)

x Half-Normal(2); k=1;:::;K (6.9h)
Lij(z=1]) N () j2f1:::Kg (6.9i)

where:

is the vector of concentration parameters for the Dirichledistribution, which is a
multivariate generalization of the beta distribution;

p is the simplex of probabilities for the mixture componentsyhich is assigned
a Dirichlet prior. This prior with each value inside being 6, is a weakly
informative prior, expecting anypx inside p could be bigger or smaller than
the others. Ten random draws fronDirichlet([6; 6; 6; 6; 6; 6; 6]) are displayed in
Figure 6.8;

z; is the probable mixture component that thei-th oil eld belongs to;

I, and 1, are the lower and upper bound fof L;g, , respectively;

ex is used in \initializing" the location of the k-th mixture component, andf ey g},

essentially represent th&k evenly spaced points between| I,];
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k IS the mean for thek-th Gaussian component;
k Is the standard deviation for thek-th Gaussian component;
L; is the ared volume magnitude of thei-th oil eld, which is generated by the

mixture componentz;.

Figure 6.8: Ten random draws from a Dirichlet prior with = (6 6; 6; 6; 6; 6; 6). One draw is
highlighted to show that this prior is weak, in that it does na force all the probabilities (in
any single draw) to be equal.

Model 6.9, while unambiguously expressing the assumed gatiee process, relies on
sampling the discrete latent variables,, which is controlled by a categorical mixing dis-
tribution. This reliance causes slow mixing and ine ectiveexploration of the posterior
distribution. An equivalent parameterization which addreses these problems is to marginal-

ize out the z parameter. The marginalized model is speci ed through Expssions 6.10a{6.10h,

8K 2f2:::;7g
=( it k)=6 Ik (6.10a)
w  Dirichlet( ) (6.10b)
l; =minflLy;:::;Lnhg (6.10c)
l, =maxfLy;:::;Lnhg (6.10d)
_ ol
ex=I+(k 1) T k=1;:::;K (6.10e)



k N (eg;2); k=1;:::;K (6.10f)
k  Half-Normal(2); k=1;:::;K (6.1009)
X
Li W N(ij; ) (6.10h)
i=1
wherew are the mixture weights (i.e., mixing proportions), and therest of the symbols have
the same meaning as in Model 6.9. The likelihood function, ded in Expression 6.10h,

corresponds with the density of a mixture model expressediis general form (Equation 6.2a).

results with di erent number of components speci ed. For eeh K, rapid mixing and fast
convergence of the Markov chains are obtained. The modelingsults are displayed in
Figure 6.9, where the KDE (same as in Figure 6.7) and the Gaussiaomponents inferred
are plotted along with the posterior samples.

It can be observed that, when using a mixture of Gaussians,émultimodal features
can be represented in a relative e ortlessly way, and all thenean ts are quite close to
the one obtained with KDE. As the number of components increas, for example when
K =6 or K =7, the mean density estimation using GMM resembles KDE morelosely, but
the samples from the posterior show more stochasticity, wifi is an indicator of potential
over tting. This naturally leads to the question of how to decide the number of components

for this dataset.
6.4.2 Model Comparison

Choosing the besK is a model comparison problem, for which there does not exist
silver bullet. In this dissertation, the author chooses todke the information criteria approach,
speci cally leveraging the widely applicable informatiorcriterion (WAIC) introduced by
Watanabe (2010). Information criteria provide a theoretial estimate of the relative out-of-
sample KL divergence (McElreath 2020), and thus a lower vadus better. Following Martin

(2018) and McElreath (2020), WAIC is computed by:
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Figure 6.9: GMM inference results with di erentK's. The thick blue line denotes the
posterior mean t of the underlying density. The light blue ines show50 random samples
from the posterior. The dashed lines represent the posterimean Gaussian components.
The red curve shows the t using KDE.

WAIC(y; )= 2 lppd(y; )+ 2P (6.11a)
|
X 1% _ ' X _
log 5 pvij j) *+2 V [logp(yii ;I (6.11b)

i=1 j=1 i=1

I
N

where:

y denotes the observations ang; is the i-th observation;

is the posterior distribution and ; is the j -th set of sampled parameter values;
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S is the number of posterior samples;
Ippd( ) calculates the log pointwise predictive density;
P..c IS the penalty term given by summing up the variance in the logikelihood over

the S posterior samples, for each observatian

Fundamentally, model comparison is performed by leveragjrOccam's razor, i.e., parsi-
monious models are preferred in light of predictive perforamce. The models are compared

based on their WAIC values, which are summarized using Figurel®.

Figure 6.10: WAIC values with di erent K's. The open points denote the WAIC values. The
long horizontal line segments represent the standard erréor each WAIC. Standard error of
the di erence in WAIC (between each model and the top-rankedre) is shown by the lighter
line segment with the triangle on it.

It can be seen that the model with two Gaussian components atbe best (smallest
WAIC), however, there are considerable overlaps among all thie models when the estimated
standard error is taken into consideration. Considering #hfact that K = 2 gives the simplest
model, also that there are onlyl52 observations (oil elds) in this dataset, the GMM with

two components would be the best choice.
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6.4.3 Clustering

When looking at the developed model from a latent variable pgpective (Model 6.9), it
becomes obvious that the mixture model serves as a naturalnckdate for solving clustering
tasks, in that every observation ;) can be drawn from one of theK data generating
processes, each with its own set of parametefd,(L; j «; «). Since a probabilistic model
is built, for the purpose of clustering, a reasonable choite to assign a data point to the
mixture component (i.e., cluster) with the highest posteor probabilities (which are also
interpreted as the responsibilities). In the case of the Zamponent GMM trained from the
previous sections, for a particular observatior, the probability that it belongs to cluster

one (@ = 1) can be computed using Bayes' theorem (Equation 2.3a):

P(z=1)N(Xj 1; 1) _
PZ=1)NXj 15 )+ p(z=2)N(X] 2 2)°

where every part in the formula can be obtained from the pogter samples (e.g., using the

p(z=1jx)= (6.12)

posterior means).

Clustering, as an unsupervised approach, can be used to r@vihe hidden groups in
the observations. In the case of the oil eld aring magnitues data in this chapter, the two
clusters can be directly mapped to concepts such as major aminor aring elds. However,
it is usually the deeper insights into what caused these chess that the state government
is mostly interested in, for the sake of decision- and poliapaking for example. If the
oil elds belonging to the major aring cluster seem to be a viatile membership when more
months/quarters data are analyzed, the variations in aredvolumes are possibly tied more
closely to company strategies and movements. On the otherridj if there exists a group of
oil elds that are found to join the major aring cluster on a regular basis, this could provide
a perspective in regards to where to construct the next natal gas processing plants, i.e.,
the locations/capacities of the new gas plants should be optized based on those oil elds’

situations.
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In this chapter, the dataset complied for unsupervised leaing is univariate, i.e.,x; 2
X R GMM are also suitable for the density estimation and clusteng tasks when the
data goes beyond 1D. As an example, for the same oil elds stedifor Q4 2018, if their oll
production volumes are extracted from NDIC, a scatterplot ofas aring versus oil production
magnitudes is shown in Figure 6.11. It is very possible that éhdensity of the underlying
distribution can be modeled by a bivariate normal distributon or a 2D GMM. In such
cases, the mixture components become multivariate normaisttibutions, and the component
covariance matrices can be constructed with the help of theKl distribution (which is
employed in Models 4.5 and 4.7). The developed density modain be used, for example,
in anomaly detections, looking for any oil elds which have &endency to creep toward the
upper left corner (characterized by very little oil producion and a huge aring magnitude).
Similar to all the inferences presented throughout this dégrtation, one advantage of doing
such is that the decision making can be based on some consistaetrics (such as probability

scores), instead of some criteria based on human eyeballorgmprovising.

Figure 6.11: A scatterplot of oil production and ared gas valmes for di erent oil elds
in Q4 2018. Both thex- and y-axis are in log scale, showing the relationship between the
magnitudes.
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This concludes the statistical modeling journey of this dgertation. In the next chapter,
discussions are presented on one extension scenario andlmgger picture viewpoint, from

applying Bayesian learning to aring data.
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CHAPTER 7
DISCUSSION

This chapter discusses the possibility of operator level miboring and analytics, potential
result inconsistencies, and relates the endeavors of leagfrom aring data to the larger

process of applying machine learning in the petroleum engiering domain.
7.1 Operator Level Monitoring and Analytics

Up till this point, the satellite-detected aring statistic s have been applied to the state,
county, and oil eld levels. This is made possible by the revee geocoding discussed in
Section 3.3. An ideal application scenario is operator leveionitoring and analytics by
leveraging the information from the satellite detections.

Unfortunately, assigning ares to corresponding companieis not a straightforward
operation. One possible solution is to make use of the shapes of the leases, which are
not provided by NDIC. Some data vendors have such les in thenlatabase. However, after
spending some e ort investigating the lease shape les froone vendor, the author believes it
is possible to create more problems than solving the exisgirones, when bringing in such

information. In particular, some reasons include:
~ Multiple companies exist on a single lease.

The company names from the lease shape les do not always @spond with those on

the NDIC monthly production reports.
Some leases in the vendor's database miss start date or endeddata.

It takes time for the vendor to compile and digitize such infanation, which makes the

available lease shape les not up to date.
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Nevertheless, for such an important use case, the author maeal to develop a nearest-
neighbor-based approach which partly solves the problem @drithm 7.1). The essence of
this approach is to cautiously assign the closest well's ap#or to each satellite-detected
are. The closest wells are found based on the correspondifighe window. For example, for
the ares detected in January 2016, only the active wells repted on the NDIC production
report from the same month are looked up. The functiofkindClosestOperator() returns
the closest operator QP;) for each VIIRS detection, as well as the calculated distande) )
between each pair (of are and well). The distance is calcuked based on the haversine metric,
i.e., the great-circle distance, thus the Earth radiusRg) is needed. The function is essentially
performing the k-nearest-neighborsK-NN) search fork = 1. When the sample is as large as
in this case, i.e., there are usually a few hundred VIIRS detigmns and more than15,000
wells for each month, linear scanning each well's locationrfeach VIIRS detection is too
slow. Therefore, in this work, the function internally depads on a ball tree implementation
from scikit-learn (Pedregosa et al. 2011) for speedup on tkeNN search.

Once the 2-tuple, OP;;d;), is obtained for each VIIRS detection, some logics are imple
mented to decide whether to drop or keep the operator assigent. The idea is straightforward:
the assignment is immediately kept or discarded, whed is very small or very large, respec-
tively. If d; is mid-range, i.e.,dsecure @  deuort , the assignment will be in e ect, only if
the are and the operator are found to be located on the samewmship/range/section. The
township/range/section shape les, as part of the input forAlgorithm 7.1, are available from
the NDIC GIS Map Server. The reverse geocoding follows the €xaame procedure as in
Section 3.3. After the processing is completed, a small poni@f the VIIRS detections are
not used for operator level analytics, because either theyeatoo far away from the reported
well locations, or the townships/ranges/sections fail to mtch. It should be noted that, the
pseudocode for Algorithm 7.1 is written in a way that illustraes the precise details in the data
processing logics. For the implementation in this work, sognof the for-loops are replaced by

the vectorized operations for enhanced performance.
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Algorithm 7.1: Nearest-Neighbor-Based Flare Owner Assignment
Input: both VIIRS and NDIC reportings in WGS 84 coordinates, the
township/range/section shape les for North Dakota,dsecure » Jeutort » RE
Output: operators being assigned to most VIIRS detections

1N number of months
2 for i 1to ndo

3 VIIRS; the i-th month's observations from VIIRS

4 NDIC; the i-th month's reportings from NDIC

5 (OP;d)  FindClosestOperator( VIIRS;, NDIC;, Rg)
6 m  number of records in OP od

7 for | 1to mdo

8 OP; the closest operator found on the¢-th record
9 d;  the distance between the are and the closest well, for thieth record
10 if dj > deouorf then

1 | drop OP,

12 else if dj <dsecure then

13 | keep OR

14 else

15 if township/range/section agreethen

16 | keep OR

17 else

18 | drop OP,

19 end

20 end

21 end
22 end

The developed approach is tested with real aring data from Nth Dakota. For the

demonstrated cases in this section, the values below are sho for Algorithm 7.1:

Osecure =300m (7.1a)
eutor =800 mM (7.1b)
Re = 6371km (7.1c)

Some operators are found to show positive correlations be®n the NDIC and VIIRS
reported volumes. Examples of two operators, denoted by Qp#or B and Operator C, are

shown in Figure 7.1. The axes' meanings are the same as in thghtipanel of Figure 3.7. The
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legend shows the results of tting Equation 3.2d by ordinaryeast squares (OLS)R?1dj stands
for the adjusted R?. Although the di erences in Aope,amr indicate that there is heterogeneity
among the di erent companies, these operators show some sistency in terms of their own
reporting and have good matches with the VIIRS data up to a scalfactor (as the intercepts

are very close to zero).

(a) Operator B (b) Operator C

Figure 7.1: Examples of good ts between the NDIC and VIIRS repted volumes, at the
operator level.

However, some operators (e.g., Operator D and Operator E) shaliscrepancies between
their reportings and the satellite-detected aring statisics, which are manifested through the
poor ts (Figure 7.2). Certainly, a poor t with the linear mod el does not indicate much on
its own. Nonetheless, there exists a pattern in both scattelqis that, some points seem to
be \pushed down" towards thex-axis. If the time series of these two operators are drawn,
it shows that this behavior is due to company-reported volues leveling o for a certain
period of time (Figure 7.3). The VIIRS curves in the time seriesnply that there were aring
intensity variations for those times. This work ow, driven by Algorithm 7.1, is capable of

raising a ag when it comes across datasets like these, anchcgerve as a powerful monitoring
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and analytics tool, however, strong cautions need to be ajgd.

(a) Operator D (b) Operator E

Figure 7.2: Examples of poor ts between the NDIC and VIIRS repaed volumes, at the
operator level.

The introduced approach, although it looks promising, is bypo means a one-stop solution
and has the potential for being misapplied. First, there is th possibility of misassigning the
satellite-detected ares to the operators. Whenever the caern is raised, further investigations
can be conducted by looking into the detection maps as well #se satellite imagery of
the operators' production sites. In addition, this methods more e ective for the relatively
large producing/ aring operators, because when a companywducts very little aring, the

truncation e ects discussed for the peak in Figure 5.20 are rgai ed.
7.2 Warnings Regarding Inconsistencies

Given the resolution of the satellite imagery, assigning spi ¢ aring volumes to a given
operator is fraught with challenges. Although the VIIRS procssing work ow is capable of
picking up ares with areas aroundl n? (Figure 3.2(a)), the pixel footprint is much larger
(Table 2.1). Since the latitude and longitude of the pixel cear is stored for each individual

VIIRS observation (Elvidge et al. 2015), when multiple opetars have sub-pixel combustion
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: The company-reported volumes :
leveled off at small values.

(a) Operator D

i The company-reported volumes :
leveled off at small values.

: The company :
| reported zero Raring. :

(b) Operator E

Figure 7.3: Time series of the two example operators whose ogjing did not quite align
with the VIIRS detected trends/patterns. The points or perials in time for which the
company-reported data were signi cantly di erent from the satellite detections are annotated.

sources, it makes are owner assignment extremely challeng. In such situations, conclusions
reached by merely benchmarking company reporting against NRS reporting would likely

be inaccurate. In fact, in the realm of NDIC reporting, warniigs must be issued regarding
any inconsistencies in those results, with consideratiofi®m three aspects. First, the report

from the U.S. Department of Energy (2019a) presents data supging that North Dakota
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shows closer agreement between the NOAA estimations and stagportings (of ared gas
volumes), when compared with Texas and New Mexico. Secondrirgg is preferred over
venting because methane (the main component of natural gas)more potent than carbon
dioxide which is the main product of aring (EIA 2019b). Sin@ North Dakota bans venting,
the massive aring magnitude indicates that the direct relase of gas into the atmosphere is
minimized. Third, estimation of aring volumes is inherenty a di cult task. When it is not
practicable to meter the ared gas, the Canadian Associationf Petroleum Producers (2002)
gives guidelines on available volume estimation methods.véty category of methods, no
matter using rules of thumb, or experimentally determinedarrelations, or process simulators,
has its own limitations and accuracy issues. Consideringdffact that the VIIRS volumes
used in this work were largely calibrated using the Cedigaeported data (Section 2.1), which
has its own error bars (Elvidge et al. 2015), the di erence Ibeeen company reporting and
VIIRS reporting is inconclusive and unsurprising, especlglwhen the standard error of the
di erence is larger than the di erence itself.

By inspecting a more comprehensive pro le of time series, thoOperator D and Operator E
from the previous section are self-consistent in their repgongs to the NDIC. Their time
series are displayed in Figure 7.4 and Figure 7.5, respectywel he variables and associated
labels (shown in the legends) follow the same de nitions fmo Section 3.4. The units for
all the variables are given in Table 7.1. Clearly, the repoed ared volumes show good
correspondence with the gas production and GOR pro les. Samapid variations in their
ared volumes match the uctuations in the gas prices, i.e.when the gas price drops, the
operators tend to are more, whereas when the gas price reashpeak, there is little aring.
In summary, to nail down the decisions and conclusions witlegard to operator reporting
quality, better resolution satellite data and a more compteensive review of the time series

pro les are required.
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Figure 7.4: A more comprehensive time series plot for OperatD. The increase in the
reported ared volume in early 2019 corresponds to the gasipe declining in the same period.
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Figure 7.5: A more comprehensive time series plot for OperatB. The sudden drop in the
reported ared volume in late 2018 corresponds to the haltegas production.
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Table 7.1: Units for Operator Time Series in Figures 7.4 and 7.5

Variable Unit
NDIC ared vol Mcf

WTI oil price $=bbl
Henry Hub gas price $MMBtu
NDIC oil prod bbl

NDIC gas prod Mcf
NDIC aring well count 1

NDIC GOR Mcf=bbl

7.3 Caveats in Petroleum Data Analytics

As a petroleum engineer, the author is thrilled to witness theil and gas industry and
academia are embracing data-driven mindsets and solutignghile being part of it through
writing this dissertation. However, there are certainly aras that could be continuously
improved, and this section provides a discussion on one ofode. That is, extending a
cautious welcome to some black box models.

The pervasive in uence of some black box models in the receygars can be seen by
performing a rough search on OnePetro (Table 7.2). One thirig note is that, from an
algorithmic point of view, these methods are rather \glassdxes" as opposed to \black boxes",
i.e., everything under the hood in terms of implementationsi well understood. For example,
backpropagation, which is the core of neural network traing, is based on the chain rule.
However, for a given task, the learned parameters inside thetwork provide little or no
insights for the problem domain. Therefore, it is considetdea black box.

The wide adoption of such models is largely due to the availdiby of the open source
libraries, for example in the Python ecosystem, construc and training of neural networks
become much simpler thanks to TensorFlow and PyTorch, and gieent boosting models can
be built within a few lines of code with the help of XGBoost, LlghtGBM, or CatBoost. In
other words, with the mathematical details of those statistal routines abstracted away, for

a practitioner, implementing those models is almost as eaag pushing alLearning button on
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Table 7.2: Publication Count Rise on OnePetro

Exact Pp]r%se Year Iél/leth(c)ld Publication Count
Searche Introduced 51012014  2015{2019
neural network 1958 843 2044
gradient boosting 2001 1 110
random forest 2004 9 245

» Based on (Rosenblatt 1958)
~-Based on (Friedman 2001)
§ Based on (Breiman 2001)

a GUI.

Unfortunately, easiness in the implementation does not implappropriateness for the

problem. In particular, those black box models face the cHahges below:

1. How to incorporate domain expertise.

A lot of the black box models in the frequentist framework mak the assumption that
the observations are conditionally i.i.d. The hope is thatypfeeding a huge number of
i.i.d. samples to a universal approximator, such as a neuraétwork, some function for
prediction can be optimized with a certain accuracy. For somapplications, the domain
expertise is often encoded in the feature selection proce$®r example, to train a
model to predict oil production, the analyst might choose sne completion parameters

other than the APl well number or well name, as input features.

However, in the author's opinion, this way of incorporating dmain expertise is still
a shallow one, which is far from what the oil and gas industrydve accumulated in
many decades. For example, the phenomena of well interfecerthrough fracture hits
leave the assumption of some neighboring wells being i.iid.an unfavorable position.
Another example would be, when looking at a populations of welfrom one basin
that are completed byN oil eld service companies, domain expertise might indicat

that, each company deserves its own model while each compasynot completely
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independent from others in terms of the completion technalies, etc. In this situation,
the hierarchical model employed in Chapter 4 might be a bettechoice, in which case a
lot of the prior knowledge about the di erent service compaies can be incorporated

into the population model.

. How to interpret the results.

As discussed earlier, the black box models su er from the imgretability issues. Using
the shale gas wells example from Item 1 above, if a black box d&b is trained, it is
impossible (at this point) to attribute the failure in capturing the well interference e ects
to a certain part of the neural network, or to a certain portiom of the decision trees (in
the case of gradient boosted trees or random forest). RudigQq19) asserted that people
should \stop explaining black box machine learning modelsdnd use interpretable
models for high-stakes decisions. In the petroleum indugtrthere are a number of
high-stakes decision scenarios, such as real-time welleigtity anomaly detection and
production forecasting in a high well cost context. Blindlyapplying black box models
to those scenarios might involve serious losses. In terms obyading interpretability,
the Bayesian approach employed throughout this dissertatn is much more e ective.
Each and every assumption is expressed in the generative rabthrough either the

priors or the likelihood.

. How to quantify the uncertainties, especially in the contexbf risk management and

decision making.

Along the lines of Item 2 above, error bars are vital, espedilin high-stakes prediction
applications. In the case of predicting oil production usip a trained data-driven model,
point prediction results such asl000 bbEday are not really insightful. In fact, if the
95 % prediction interval (PI) is 1000 50 bbkday, that point prediction becomes more
informative. However, if the95 %Pl is 1000 1500 bbkday, that same point prediction

is unhelpful or misleading. What shall be reported instead isither the considered
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model yields much uncertainty in this given task, or there ipossibility that the entity

will not produce anything at all.

It should be noted that, the 95 in the CI/PI is not a \magic number". A state govern-
ment or an oil company might want to make decisions based @3 %or 99:6 % con dence,
or any other arbitrary choices. What really matters is the neessity of a principled
way to quantify the uncertainties in machine learning-baskestimations/predictions,
such that any intervals can be computed. As presented throught this dissertation,
the Bayesian approach provides full capacity and exibill is this regard. In fact, for
parameter estimates, the author chooses to gi@® % Cl instead of the \conventional®

95 % to emphasize that this should be a domain's consideratioather than a statistical

one.

A lot of the black box models in the frequentist framework, hwever, fall short of this
requirement. Maximum likelihood estimation (MLE), which s fundamentally relied
upon by some frequentist learning methods, enjoys reallyca properties and is capable
of quantifying uncertainties, but only when a massive amourof data is at hand such
that the asymptotic properties could take e ect. Unfortunately, that is not the case in

many scenarios for the petroleum engineering domain, whichdiscussed next.

. How to mitigate over tting when the data is not \big".

Two aspects are worth discussing here. For one thing, the hiigta is not everywhere.
Indeed, the author believes that the claim of Gelman (2015hat, \sample sizes are
never large", applies to a lot of problems in the petroleum @ustry. The reason is that,
if the data were large, the analyst would already be on to theext problem for which
more data is needed. For example, a sample 890 producing wells in the Bakken
Formation could make some general study possible. When theadyst has access to a
dataset of more than15,000wells, some granular insights are desirable. Especiallfy, i

partial pooling is needed among the di erent service compé&s/operators, di erent

114



members of the formation, or di erent completion technologs, data for some units of

the population could be very small (which happens for the ahgsis in Chapter 4).

On the other hand, the sample size should be inspected in thght of model complexity.
The number of parameters provides one measure of such. Foaewle, consider a
hypothetical classi cation problem, whose goal is to detemine if a given well will deliver
good or average or poor production performance. Ten comptet parameters (features)

are available to train the multilayer perceptron illustrated in Figure 7.6.
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Figure 7.6: A neural network designed for the hypothetical vieperformance classi cation
problem. The input layer has10 neurons for the completion parameters. The rst and second
hidden layer has20 and 10 neurons, respectively. The output layer has three neuronerf
multiclass classi cation.

In this (small) neural network, the number of parameters, is given by:

np=11 20+21 10+11 3=463 (7.2)

when considering a single bias node for every layer excepetlast one. To train this
model, a dataset 0600wells would de nitely be a small sample. There is still possility

to train such a model with a small sample, however, great e &8 in regularization
have to be made, in the hope that the neural network will learsomething that can be

generalized, instead of merely memorizing the observed gdes (i.e., over tting).
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By utilizing the regularizing priors, the Bayesian approdts built-in Occam's razor
greatly mitigate the risk of over tting. In particular, Bay esian nonparametric models,
such as the Gaussian processes employed in Chapter 5, are atractive in a sense
that the sizes of models are allowed to grow with the size of tda(Orbanz and Teh

2010). This makes the developed model exible while beinghwst to over tting.

Although the Bayesian learning models (such as the ones deysd in this work) have
outstanding merits and deserve wider utilization in petr@dum data analytics, they are not
cure-alls. Recently researchers have started to stress thecessity ofbespokestatistical
models (Andorra 2020; McElreath 2020). The argument is that -the-shelf models, no
matter neural networks or generalized linear models, interpt the incorporation of domain
expertise. This is especially relevant in the eld of petr@um engineering. For instance,
when conducting data-driven analysis for hydraulic fractiing performance, it makes sense
to bring in the fracture propagation models to the machine brning work ow. That way,
statistical models are motivated by the physically informé models. The Bayesian framework,
as employed throughout this dissertation, readily embrasethis strategy, in that the domain
knowledge, which is represented by di erential equations f@xample, can be inserted into
the generative model. One advantage is that a lot of the paraeters will have direct scienti ¢
meanings, and more informative priors can be placed based sgienti ¢ constraints, eld

experience, etc. The nal outcome should be better infereaes and predictions.
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CHAPTER 8
CONCLUSIONS AND RECOMMENDATIONS

In this dissertation, the e ectiveness of a full Bayesian ggroach has been observed in
learning models from natural gas aring data. The author hops this work contributes to the
understanding of the options and considerations when apjhg data-driven approaches to
gas aring. In closing, this chapter presents the major cohgsions and recommendations for

future work.
8.1 Conclusions

The major conclusions are:

1. Bayesian learning implemented using Hamiltonian Monte Caolcan be e ectively
applied to real problems in gas aring analytics, in both suprvised and unsupervised
settings. The advantages of the Bayesian approach indicatedeserves wider usage in

the petroleum engineering domain in general; these advagts are listed below:

(a) Petrotechnical domain expertise can be incorporated ia principled way.

(b) Model interpretability is drastically improved, facilitating communications with

petroleum engineers.

(c) Quanti cation of uncertainty leads to more robust decisionmaking, which is

important for oil exploration and production companies.

(d) The built-in Occam's razor makes the model less prone to owing, in the

context of noisy eld measurements.

2. The development of a suite of models (Table 8.1), with both pametric and nonpara-

metric techniques, provides guidance on how insights can bgtracted from various
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angles. The presented models are designed and tested to b&edb generalize to

di erent entities at various levels.

. To investigate the heterogeneity among the dierent entites (such as counties or

oil elds), partial pooling is recommended, because sometities have very little data.

. Gaussian processes demonstrate very attractive traits ivealing the patterns and
trends from aring time series. A set of priors with the Maern 5=2 kernel works very

well across di erent modeling goals, observation modelsne data sources.

. From a distributional point of view, the negative binomial aad Gaussian mixture models
are good representations of the oil eld are counts and ard volumes, respectively.
The learned parameters and structures are very interpretéd Hidden clusters are found

by tting Gaussian mixture models.

. A nearest-neighbor-based approach for operator level mtoring and analytics is
introduced. Its performance is tested on real data and deféable results are obtained.
However, better resolution satellite data is needed for thesnario of multiple operators'

wells being very close to each other.

. All the dissertation objectives (Section 1.2) have been a&ved. In particular, the ared
volumes missed from VIIRS for the state and each county are esated via tting the
intercept parameter and reported in Table 3.1 and Table 4.2The nighttime combustion
source detection limits of Landsat 8, without being correed for artifacts due to
glow, are determined and reported in Figure 3.2(b). Correlatns between nancial
factors, production performance, and ared volumes at a sta level are computed using
Spearman's and reported in Figure 3.5 and Figure 3.6 for the original dataral lag-1
di erences, respectively. Most pairs of the variables do h@how strong correlations on
the lag-1 di erences. Robust Gaussian process modelings&s as a generic framework

for addressing the rest of the objectives, including demdrating operator approaches,
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evaluating if the goals of the North Dakota regulatory policyOrder 24665) have been

achieved, and predicting NDIC ared volumes.

Table 8.1: Models Developed in this Dissertation

Numbering Target of Modeling Page
Model 3.2  Associations between VIIRS and NDIC at a state level 27
Model 4.5 Associations between VIIRS and NDIC at a county leveténtered) 38
Model 4.7  Associations between VIIRS and NDIC at a county leveh@ncentered) 41
Model 5.12 Proportion of gas production being ared as timeesies 57
Model 5.14 Proportion of wells that conduct aring as time sees 63
Model 5.15 VIIRS detection count as time series 66
Model 5.17 Proportion of oil being ared as time series 70
Model 5.18 Scale factor between VIIRS and NDIC as time series 74
Model 6.3  VIIRS detection count distribution for oil elds 86
Model 6.9  VIIRS volume distribution for oil elds (latent discrete parameterization) 94
Model 6.10 VIIRS volume distribution for oil elds (marginalized) 95

8.2 Future Work

A number of areas for future research include:

1. L8 processing work ow.

The studies of Section 3.2 indicate that the inclusion of L&formation (using the
existing VIIRS work ow) faces the challenges of the procesgj artifacts due to glow. It
would be interesting to tailor the processing algorithm fot.8, which opens the door for

data fusion of VIIRS and L8, providing much better resolutioninterpretations.

2. Fast detection of ares on a monthly basis.

The development of a rapid are detection and volume estiman method (based on
satellite imagery) will lead to continuous monthly data steams. Since NDIC needs
about two months' turnaround time to compile and digitize the company reports, many
of the machine learning work ows proposed in this dissertain will be able to provide

predictive insights with rapid detection data.
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3. Hierarchical Gaussian processes.

The models in Chapter 5 are learned from each entity's own dat It would be interesting
to see how far the scheme of partial pooling (Chapter 4) can b&ken. Can pooling

across di erent entities via hierarchical Gaussian process improve the inferences?

4. Spatial-temporal analysis.

One step further from Item 3 above, the e cacy of spatial-tenporal models (which
allow for pooling information across time and space) are wbrinvestigating. Are

neighboring entities exhibiting close resemblance in amg behaviors?

5. Unify everything under Bayesian nonparametrics.

The model comparison for GMMs in Chapter 6 depends on spedify the potential
numbers of clusters a priori. In fact, Dirichlet process, aan in nite-dimensional gener-
alization of the Dirichlet distribution, is nonparametric and allows for automatically
choosing the number of necessary clusters. Considering thectiveness of GP (Chap-
ter 5), it would be interesting to see how far the nonparametr models can be taken in
aring data analytics. Can all of the gas aring analytics problems be addressed in an

uni ed framework of Bayesian nonparametrics?
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