
Evaluating Surface Reconstruction MeshesWithout Ground
Truthing

Jacob Fein-Ashley 1

1Advised by Dr. HuaWang and Hoon Seo

Introduction

Creating surface reconstructions from point clouds is common in computer graphics, vision,

and video games. The most common way to evaluate the quality of surface reconstruction is

to compare it to a ground truth mesh. However, this is not always possible. A novel method

for evaluating surface reconstructions without ground truthing using simple computational ge-

ometry will be examined.

(a) (b)

Figure 1. (a) Common Bunny Mesh Example (b) Points Sampled from α = 0.05-Reconstruction of (a)

Sometimes, it is impossible to attain a ground truth mesh to compare a three-dimensional sur-

face reconstruction. Common examples of this occur when a mesh is constructed from a point

cloud, and it is desired to evaluate quantitatively the performance of the mesh generator. Sup-

pose that Figure 1a is a mesh generated from a point cloud Figure 1b. The desired metric will

compute the distance between points in the point cloud and triangulations of the mesh.

Method and Introductory Definitions

A mesh can be defined as an overlay of discrete triangles on a continuous surface. The surface

reconstruction algorithm will create a mesh that approximates the continuous surface. We can

measure the quality of the surface reconstruction by comparing the point cloud to the mesh.

Define the following qualities of a point cloud P . Let

P = {(xi, yi, zi) | i ∈ n}
where there are n three dimensional points defined in the point cloud. It is also possible to

define the qualities of a mesh M. Suppose that M is constructed from a set of vertices V ⊆ R3

and triangular faces F ⊆ {1, . . . , |V |}3 where F is constructed from arbitrary three dimensional

vertices composed of a set of three vertices, namely, three vertices v ∈ V such that any arbitrary

face f is defined by three vertices f = [v1, v2, v3]T that form set F (also define |F | = m) as:

F =


v∈|V |

v∈|V |
v∈|V |


1

,

v∈|V |
v∈|V |
v∈|V |


2

, . . . ,

v∈|V |
v∈|V |
v∈|V |


m


= {f1, f2, . . . , fn}

where fi is a face of the mesh M and fi = [vi1, vi2, vi3]T is a face of the mesh M.

Algorithm Explanation

Additionally, define a k-d tree, simply a k dimensional binary tree structure. We compose the k-d
tree of each face f ∈ F . The k-d tree sorts each face according to Euclidean distance, defined as

(k = 3) and

~distf1,f2 =

√√√√ 3∑
i=1

(f1i
− f2i

)2

between each arbitrary face f ∈ F , and we compute this metric between each face vector in F .

This structure speeds up computation and allows for querying nearest points in O(log {|V |} · n)
time complexity. Because we are comparing the point cloud to the mesh, we query the k-d tree

for the closest 3 points to each point in P . We wish to calculate the distance between each point

p ∈ P and the closest triangle in the mesh. As we defined earlier, each face is composed of

f = [v1, v2, v3]T vectors.

Geometric Exploration

It follows that we must compute a plane spanned by each vector in the KKT condition where

α, β, γ are the optimal barycentric points of the nearest triangle to the point p ∈P :

αv1 + βv2 + γv3
s.t. α + β + γ = 1

and by method of Lagrangians, we define the following function

L(λ) = (αv1 + βv2 + γv3)2 − λ(α + β + γ)
∂L

∂α

set= 2 · v1(α · v1 + β · v2 + γ · v3) − λ = 0

which brings us to six cases which David Eberly describes in his paper an algorithm for solving

the aforementioned Lagrangian [1]. Define a normal vector to each triangle:

~n = (v2 − v1) × (v3 − v1)

and normalizing ~n yields n̂ = ~n
||~n||. Now, we wish to find a point p0 which is the closest point

from p to the normalized plane ~n. Define this distance such that min {||p − p0||} is the closest

distance from p to p0. To determine where p0 is located on the triangle formed by the vertices

in each face f ∈ F , we turn to the algorithm described in Eberly’s paper which solves the

Langragian mentioned in six cases to determine where p0 is located in the triangle. Located in

Figure 1 of Eberly’s paper:

Figure 2. Figure 1 of Eberly’s paper [1]

Geometric Exploration Cont.

Solving the Lagrangian yields six cases, which are described in Eberly’s paper [1] for α, β, γ.
Finally, solving for the point p0 = α ·v1 +β ·v2 +γ ·v3 must yield values α, β, γ ∈ [0, 1] by notions
of barycentric coordinates. It is proposed that for each point in the point cloud p ∈ P , we find

the closest face f ∈ F and average the distance to create the average distance of each point

to the closest face. This can be defined as distavg and its correspondent optimality constraint:

distavg = 1
n

·
n∑

i=1
min

{
||pi − p0i

||2
}

= 1
n

min {||p − p0||2}T
1

distavg =
n∑

i=1
arg min

p0i

{
||pi − p0i

||22
}

Experimental Results and Conclusion

Using the popular Stanford Bunny Mesh as previously mentioned [2], distavg = 1.875 · 10−9 with
the following distance plot, according to each point’s distance to the closest face in the mesh:

Figure 3. Distance Plot of the Stanford Bunny Mesh

The proposed distance metric uses an `2 norm to calculate the distance between each point in the

point cloud and the closest face in the mesh. Once the distance for each point to its closest face is

calculated, one can examine the distribution of the distance array. The proposed metric uses the

non-robust `2 (sample mean) norm to both penalize outliers, and serve as a differentiable function

for optimization. The proposed metric can be altered to `1 (sample median) or `∞ (spectral norm)

norms to serve as a robust distance metric. Further areas of exploration include gathering a set

of meshes with varying alpha values and surface reconstruction methods and comparing their

respective distance vectors.

References

[1] David Eberly. Distance between point and triangle in 3d - geometric tools, 1999.

[2] Greg Turk Levoy and Marc, Oct 2016.

http://minds.mines.edu/ 2022 Fall Undergraduate Research Symposium — Colorado School of Mines jacobfeinashley@mines.edu

http://minds.mines.edu/
mailto:jacobfeinashley@mines.edu

