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ABSTRACT

The thesis evaluates the effectiveness of time and 
frequency domain minimum-phase deconvolution techniques 
applied to seismic field wavelets.

Each of the wavelets was modeled using simulated or 
measured components, then each of the wavelets was decon
volved using Levinson's one-sided least-squares and Hilbert 
transform methods. The effect of white noise level in de- 
convolution filter design was evaluated.

The minimum-phase assumption should be met for the 
above two methods. Comparison of deconvolved outputs from 
the methods shows that the Hilbert transform approach is more 
suitable for wavelet deconvolution than the least-squares 
algorithm in those cases studied. The performance of 
Levinson's deconvolution degrades with increasing white 
noise level.

The deconvolved results show that the minimum-phase 
deconvolutions can restore the frequencies outside the 
central pass-band of the array response, but give time leads 
to the deconvolved wavelets of the array responses. Hence,

iii
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INTRODUCTION

Petroleum seismograms are often effectively modeled 
mathematically according to

s(t) = w(t) * r(t) + n(t) ?

where s(t) is the seismic trace, r (t) is subsurface reflec
tivity function, n(t) is additive random noise, and w(t) is 
called the field wavelet.

A practical objective of seismic wavelet processing is 
to transform the field wavelet into an interpretation wavelet 
as illustrated below

s ( t) ^ seismic
processing

w^(t) * r(t) + n^(t) = s (t) .

Here w^(t) is the interpretation wavelet, and supposedly £ (t) 
is more easily interpreted than s(t).

Recently, wavelet deconvolution techniques have taken 
on new importance as exploration has entered the stratigraphie 
era.

Wavelet deconvolution includes the techniques of esti
mating and shaping the field wavelet; but practicing interpre
ters agree that the bandwidth of w^(t) should be substantially
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greater than that of w(t) and that the phase shift of w^(t) 
should be less than that of w(t), and approach zero phase as 
an ultimate goal.

The traditional approach to these objectives has been 
statistical deconvolution based on the Weiner filter, designed 
from the autocorrelation function in the time domain. A dis
cussion of the general properties of the digital Wiener filter 
has been given by Robinson and Treital (1967). Peacock and 
Treitel (1969) have demonstrated that Wiener filter can be 
identified as the unit prediction error operator.

Another approach to wavelet processing is based on the 
Hilbert transform, in the frequency domain. As described by 
Robinson (1967), the phase spectrum of an input wavelet can 
be computed from the input logarithmic power spectrum if the 
minimum-phase assumption is satisfied. A further mathematical 
analysis of the approach has been given by Oppenheim (1975).

The objective of this thesis is to evaluate the relative 
effectiveness of these two deconvolution techniques.

Throughout this thesis the Oppenheim (1975) philosophy is 
adopted. Very briefly, this is that the given time series has 
a physical significance but the nature of this significance is 
not to be analyzed carefully. In particular the time series 
under consideration here are purported to represent analog pro
cesses. This is a common point of view in modern engineering 
data processing.
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THE TIME DOMAIN DECONVOLUTION

Since 1957 (Robinson, 1957), least-squares inverse 
filters have been used for wavelet deconvolution. Numerous 
author discussed this time-domain deconvolution approach in 
which one solves normal equations in order to obtain the 
deconvolution operator. The normal equations can be solved 
using Levinson's algorithm (Levinson, 1946).

In this thesis, the following matrix equation will be 
solved to obtain a prediction operator.

ro
^1

ri
ro

^n-1 ^n-2

n-1
n-2

0

•s
'ao ^1
&1 ^2

^n-1 ^n 's J

. (1)

where r i s  the autocorrelation of the input wavelet, (ag, 
a^,..., a^_^) is the prediction operator with prediction 
distance unity and length n.

Equations (1) may be rearranged as

3
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n

n-1

n-1

f  N 1 ' 3 '

"^0 =
0

-^n-l 0
, (1-1)

(Peacock, 1969)

where 3 is a scale factor,(1, -ag,..., -a^^^) is the unit 
prediction error operator, which is equivalent to the least- 
squares deconvolution filter which ideally transforms an 
unknown input wavelet to an impulse at zero delay (Peacock, 
1969) .

For the time-domain deconvolution, the minimum-phase 
characteristic of the input wavelet ensures that the one
sided inverse filter is stable.

Experience has taught us that the effectiveness of the 
unit prediction error operator increases with increasing 
filter length n, but the effectiveness is no longer improved 
when the filter length increases beyond a certain value.

The deconvolved wavelets obtained by use of this one
sided least-squares approach should be similar to those
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obtained by using the Hilbert transform, since both methods 
are determined using the autocorrelation (equivalently the 
power spectrum) and, as we shall see, require the minimum-phase 
assumption.
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THE HILBERT TRANSFORM METHOD

For a seismic wavelet, h(t), we can express the logarithm 
of the wavelet's Fourier transform as

H ( g o ) = log H ( o ) )  = log |h(o))| + jarg (H(w)), (2)

where j is the imaginary number ( y/-l) .
The inverse Fourier transform, h(t), of log H(w) can be written 

h ( t ) = h e ( t ) + h o ( t ) ,  (3)

A A  Awhere he(t) and ho(t) denote the even and odd parts of h(t).
AThe even part he(t) is the inverse Fourier transform of log

1h (w )| .
H(s), defined on the s-plane, is not, in general, analytic 

and might have poles and zeros which are branch points of log 
H(s'). Hence, log H(s) must be made into a single-valved func
tion by defining branch cuts before meaningful analyses may 
be conducted. If we assume that H(s) is analytic and has no 
zeros for Res > 0, then log H(s) will also be analytic in the 
right-hand plane and arg (H(s)) can be uniquely determined 
from log j H(s)| as we shall show below.

Given the applicability of Jordan's lemma and the above 
mentioned analyticity in the right half plane, the implied

Acasuality of h(t) requires that
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ho(t) = he(t) sgn(t), (4)
where

A t<0sgn(t) = 1 t>0 .

Hence, equation (3) becomes
h(t) =he(t) [1 + sgn(t)] (5)

Equation (5) is an expression of analog casuality.
Using the transform pair

1/jw 1/2 sgn (t)
we may write the Fourier transform of equation (5) as

(w) = log |h {o))1+ j log |H(w)| * -2/^ (6)

From equations (2) and (6), we obtain a minimum phase
arg (H(w)) = log |h ((jo)| * -2/w (6-1)

Consequently, the Hilbert transform kernel -2/<*> can be used
to find the minimum phase arg (H(w)) from log |H(w)|

Computation of the Digital Hilbert Deconvolution Operator 
We must employ the discrete Fourier transform because

our data is sampled and we do the analysis on a digital com
puter, therefore, the above analogue results are only of 
academic interest.
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With the discrete fast Fourier transform, the computa
tion of the Hilbert transform becomes very fast. To obtain 
an efficient algorithm for designing the digital deconvolu
tion operator, we will look at the Hilbert transform relations 
for discrete data.

The discrete version of Eg. (2) can be written as

Hp(k) = log H(k) = log jh (k)| + j arg (H(k)), (7)

k = 0, 1,...,N,
Aand the inverse Fourier transform of Hp(k) will be denoted as 

%p(n).
N should be chosen to be at least the length of the input 

sequence h(n). The fast Fourier transform requires that N 
be equal to 2^ (m: integer).

AFor the sake of expediency within the computer both Hp(k)
Aand hp(n) are defined as periodic sequences of period N. Their

A  Arelation to "reality" is that h(n) = hp(n)over n = 1, ....
N/2 - 1. (see below). Hence, we can, with a suitable defini
tion of casuality, relate the real and the imaginary of the

Adiscrete Fourier transform of hp(n) in a manner similar to that
Adevloped for h(n).

AWe can express the hp(n) as the sum of the even sequence
A Ahpe(n) and the odd sequence hpo(n). A periodic sequence cannot 
be casual. However, as shown by Oppenheim (1975), we can define
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a "casual" periodic sequence to be one for which (ip (n) = 0 
for N/2< n< N. Because of the periodicity of hp(n), fip(n) = 
0 for -N/2 < n < 0. Oppenheim (1975) points out that for 
finite-length sequences, we interpret this restriction to 
mean that the sequence is considered to be of length N, when 
in fact the last half of the points are zero. Consequently, 
iip (n) can be shown to be expressible as

hp(n) = îïpe(n) , UN(n), n = 0, 1,..., N-1 (8)

here
1, n = 0, N/2

u^(n) = \2, n = 1, 2,..., (N/2) - 1
0, n = (N/2 + 1) , . . . , N-1.

The discrete Fourier transform of u^(n) is
N, k = 0

U (k) = { -j2cot (rk/N) , k oddN ]
0, k even

(Oppenheim, 1975)
Hence, we can express the distrete Fourier transform of equation
(8) as N-1

 ̂ - %Hp(k) = log H(k)| + j/N log |H(m)| V^(k-m) (9)
m=0

here
(-2cot(mk/N), k odd
0, k even
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Equations (7) and (9) imply that the phase can be com
puted from the amplitude as

N-1
arg (H{k)) = 1/N Z log H{m)| V^(k-m), (9-1)

m=0
A comparison of the development leading to equation (6-1) 

with that leading to equation (9-1) shows why the convolution 
of (9-1) is referred to as the discrete Hilbert Transform.

Using the concepts of this section, it is possible to 
construct the entire trnasform &p(k) from the logarithm of 
amplitude. Probably the simplest way to do this is as follows:

1. Take the discrete inverse Fourier transform of log 
[H(k)| and so obtain lipe (n) ;

2. Multiply lipe(n) by u^(n), which according to equation 
(8), is 6p (n);

3. Take the discrete Fourier transform of hp(n). The 
real part of this final results is log | H(k)j and the imaginary 
part is an approximation to the minimum phase. Hence, if the 
input wavelet h(n) is minimum-phase, and if N is adequately 
large, then the computed phase (9-1) will approach the input 
minimum phase.

Even for large N, the computed phase can be expected 
to differ slightly from arg (H(k)) because the ^p(n) may be 
an aliased sequence. If the input wavelet is non-minimum- 
phase, then the computed phase cannot be equal to arg (H(k)).
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The designed deconvolution operator for a minimum-phase 
input wavelet should be

H  ̂ (k) = |H(k)|  ̂ exp (-j arg (H(k))  ̂ (10)

The sequence of operations used to obtain a deconvolved 
wavelet using the discrete, periodic Hilbert transform of this 
section is shown in Figure 1.
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Input Wavelet (minimum-phase)
n = 0, 1....  N-1, N = 2 ^

Discrete FFT

Form the log of 
the spectrum

h (n) ,

H(k) = |H(k) I exp(jarg(H(k))), k=0,l,...,N-l

I
Inverse FFT

Begin Hilbert 
transform

FFT

log H(k)

I
iipe (n),4

^ rl,n=0, N/2
îîp (n) =hpe (n) r̂ in <2,0<n< N/2lO,n > N/2

1
End Hilbert 
transform

Real part = Log | H(k)|
Imaginary part = minimum phase arg (H(k)).

Inverse filter 
design

Convolution

Inverse FFT

1
H~l(k) = I H (k)l ' exp (-jarg(H(k))

H(k)'H~^ (k)

Deconvolved wavelet

Figure 1. The Frequency-Domain Deconvolution
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wavelet h(t). In the discrete case (Equation ( 9 ) ) ,  the 
requirement that log |H(k) | and arg (H(k))|be a discrete 
Hilbert transform pair is often referred to as the minimum- 
phase condition (Oppenheim, 1975) even though such is not 
the case except for arbitrarily large N.

The minimum-phase condition is that there are no poles 
or zeros inside the unit circle in the Z-plane, hence the 
minimum-phase function is analytic in this region. All 
zeros, as well as the poles of the function must lie outside 
the unit circle. (Here we are using Z=e“^^, not Z=e^^^X 
Consider the Z-tranform expression of Equation (7). The
functions log H(Z) and arg (H(Z)) are a Hilbert transform 
pair if the region of convergence of Hp(Z) includes the unit 
circle and Hp(Z) is analytic in this region (Oppenheim, 1975). 
Since Hp(Z) can be divergent at both the poles and the zeros 
of H(Z), we require that there are no poles or zeros of H(Z) 
on or within the unit circle; i.e., that h(n) is minimum phase 

In summary, the processes of the minimum-phase deconvo
lutions, both that using the Hilbert transform method and 
that using the one-sided least-squares algorithm, lean 
heavily on the minimum-phase assumption in the development 
of the inverse operator. Theoretically, for minimum-phase 
input wavelets, both methods should give a Dirac impulse output 
For the non-minimum-phase input, the amplitude spectrum of
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WHITE NOISE

Relations to Deconvolved Amplitude
The amplitude of seismic signal decreases from low to 

high frequencies and eventually the amplitude of the noise 
will be higher than that of the signal. Deconvolution inverts 
the amplitude spectrum of the input tra ce and hence, will 
produce an output in which the high-frequency noise dominates 
the low-frequency signals. A way of solving this problem is 
to add a constant, which is often called white noise, to the 
input power spectrum during the frequency-domain operator 
design. _________1______

n — n  ' (11)The amplitude of the operator = y |H(k)| +Ng(k)

where |H(k)| is the amplitude spectrum of the input wavelet 
and Ns(k) is the added white noise.

In the time-domain deconvolution, we add the constant 
to the zero-lag term of the autocorrelation function of the 
wavelet during the time-domain operator design. After the 
white noise constant is added, the normal equations (1) used 
to compute the prediction operator will become

16



ER-2096

\

"1
ro

^n-1 Zn-2

n-1
n-2

/

f' >
^0 ^1
^1 ^2

a rn-1 n

(12)

where I is an identify matrix and ng is white noise.
The addition of white noise provides an input power 

spectrum which is only slightly different in the spectral 
range of interest and which goes to zero nowhere. Thus it 
imparts an artificial stability to a process which is, at best, 
metastable. Usually, the constant will be 0.01 percent to 
10 percent of the zero-lag value, depending upon the quality 
of the data.

The amplitude spectrum of the transform of a single 
spike in the time domain is a constant over the entire fre
quency spectrum. The addition of a white noise constant to 
the zero-lag term of the autocorrelation will raise all power 
spectrum values by a uniform amount. By definition, white 
noise is of infinite band-width and non-correlative. The 
autocorrelation of white noise is a single spike. Therefore, 
the amplitude spectrum of white noise is identical to that of 
a single spike. Consequently, the addition of a constant to 
the zero-lag term of autocorrelation is equivalent to the 
addition of a constant to all components of the power spectrum.

17
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Influence on Phase Computation
The addition of the white noise constant is not always 

essential when computing the phase of the operator. For the 
Hilbert transform, the minimum-phase curve is computed inde
pendently by convolving the logarithm of the amplitude spec
trum with Vĵ (k) as described in Equation (9-1). For most minimum- 
phase input wavelets, the zeros of the input wavelet are 
sufficiently removed from the unit circle, that it is not 
necessary to add a constant into log | H (k)| to prevent its 
divergence.

From Equation (12), it can be seen that the addition of 
the white noise constant to the normal equations will effect 
both the phase and the amplitude of the operator.

Spectrum Editing
Equation (9-1) illustrates that the computed phase at 

any frequency is a function of the amplitude at all other 
frequencies because of the convolutional relationship. In 
particular, regions of low power become, after taking the 
logarithm, large negative values, and have considerable in
fluence on the computed phase at all frequencies. Therefore, 
it is extremely critical to estimate the notches in the 
amplitude or power spectrum in order to compute the correct 
minimum-phase spectrum. In the frequency domain,sometimes 
this is fairly easy to do, since the roll-off slopes and notch
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characteristics are often known for many of the wavelet com
ponents (Schneider, 1977).
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ZERO-PHASE BANDPASS FILTER

For the purpose of removing noise not adequately suppressed 
by adding white noise in the deconvolution operator design, the 
deconvolved wavelet must pass through a zero-phase band-pass 
filter after deconvolution. In this thesis a zero-phase filter 
is a filter whose phase is an integer multiple of tt except at 
a set of spectral points of measure zero. The band-pass filter 
is a dominant factor in determining the interpretation wavelet. 
To the extent that deconvolution flattens the spectrum, the 
amplitude spectrum of the deconvolved wavelet is that of the 
band-pass filter (M. Schoenberger, 1974).
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(2D) and deconvolved phases (2E) are shown in the subse
quent figures. The results obtained by the Hilbert trans
form are shown at the top of each labeled figure, those 
obtained by Levinson's method are at the bottom.

Input parameters are:
The number of sampled

points for FFT 512 points
Sampling interval

Time domain 0.002 or 0.001 sec
Frequency domain 1/(512 x 0.002) or

1/(512x0.001) hz
Operator length

Time domain 151 points
Frequency domain 512 points

White noise level 0.01%

The first example (Figure 2A) is a measured marine 
Aquapulse signature. The deconvolved signature (Figure 2B) 
was passed through a zero-phase band-pass filter in order 
to remove the high-frequency components generated during 
the deconvolution operation. The deconvolved wavelets ob
tained both by using the frequency-domain and the time-domain 
techniques are quite similar and zero-phase. Also, both of 
the minimum-phase estimates (Figure 2C) are quite similar 
to the input (Figure 2A). The deconvolved amplitude spectra 
(Figure 2D) are whitened, and the output phase errors (Figure 
2E) are small. Because of the improper sampling for the
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impulse response of the signature, the scrambling of the 
amplitude spectrum content due to aliasing appears in Fig. 
2A-b. However, the quality results of Fig. 2B and 2C were 
obtained due to the minimum-phase characteristic of the 
sampled response, as we shall describe below.

The deconvolved results for a ghosting filter (Figure 3A) 
are shown in Figure 3B to 3E. Again, we can observe that 
both of the deghosted responses (Figure 3B) are zero-phase 
and the two estimates (Figure 3C) behave like the original 
waveform.

The third example is a 8/18-62 hz recording filter 
(Figure 4A). Before going through the Hilbert transform, 
the input amplitude spectrum was edited so that it had the 
deep notch at the zero frequency, with roll-off slope of 
18 db/octave, as specified above, in order to simulate the 
known recording filter response on the low side. The fre
quency-domain deconvolution technique produced the nearly 
symmetric output wavelet (Figure 4B, top) but the time-domain 
method, for which only simple "white noise" editing is prac
tical, gave the non-symmetric output (Figure 4B, bottom). 
Figure 4C shows the two minimum-phase estimates of the impulse 
response, that obtained by using the Hilbert transform is 
more similar to the original input wavelet (Figure 4A) than 
that obtained by Levinsons' method.
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Figure 5A shows the response of a composite system made 
up of the airgun, the free surface (ghost reflector) and the 
recording system. Figure 6A is a 20 cu. in. airgun signature. 
The similar technique of editing the low-frequency portion 
of the input amplitude spectrum was applied to the above two 
wavelets before passing the amplitude spectrum through the 
Hilbert transform. The Hilbert transform deconvolution 
provided the nearly symmetric output pulses (Figure 5B and 6B, 
top) and the input-waveform estimates (Figures 5C and 6C, top). 
However, the one-sided least-squares scheme gave the different 
ones.

Discussion of the Results in Part A
1) Phase characteristics of the wavelets 
The estimate of the input wavelet is obtained by in

verting the operator, which is the inverse of the input wavelet 
The inverse of a minimum-phase wavelet is also a minimum- 
phase one. Consequently, the zero-phase of symmetric char
acteristic of the deconvolved pulse and the closeness be
tween the input and its estimate imply that the input is 
minimum-phase, or at least nearly so.

Figure 2B and 3B show the deconvolved Aquapulse sig
nature and the deghosted response are very nearly zero-phase 
pulses centered on the onset of the original input. The 
minimum-phase estimates (Figures 2C and 3C) both for the
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Aquapulse signature and the ghost response have remarkable 
agreement with the correspondent input wavelet. The minimum- 
phase condition is met by the above two wavelets. The sym
metric characteristics of deconvolved waveforms and the 
minimum-phase estimates for the 8/18-62 hz recording filter, 
the composite system and the 20 cu. in. airgun signature 
imply that the wavelets are very nearly minimum-phase. 
Consequently, we can draw the conclusion that the minimum- 
phase assumption for the seismic field wavelets is quite 
reasonable or that these methods are surpriseingly insensi
tive to deviations from the optimum phase lag; i.e., minimum,

2) Comparison of effectiveness of the two methods 
During inverse filtering we add the input phase to its 

negative and multiply the input amplitude by its inverse, 
thus requiring that the output be zero-phase or symmetric, 
and the output amplitude be flat. An effective deconvolu
tion procedure should produce seismic wavelets with (a) a 
zero-phase spectrum, and (b) a smooth and broad amplitude 
spectrum. In Figure 2D and 3D, the deconvolved amplitude 
spectra obtained by the Hilbert transform is flatter than 
that obtained by the time-domain method, for the same white 
noise level of 0.0001.

Figures 4B, 5B, and 6B indicate that the deconvolved 
wavelets by the frequency-domain technique are more symmetri
cal than those by the time-domain method.
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Figures 4C, 5C, and 6C indicate that the estimates by 
use of the Hilbert transform are closer to the corresponding 
input than those by Levinsons' scheme.

Thus, we can say that the Hilbert transform is more
suitable for seismic wavelet processing than the time-domain 
approach. Galbraith (1971) points out that the Hilbert 
transform and the Levinson's approach would be the equiva
lent if an infinite number of inverse filter points could 
be used in the Levinson's method. Besides, in the frequency- 
domain deconvolution we can compute the minimum phase, employed 
in the inverse filter design, from an edited amplitude spectrum 
Equivalent editing of auto correlations, as would be required 
if the least-squares method were used exclusively, would 
require an uncommon appreciation of the implication of 
autocorrelations or two additional Fourier transforms.

3) Evaluation of the effect of white noise 
Figures 7B and 7C are examples used for evaluating the 

effect on deconvolution of adding a white noise constant 
to the impulse response of the DFS IV 8/36-32 hz recording 
filter (Figure 7A). The spectrum editing technique was also
applied to minimize the effect of the deep notch at zero
frequency with roll-off slope of 36 db/octave. Hence, the 
Hilbert transform produced the nearly symmetric output pulses 
(Figure 7B); the one-sided least-squares scheme gave the
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nonsymmetric outputs (Figure 7C). As shown in Figures 7B 
and 7C, the white noise level has no influence on the de
convolved phase for the frequency-domain deconvolution; 
but markedly influences the degree of apparent stabilization 
of output pulse for the time-domain deconvolution. The 
performance of the one-sided least-squares deconvolution 
degrades with increasing white noise level. The zero-phase 
band-pass filter was not applied to the raw deconvolved 
outputs in Figures 7B and 7C, thus, it can be seen that 
increasing the white noise level can suppress the noise 
generated during the deconvolutions.

The processed wavelets (Figure 7D) and estimated wave
forms (Figure 7E) demonstrate that the spectrum editing is 
extremely important when computing the correct phase curve 
used in operator design. If one ignores such a notch it may 
invalidate his phase calculation. It is much harder to 
ignore such a notch if one is using the Hilbert transform.
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Figure 2B. Deconvolved wavelets of the Aquapulse source
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Figure 2C, Estimates of the Aquapulse source
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Figure 2D. Deconvolved amplitude spectra of the Aquapulse source
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Figure 3A. Ghosting filter, a) Impulse response 
spectrum. c) phase spectrum.
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Figure 3B. Deconvolved wavelets of the ghosting filter.
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Figure 3C. -Estimates of the ghosting filter.
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Figure 3E. Deconvolved phase spectra of the ghosting filter
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Figure AB. Deconvolved wavelets of the recording filter.
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Figure 4C. Estimates of the recording filter.
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Figure 4D. Deconvolved amplitude spectra of the recording filter
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Figure 4E. Deconvolved phase spectra of the recording filter
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Figure 5D. Deconvolved amplitude spectra of the composite system
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Figure 6A. 20 cu. in. airgun signature. a) Impulse response
b) Amplitude spectrum. c) phase spectrum.
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Figure 6C• Estimates of the 20 cu. in. airgun signature
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Figure 7A. a) Recording filter (8/36-62 hz) and 
b) Amplitude spectrum.
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Figure 7E. Estimates of the recording filter in Figure 7A, 
white noise zero, a) & b) by the Hilbert transform, c) by the 
Levinson’s method.
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Part B. Receiver Array Response
In this part we deal with those arrays which involve, 

like most geophone group cables, a simple addition of the 
outputs of the detectors.

The time delay AT across an array of length A X for 
a plane wave is given by

AT = AX/c = (M-DAL/c, (13)

where c is the phase velocity, M is the number of detectors, 
and AL is the detector spacing. AT can be called the duration 
of the array response.

Consider discrete array response a(t) with duration of 
AT, we could have

N
r  1 6 (t-nAT) for 2NAT = AT, M = 2N+1

a ( t )  =  Jn=-N ' (14)
^N-1
[ E 5 (t+nAT)f for (2N-1)AT=AT, M = 2N. 
n=-N

Here, we use AT =AL/c as the time interval between elements of 
the array.

The Fourier transform of a(t) would be

N
1 ^ 2  Z cos (217Tf AT)

2N+1 ^ 2N+1 1=1
A(f)=\ N

1 E cos [ (2l-1 ) TTf AT]
N  1=1

exp(jp)
(15)

exp j [+7Tf AT+p]
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where +TTfAT is the phase shift due to non-symmetric sampling 
of AT/2 for the even-number elements (M=2N) , and p=w/2 sgn 
(A(f)) - tt/2.

Equations (13) and (15) show that increasing the array 
length AX, i.e., increasing the duration of the array response AT, 
and the number of detectors has two effects on frequency 
spectrum ;

1. The width of the rejection band increases.
2. The amplitude spectrum in the rejection band 

decreases (Figures 8 and 9).
A question of interest in high resolution is, how much of 

the signal bandwidth outside the central pass-band of the 
array can be restored, i.e., can all the signal energy in the 
recording filter band be used effectively?

The effect of array response depends on its duration.
Now, we may simulate three cases of array responses with three 
different numbers of elements and durations for AL(22 ft) and 
c (11,000 ft/sec).

Case 1. ai(t) 
Case 2. a 2 (t) 
Case 3. ag(t)

A r =  2

M AT(ms)
1/ ĉ O (0) = 1
2, 2, a2(-1) — 1/2, a 2 ( 0)—1/2
4, 6, a2(-2) = 1/4, a g (-1)=1/4

ag (0) = 1/4, a3 (l)=l/4
ms
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Here the study investigates what problems the receiver 
array responses cause for the two types of deconvolution 
processes under consideration.

In Case 1, the duration of the array response approaches 
zero, thus the response should be the delta, and its ampli
tude spectrum is a flat line. Figures 8 and 9 show the 
impulse responses and the amplitude spectra of the array 
filters in Case 2 and Case 3, respectively.

A simulated minimum-phase recording filter (Figure 10) 
was used to convolve with each array filter. The convolu
tion of the recording filter with a^(t) is still the re
cording filter. Figure 11 shows the impulse response and 
the amplitude spectrum of the convolution between the re
cording filter and the array a 2 (t). Figure 12 shows the 
similar results for a^ (t). Figures 13 to 16 show the decon
volved amplitude spectra, wavelets and phase distortions 
obtained in the frequency domain by applying the Hilbert 
transform and the zero-phase bandpass filters to the three 
input wavelets in Figures 10, 11, and 12. Figure 17 shows 
three minimum-phase Hilbert transform estimates of the three 
input wavelets. The deconvolved results from Case 1 to 
Case 3, are shown in each figure from the top to the bottom. 
Figures 18 to 21 show the similar results obtained in the
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time domain by applying the one-sided least-squares deconvo
lution operators and the zero-phase bandpass filters to the 
above three inputs. Figure 22 shows three estimates of the 
above three inputs, obtained by inverting the one-sided least- 
squares operators computed from the autocorrelation functions 
of the input wavelets.

The input parameters are:
The number of sampled points for FFT 512 points
Sampling interval

Time domain 0.002 sec
Frequency domain 1/(512 x 0.002) hz

Operator length
Time domain 151 points
Frequency domain 512 points

White noise 0.01%
From Figures 13 and 18, we can observe that the high- 

frequencies attenuated by the array responses can be restored. 
Figures 14, 15, 19, and 20 indicate that the deconvolved 
wavelet, for each array response of case 2 or case 3, has a 
time lead which is equal to half of the duration of the corres
ponding, array response.

Discussion of the Results in Part B
1) The restoration of the bandwidth
The signal impinging upon the arrays convolves with 

the array responses having the pass-bands shown in Figures
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8 and 9 for the specified phase velocities. Thus, the high- 
frequency signal compontns within the pass-band of the re
cording filter (Figure 10) will be attenuated and inverted 
in sign by the array responses and will not be used effectively 
Now, comparing the amplitude spectra in Figures 10, 11, and 
12 before deconvolutions with those in Figures 13 and 18 
after deconvolutions, we can observe that the bandwidth out
side the central pass-band of the array has been restored by 
applying the minimum-phase deconvolution techniques. Ex
perience has taught us that the restoration increases with 
decreasing white noise constant. In order to prevent the 
divergence of log | H(k)j associated with zeros of H(z) on 
the unit circle, we added the white noise constant to log
I H (k) I . Hence, the white noise will influence the com
puted phase, just as it did during the time-domain operator 
design; however, colored noise could have been used here.

2) The time shift due to the deconvolutions
From Figures 14 and 15, it can be seen that the decon

volved wavelets obtained by using the Hilbert transform have 
time leads. From the appropriate phase curve (e.g.. Figure 16) 
these leads were measured as 1 ms for the array of Case 2 and 
3 ms for case 3. Each time lead in the output is equal to 
half of the duration of the array response.

What causes the time leads? Each input wavelet (Figure
II or 12) is the convolution of the array response a(n) with
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the minimum-phase recording filter i(n)(Figure 10). Taking 
the even element cases computed in the thesis for example, 
we have

a(n) * i(n)
A(k) I (k) I exp j[0j(k) + p + i T k A f  ATI / (16)

where |A(k)| is the Fourier amplitude spectrum of the array 
response, | I(k)|and 9j(k) are the amplitude and phase spectra 
of the instrument filter.

After taking the logarithm of the convolved amplitude 
spectrum and passing it through the Hilbert transform, we 
have

log [ |A(k) I . I I(k)| ] * Vw(k)
— ©A^^) 0j(k)

where 0&(k) = log |A(k) | $ V^(k) ^ p t irkAfAT.

Note that 0A(k) is a minimum phase computed from the loga
rithm of the array amplitude.

After convolving the input spectra (Equation (16)) with 
the frequency-domain inverse filter

- [ Â Ô Ô T T T T ^  exp [-i(0A(k) +0i(k))],

we will obtain the deconvolved output 

exp [-j (0&(k) + p + TTkAf AT) ] »
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The phase term 6^(k) has a linear phase component (Fig. 23) 
which gives the time lead in the output pulse. (k)+7rkAf AT 
gives a total linear phase shift in the output (Fig. 16).

Also, Figures 19 and 20 indicate that the deconvolved 
wavelets obtained by applying the one-sided least-squares 
operator to the arrays of Case .2 and 3 have lead times the 
same as those obtained by using the Hilbert transform. The 
operator derived by solving the normal equations (1) and (1-1) 
cannot be zero-phase due to its causality. For the symmetric 
input array response, the causal operator provides a minimum 
phase, which turns out to be nearly linear, with a slope 
affording the time lead in the output.

Many seismic velocity estimation techniques utilize 
the variation of normal moveout with travel time. Most of 
the techniques assume stacking velocity, apply the normal 
moveouts corresponding to the offsets of CDP traces, and 
then measure the coherence among the traces. The time leads 
caused by the minimum-phase deconvolutions may distort the 
normal moveout curve, and cause errors in estimating velocity.
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COMPUTER TIME COMPARISON BETWEEN THE TWO METHODS

The computer time required for each method depends on 
the inputs and the outputs, such as the length of input 
wavelet, the selected parameters, and the plotted figures.
For the programs used in the study, the CPU time (CSM PDP-10 
Computer) needed to compute and plot the results shown in 
Figure 7B, using the Hilbert transform, is 49.04 seconds; 
that needed to compute and plot the results shown in Figure 7C, 
using the Levinson's algorithm, is 63.84 seconds. Hence, 
the frequency-domain deconvolution using the Hilbert trans
form was slightly faster in this test. In general, the author's 
impression is that the times are comparable.

65
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Figure 8 . a) Receiver array response
b) amplitude spectrum. 0 2 (t) and
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Fi gu r e  9 . a) R e c e i v e r  array res ponse, a^(t), and 
b) a m p l i t u d e  spectrum.
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Fi gu re  10. R e c o r d i n g  filter (15/18-150 h z ) . 
a) I m p ul se r e s p o n s e  and b) a m p l i t u d e  spectrum.
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Figure 12.%he Convolution of the recording filter in Figure 10 
and the array response o^Ct), a) Impulse response and b) amplitude
#pectfum
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Figure 14 . Deconvolved wavelets of the three inputs in 
figures 10 to 12. band-pass filter 18-62 hz^

i

by the Hilbert transform.
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Fi gu re 15. D e c o n v o l v e d  w a v e l e t s  of the three inputs in Figu res 10 
to 12. b a n d - p a s s  filter 15-150 h z , by the H i l bert transform.
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Fiigure 16. D e c o n v o l v e d  ph as e of the three inputs in Fi gu res  
10 to 12, by the H i l b e r t  transform.
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F i gure  17. E s t i m a t e s  of the three inputs in Fi gu r e  10 to 12, 
by the Hi l b e r t  transform.
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Figure 20. D e c o n v o l v e d  w a v e l e t s  of the three inputs in 
Fi gu re s 10 to 12, b a n d - p a s s  filter 15 -150 h z , by the time- 
do ma in  de co nvolut io n.



ER-2096 79

400.000. 00
§

§

§
I 400.00300.00100.00 200.000.00

g

g
Ci"

g

.■A

0.00 100.00 200.00 300.00 400.00 500.00

F r e q u e n c y  . |hz)

Fi gu r e  2.1. D e c o n v o l v e d  phase of the three inputs in Figu res 10 

to 12, by the t i m e - d o m a i n  decon vo lution.
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Figure 22. E esti ma tes of the three inputs in Figu res 1 0  to 
12, by the t i m e - d o m a i n  d e co nvolut io n.
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Fig. 23. The phase curve 0^(k) of the array response 
Ogft), computed by the Hilbert transform, 
white noise 0.0001.
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CONCLUSIONS

1. The minimum-phase assumption should be met by the 
two deconvolution approaches in order to produce a zero- 
phase or symmetric output pulse.

2. The minimum-phase deconvolution based on the Hilbert 
transform in the frequency-domain is more suitable for 
seismic wavelet processing than the one-sided least-squares 
algorithm. In operator design using the Hilbert transform, 
one can add white noise to the input amplitude spectrum without 
affecting the computed minimum phase. This is not possible 
when the Levinson's technique is employed.

3. Both deconvolution techniques can restore the band
width outside the central pass-band of the receiver array, 
but both produce a time lead in the deconvolved wavelet which 
is due to the non-minimum phase of the array. The time lead 
is equal to half of the duration of the array response. The 
time lead may cause error in estimating velocity due to the 
distortion of moveout curve.
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4. In general, the computing times needed for the two 
methods are comparable. For some cases, the Hilbert trans
form method is slightly faster than the least-squares method
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