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ABSTRACT

The apparent resistivity obtained by direct-current
resistivity sounding over a horizontally layered earth can.
be expressed as a Hankel transform of the so-called kernel
function. This function depends only on the layer thick-
nesses and resistivities, and not on the particular elec-
trode arrays used in the measurements. This research was
conducted to study the analytical properties and the use of
the kernel functlon in Interpreting resistivity sounding da-
ta. The numerical techniques developed for this purpose are.
implemented for dlgital computers and applied to the analy-
sls of theoretical geocelectric models.

The value of the kernel function at the origin is giv=-
en by the ratio of the resistivity of the lowermost infinite
substratum to the sufface resistivity. For large values of
its argument, the kernel function approaches the value one,
with a rate determined by the‘first layer thickness. In a

logarithmic coordinate system, resistivity functions
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symmetric with respect to depth.produce kernel functions
symmetriec with respect to their argument.. For a perfectly
resistant or a perfectly conductive basement, the kernel:
function, plotted logarithmically, approaches asymptoti-
cally a straight line with a slope of minus 1 or plus 1,
respectively. The position of this line depends on the ra-
tio of the surface conductivity to the total conductance
of the overlaying formations in the flrst case, and on the
ratio of the surface resistivity to the transverse resis-
tance in the second case.

Representative kernel functlons for the Adena oil
field, (Morgan County, Colorado), are computed from elec-
tric well logs digitized with a ten-foot interval. A Han-
kel transformation. of these kernels, using Gaussian quad-
rature, furnishes "synthetic" resistivity sounding curves
for theAAdena,field. These curves can be used to study ex-
ploration requirements of resistivity sounding surveys in
the area. For "direct'" detection of the pay zones in this
particular oil field, an accuracy of field measurements
much better than 1. percent at a distance of three to five
miles from the current source is required.

Electrical soundings can be interpreted in the ker-
nel-domain by inverse Hankel transformation of the observ-

ed apparent resistivity curves. This procedure probably

iv
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leads to a.more nearly accurate determination of the layer-
ing pérameters;than.curve-matchinggmethods@-Forvthe inver-
slon of sounding curves. recorded: over a.section with a re-.
sistant basement, the numerical technique developed for the
Hankel transformation. can be applied, making the:-correction
for the branch: of the curve raising with a slope of 1. The
application of this formula to the inversion of simulated
apparent resistivity data for the Adena field shows that'the

numerical accuracy is sufficient for practical purposes.
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INTRODUCTION

The geophysicist interpreting resilstivity sounding
curves 1s often faced with multi-layered earth models for
which no set of master curves is available. Partial curve
matching is useful for finding approximate solutions to the
problem, however, this procedure does not make use.of the
inherent accuracy of the data. Consequently, some of the in-.
formation contained in the observations is lost at the in-
terpretation stage. Modern digital computer technology pro-
vides the tools to attack this problem numerically. The
so-called "kernel function" offers the most promising path
to its solution because this function is more directly re-
lated to the geoelectrical model than the apbarent resisti-
vity is.

The literature on the subject of interpretation in the
kernel-domain includes papers by Slichter (1933), Pekeris
(1940), Vozoff (1958), and Koefoed (1965a, 1965b, and 1966).

The work of these authors is concentrated on the step of
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obtaining the bed thicknesses-and resistivities of the sec-
tion from the kernel function. Except for Koefoed (l965a,
and 1965b), who presents a graphical method, the step of ob-
taining the kernel function by a Hankel transform of ob-
served apparent resistivities has not been considered.

Thus, this thesis was undertaken to develop an accurate
numerical technique for the Hankel transformatlion and to
study the general properties of kernel functions. Little at-
tenfion is paid to "direct" interpretation methods, con-
sisting in the analytical determination of the resistivity
function of the medium from its kernel. The writer believes
that determining the layering model from the kernel function
is, as in every other interpretation problem in geophysics,
essentially a step where geological judgment, past experi-
ence, and ingenuity are significant.

A mathematical model study is used throughout this the-
sis. The necessary digital computer programs are developed
and then applied to a reasonable geological situation to
test the requirements on the different variables involved.

The first chapter is a detailed discussion of the phys-
ical properties of direct-current flow in a horizontally
uniform medium. Next, different algorithms for computing the
kernel function for a horizontally layered earth are ana-

lyzed, and Sunde's recurrence relation is applied to a
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model study of kernel functiens for the Adena oil field,
Morgan County, Colorade. The next chapter pertains to nu-
merical methods for evaluating Hankel transforms, suitable
for dlgital computers. Finally, the interpretation of resis-

tivity:sounding data in the kernel domain is considered.
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SURFACE POTENTIAL AND KERNEL FUNCTION

ASSOCIATED WITH .DIRECT-CURRENT FLOW

Statement of the Resistivity Sounding Problem

The basic physical concepts of direct current-resistiv-
ity sounding are explained by the theoretical single-pole

setup shown in figure 1.

I Z2=<0 , Cf::()

1!A X

z 220, 0=J(z2)

Figure 1.

The single-electrode configuration
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A point electrode located at the origin A of an orthog-
onal cartesian coordinate system supplies a direct-current
of intensity I (amperes) to an isotropic, horizentally uni-.
form half space of conductivity o(z) (mhos/m). The surface
potential U(r), expressed in volts, arising from the current
flow in the medium is measured with another polnt electrode
at the point M, a distance of r meters away from the source
A. (The MKS system of units 1s dsed throughout this thesis.)
The fundamental geophysical problem 1s to obtaln the conduc-
tivity variation with depth.o(z) of the medium from the po-
tential measured at a number of observation points M.

The single-pole configuration is-a mathematical ab;
straction analogous to an isolated simple electrostatic
charge. In actual field surveys, other electrode arrays,
involving at least four electrodés are used instead.

The differential equation for the potential U is estab-

lished from the following fundamental relationships,

Vﬁ = O ‘5<°)O; ©) - =o (1)

-

J : current density (amp/m)

E : electric field (volt/m)
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E = - 90U (3)

V-(d@E) = G VE +E-V () O

z I .
VU + == V0® -vU =0 . ()
G(z)
Because of the axial symmetry of the current flow, it

is convenlient to adopt a cylindrical system of coordinates,

then
U = U(r,z) ,
and equation (4) becomes
P | 2 22U glz) 2Uu (
> T T 7T 3z g (z) oz = 0 >)

0 <ola) <o, rz0,z20, oz @,

o(z) and o'(z) are continuous.

Equation (5) 1s a second-order partial differential
equation of the elliptic type; for its solution two inde-
pendent. boundary conditions are requilred:

Dirichlet conditions on the infinite halfsphere
R=/r2 + 22,

U(r,z) > 0 as R+ » , (51)

Neumann conditions on the infilnite plane 2z = 0,

Jz(r,o) =0 r # 0.
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There 1s no current flow acroess the plane z = 0, except

at the point electrode at r = 0,

2l 70’5@_(@ o)

7 =0 T £ 0
zfrrjz(o,o)
I - =0

From the continuity of current flow it follows that,

waﬂ’JE C’*Jo) fT“O('f _ 1

I

]

The last.three equations show‘that.anJz(r,O)/I behaves

like Dirac's delta function; hence,

o) =

Jz("r?o) = G<0)Ez('¢/o) = - GCO)%E U(TJ(’) .

Therefore, the Neumann conditions can be rewritten

I 1))

—— (511)
270 G )

g—g U(’P)O)

3

Uniqueness of Solution

Theorem: If there exists a solution to the boundary-value

problem (5), then this is the only one possible.
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Proof: With the assumptien that U =

U(r,z) is one solution

satisfying conditions (5), and that there exists

U* =
ou™
(k3 Z=0
If W = U - U*, then
W _
0z v —o
Z =0

which implies J(r,z) = 0

U*(r,z) also satisfying (5), it follews that,

L $(+)

Z7 G(o)

o

0, where 3 is the current

density associated with the potential W. In other words, the

current flow I* is zero. Hence, J(r,z) = 0 everywhere, and ~

G<Z)E(”)E) = - @) V\W(inHhz) = 0

Excluding the case o(z) = 0, whiech is only of academlc

interest,

VW(r,z) =.0

W constant.

From the Dirichlet conditions

U(r,z) > 0 as r > » and

as r = «

U*(r,z) - O

that the value of the constant
W =

U#

, wWhich shows
must be zero, i.e.
0 for all space, hence,

U for all space, Q.E.D.
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Formal Solution of Problem (5)

The boundary value problem (5) has been solved by sepa-
ration of variables (Slichter, 1933). The solution using in-
tegral transform techniques is given in the following devel-.

opment.

Starting with the Hankel transform pair

\v'(7w-’~’) = g U(’T’,Z) " :{% (7\,’1‘) dr

Ulne) = (VOeuz)n T, () dn

s}

where Jn(x) is the Bessel function of the first kind and nth.

order, and setting n = 0, the potential function may bg,Writ-

ten
U(nz) = (v@,zpkjo(m) v .
Differentiating
S Uz = [V fo g, O d
= g\/(h,z)k[-kjl (M')IOD\
gnd, oo

L2 U(ne) .—--g%\/(?uz}/\zl(hm)dk ’

o
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2

o

U(ryz) = - g\/QL)Z)?\.Z %f&(?\"“)d?\,-

o]

o

z
T

From the formulas for derivatives of Bessel functions
d ) — <) - L
L J () = A3 0) - £ 3, 0vr)

it follows that

. U = - (Vo 0,00 #3709l
Hence, Q
DU 19U ooz
S Y a5e _57\ V() I, (Ar)dn
*also,
Consequently,

» OO

f [=V00e) + 28 L Vel - AV02) ) AT 00 dn =0,

o

One possible solution of this integral equation is that
the expression in the braces vanishes. From the uniqueness
of solution proved earlier, it is seen that this is '"the" so- -
lution. Thus, problem (5) has the formal solution

£ [/ = G’(Z)i /(n.,z) - d 2\ — 6
ooV (mE) + G dz&( 2) - AV(Lz)= O (61)
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o0

U(r,z) = ('\/(x,z)kl(m)otk . (611)

(o]

Conditions (5i) and (5ii) will be introduced after dis-

cussing equation (6i).

Some Properties. of Equation .(6i)

Equation (6i) is an ordinary, linear differential equa-
tion with variable coefficients. Unfortunately, there 1is no
general solution. available for this second=-order equation,as
there is for the corresponding first-order equatioen. Unless
equation (6i) reduces to a type with constant coefficients,
which can be integrated in terms of elementary functions, the
solution has to be expressed in .infinite form.. That is, an
infinite series, a definite integral, a contour integral, or
continued. fractions. are. required. The solutions of some stan-
dard. forms. arising frequently in mathematical physics, as for
instance the. Bessel. equatioens,. have been expressed in special
transcendental. functions.

Approximate methods, such as asymptotic solutions, or
the WKBJ method, can not be applied to equation (6i), because
they require a large parameter ), which is not the case 1in

the present problem where 0 < ) < =,

11
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Even if the solution to equation (6i) is not known ex-
plicitly, some of its fundamental properties can be estab-
lished. The corresponding general theory has been developed
by Sturm (Ince, 1956), who studied extensively equations of

the type
Le) = (K@ - Gldy- © .

K(x) and G(x) are continuous and real functions in some
interval (a,b).

Equation (61) can be written as the Sturmian equation

d—z { T (7) %[:g\/('k,z)} -Ao@) Vix) =0 5 (1)
where " ‘
K = o(z) , G = A20(2z)

The initial conditioens of equation (7) are:

[ U(r50) T, (ur) dr (71)

V(k,O) J

o

)

L%U@dwl@ﬂa

o

L V/(1,0)

g L) g (ar)dr

2TWG(o)m

V(n,0) = L (711)

2T ()
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Sturm established the fundamental theorem that the ini-
tial value problem (7) has one and only one solution. This
unigue solution. can. be expressed as the,sum.of two linearly
independent solutions if the Wronskian W(z) does not vanish
on the interval 0 < 2z < «. Consequently, the general solu-
tion of (7) can be written

V(r,z) = Co(N)V (A,z2) + Co(M)V,(A,2) ,

where beth V. and V, satisfy equations (7). From Abel's iden-

1 2
tity (Ince, 1956, p. 75) it follows that

A E
\/\/(z) 2 = (C exp —[ a (z) oLZ/R

av, dve

dz dz

C

MJCE) = G(z)

\as

where,
C.o= Vi(2,0)V,(2,0) - % “V,(1,00V5(2,0). .
The last two relationships .shew that there. are.two inde-
pendent solutions V, and V, of equations (7), as long as
o(z) remains bounded, and C # 0.
Another consequence of Sturm's theory is that the solu-
tions of the equation L(y) =.0 are non-oscillatory' (having

at most one zero), if G > 0 in the interval (a,b). Since in

13
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in equation (7) A2%0(z) > 0, the important result arises that

Vl and V2 are both non-oscillatory for all z.

The behavior of the solutions Vl and.V2

be studied by reducing equation (7) to an equation not con-

for large A may

taining the first derivative. To achieve this the following

change of variable 1s carried out

- Z
N [ _ i (d@ 4| o«
Equation (7). changes to
d« L IEz -0 (8)

d z*
where

2 . )

| - ) 0| @
LG -~ Tlr{??(z)] Yz {6(2)1 :

Given that o(z) # 0, and o(z), o(z) are both continuous

for all z, equation (8) becomes.

2
j“; M = O, a5 N - co o
z
its solution is
u = cl(x)e‘*Z + CQ(A)e+AZ.;

hence, the solution of equation (7) for large A approaches
-2z Az

V(n,z) = C () f&@\ + CZ'(A) /%_-(_5 A < .

14
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This expression shows that one solution remains bounded,

the other unbounded. with. either z or .

‘The ‘Kernel Function.

In the last paragraph it was shown that the solution to
equation (6i) can be written
V(n,z) = C;(N)V (r,z) + Co,(M)V,(2,2).
With V2‘the solution which is unbounded as z > «, it
is reasonable by considering (6ii) and (5i) to set C2(A) = 0.
This arbitrary assumption yields a solutilon of the boundary
value problem (5). From the uniqueness of solution proved

on page 8 it follows that this solution is the only one pos-

sible.
Hence,
U(r2) = [ COIV amnd Gn)da
52 U6H) = [ CmV 0,083, 0a)
o o
where

Vg & 2V ()
z2=0

From (5ii)

SIS gc,o\)v\‘@,o);ﬂo(xv)atx,

ZW G(o) v

15
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inverting this transform yields

) -1
C&A)\ﬂ(l#» 27 G (o) 7
so that the potential is given be
. _ - L g V, (2, Z) 3 (
U(rz) = 7 000) Vn A Our) 9)

The surface potential is of interest in prospecting,

U(ro) = —L SW“OHJ(m) .

217 G (o) \/(7\__ )

Denoting by K()X) the kernel function corresponding to
a given conductivity function o(z), the surface potential

can be written

Ut - 2uTcr(o) LKO\ % (e o
V, (»,0) (1011)

K(K) = - A \/',<7\,~,O> .

It is customary in mathematical physics to call JO(Ar)
the kernel of the integral transform (10i). However, Slich-
ter (1933)s assigned the name "kernel" to the function given

by equation (10ii), a designation which has been followed

16
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later by other authors and 1s now well established in the

literature on electrical prospecting.

Relationship. between. the: Kernel:Function. and .the Two-Dimen-

sional Fourier.Transform.of. the. Surface Potential..

Expression (10i) shows that

I

U(fr) = m {)K (7\) JO(/\'T) ol A

is the surface potential expressed as Fourier-Bessel trans-

form. From the identity
217& AT cos W

ge dy = 2z d (ar)

o

the Fourier-Bessel integral can be transformed to

co , 2%

I X ( (ATCcos W
Ur) = ——— k(A e ol#oln
) (271)"G(e) ),

[e]

Changing from the polar coordinate systems, in both the

A and r-doemains to orthogonal cartesian coordinates by the

" transformation
= = XcoS¢ X = rcosé
B = Asine y = rsine s
and letting
v = ¢ - 6
dy = d¢

17
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Arcos¥= Arcos(¢ - 0)
= gx + By

The Jacoblan of the transformation is given by

on  oa cos sin
D BP ¢ ¢
J = = =
o og _sing  cosg "
Dok ap A .
x =V a2+82°
and the potential in the new system of coordinates becomes
(K (¢, B) E(ox T y)
U (x S S Ll e deed B3 . (11)
(x2) EORS [ ¢
oo - oo

The potential function U(x,y) and the function
F(a,B) =(K(a,8)03?15701/0(0) constitute a two-dimensional
Fourier transform pair. In effect, equation (10i) is a spe-
cial case of.a two-dimensional Fourler transform resulting
from the cylindrical symmetry of the problem. Equation (11)
could have been derived by applying the two-dimensional
Fourier transform to equation (4) expressed in orthogonal
cartesian coordinates. But, the expression of the potential
as a Hankel transform of the kernel function, equation (10i),
1ls better suited for numerical computation because. only one

integration is required.

18
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Some. Properties. of the. Kernel. Functilon

1. Langer's reciprocal relation.-- If K(A) is the ker-
nel. corresponding to o(2z), then Q(r) = 1/K(1) is the kernel

corresponding to po(2z) = 1/¢(2z), (Slichter, 1933).
2. Behavior of K(A) for:large A.==

)
A —~0e0 A > oo \/l(h.,O) 2 =0

from page 14

- AE
x = S A = so
V;( ;%) VE727 ? a
and

‘ 1
N (n50 = .

‘(%,0) o

Vi) - —Aé%zﬁﬁgﬂ_éémﬁﬁ@ﬂjg&)

o (=)

Vo) = AT -F 0

[G’(o)] 3/12

eim K(A) = Aim -r —3C) ’
A0 A oo “AGT©E-£T ()

etm KXYy = 1 (15)

v
N > oo
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3. Behavior of K(A) for small A.--
Defining

K(0) = 1lim K(a) )
A0

then from equation (10ii),

KEO) = Lo 2% (250)
r-o B2V (3,0)

and from equations (7i) and (7ii)

Y (:0) = £l f@w 3. (ur)de
V00 = zr%ﬁ:ffzi
hence,
Klo) = f%yggrﬁﬁwm%0wuﬁ ;

with the change of variable Ar = x.

l’(\ (O) _ 12/;;0) @(W‘L ( U(‘% % Jo (X) dx "

From: (10i) it is seen that if the medium is homoge-

neous (K(A) =.1), then

_ 1)
U(rr) 210
If the medium is homogeneous from a certain depth_zn

on, or in other words, if.the lowermost layer of the section

20
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extends to infinite depth with a constant, finite resistiv-

ity p(Zn), this layer will ultimately determine the behavior

of the potential function for large r, i.e.

1 P(z,) (16)

Consequently, by taking the 1limit of the integrand,

Koy — S fJ (x) dx

Q

Ko) = {;%2; , (17)

If the resistivity of the substratum at depth Z, is ei-
ther unbounded or zero, equation (16) does not apply, and
another.methodvhas.to be used to find the behavior of- the
kernel function. at the origin.

A perfectly resistant or conductive bed of finite thick-
ness located at some depth z ~of the section, acts as a screen
eliminating every direct current effect of the underlaying
medium. This phenomenon can be easily visualized by consider-
ing the paths of the current flow under these circunstances.

For a perfect resistor at depth z, it follows from the

continuity of current flow, that

21
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s —

[ - fj-ds - —(m)vu-oﬁs
(s) $)

0 and

Because no current flows through the planes z

Z = 2., the surface S can be considered to include only the

vertical surface of the cylinder with radius r and height Z,

shown in figure 2.

i U
g=0 .tA r 1M
4—3: g = 0(z) :§->
Z
g=0 n
Z
Figure 2.

The potential of a section overlaying a perfect resistor

The current vector T will be essentially. parallel to

the horizontal boundaries of the disc if r is taken suffi-

ciently large compared with,zr1
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Under this condition

VU’:"?%—(:: T —= 0
and
27 2,
| = - S/{q@)g%dw&de ;
S de]
if

S & g G(z)dz

o

is the total conductance of the section resting . on top of the

resistor,

- 2w 25 T oo (18)

—
Il

Integrating with respect to r, and defining the poten-

tial such that the integration constant becomes zero,

fm UG) = g Aoy
which shows that the potential is logarithmic for large spac-
ing r, and tends. to -« rather than zero as in formula (16).
The kernel function for this limiting case 1is obtained
from gg instead of U. Setting K(A) = ¢&(x) + 1 in equation
(101) in order to secure the convergence. of the integrals in

the following steps,

23
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Ulr) = 3% G(o) {T'r" + ['@(K\)Jo (M’)o’Lk} ’

then

%—U(«)= ZL“" {LL + gmx@(x)J,(M)dX}

a 77 6 (o) w
27 Go) D u N
T ‘bj_,U(T) o “gk@(l)l(’“")dh ;
o
inverting,
- 2T G (o) ( U ~ - J(xf)o{d_
¢ T J (xr)dr - )
(o) o
but
f.__a'(“?au = 1
Y
o (Abramowitz and Stegun, 1965, p. 486)
consequently,
<0
27 G '
K@) = - "I (o) ST ggl(m)d,r.
[+
This integral may be written
=) E oo

[r3230ndr = [ 840n0dr + (’f 8 e

°© €

When r becomes vanishingly small, gg is of order %2,

and Jl(xr) is of order r, which shows that the first inte-

gral on the right side vanishes as ¢ > 0. With the change
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of variable Ar =.x in the second integral on the right side
it is seen that when » » 0, r » » (x # 0), so that.the value
of-rgg obtained from equation (18) can be substituted into
the integral provided that A becomes vanishingly small,

. T ) - I
L K (A) = 2 W G(o - J,(r7) de
A O I OZH S
hence ,
dm KG) = 29, c@) - o0 . (191)
A—>O xS

For a pérfect conductor at depth, from Langer's recip-

rocal relation,
Lo K(A) = S P(zn) — O (191i)
N0 P(O)
Z'VL
T = gf’(z)olz

(o]

where
is called the transverse resilstance of the upper sectilon.

4. The kernel functien in logarithmic. coordinates.--
There are several. advantages of plotting the kernel function
in logarithmic coordinates. As a consequence of Langer's re-
ciprocal relation, log{K(A)} corresponding to a conductivity.
variation o(z), and log{Q<A)} corresponding to the recip-

rocal of o(z) are symmetric with respect to the i-axis. This
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property does not hold for the logarithmic graphs of the po-
tential or apparent resistivities plotted against some spac-
ing factor. Thus, a cataleg of kernel function curves for
layered media would need only half the number of curves of
"the corresponding resistivity catalog.

The slepe of the kernel function for the resistant base-

ment case. is. obtalned from equation (19i),
&8D<.<7Q] - - [ogh n &Tg %9)_ N — O.

This. linear equation shows that log{K(A)} is asymp-
totic. for.small values of A to a straight line.with slope of
minus 1 passing through. the point A =.£é§l , K = 1.

Similarly, for a perfect conductor at depth, log{K(i)}
approaches. asymptotically a straight line with slope of
plus 1 through the point A = E%g) , K = 1.

Because only one perfect resistor or conductor can be
observed in a particular kernel curve, its slope must lie
between plus and minus 1. In practice, however, beds with fi-
nite thickness. and relatively large resistivity contrasts
prodﬁce slopes of 1, which do not occur at the origin if the
substratum has a finite resistivity. The kernel function of
the Hough no.l well log from the Adena field, (Morgan County,
Colorado) resolved into 560 layers (figure 10), provides an

example. Here the resistivity contrast of the lowest layers

26
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is 1 : 4o, and the. kernel function is tangent to a straight-

line with slope of minus: 1, cutting the A-axis at x = 0.00015.

With a total conductance of S = 630 mhos, and a surface re-

sistivity of 10 ohm-m, the theoretical crossing point is

Gl . 2l o 500016 .

Ne = T3 230

If several sufficiently thick layers with strong resis-

tivity .coentrasts are present, the. kernel curve will approach

several lines with slope of 1l..As before, the intersection of:

each asymptotic line will be determined by the total conduc-
tance or the transverse. resistance of. the. overlaying beds.
Illustrations of repeating slopes. of about plus and about mi-

nus 1 are presented in figures 3 and by,

Kernel Functions. for Continuous .o(z)

The solution of equation. (6i) for simpleucontinﬁous
conductivity functions o(z) allows the evaluation of the
‘kernel‘function in closed form. The conductivity-kernel pairs
presented in table I, except for the power conductivity law
derived in the following development, are taken from Slichter
(1933).

For the conductivity function o(z) = (o(0) + kz)P,

p real # 0, k > 0, ¢(0) > 0, equation (6i) becomes

A e z
T VuE) + B eV (uE) - K V(2] = 0. (20)

27
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The change of variable x o(0) + kz reduces this equa-

tion to a particular type. of Bessel equation,

VO - =NV %) = 0

Ol,z \ d\—
de\/(l\)X} + —-XE)— oL X

Its solution: 1s expressed in terms. of modified, or Bes-

sel functions. of imaginary argument. (Abramowitz and Stegun,

1965, p. 362)

VOux) = xE {Clgip_) + CZ'K_IS%F;)} .

The second term remains bounded for large argument;

therefore, the appropiate solution to equation (20) is:

= [G(o) + }hz]DKD (n (’;g@ + xz)

V(A 2)

S R LG S

i

V, (ny0) = Glo) K» (~ GJ%(S))

>
‘6

30



T-1103

The differentiation formula

ol » ! » G (o
HEK@] = -2 K, 0
- (Abramowitz and Stegun, 1965, p. 376)

gives

Vo) = = 0 K, (A gy

\”l

and finally,

(< (7\- G(O)
K (A) = G‘(o) . (21)
KM 2)
For the linear law o(z) = o(0) % kz ,
Ko - Kol
G
K, (%)
For the quadratic law o(z) = (0(0) + kz)?, making use

of the.identity K_v(z) = Kv(z) (Abramowitz and Stegun, 1965,

p. 375),

Ky~ KVZEL,})

3@
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Table I.
Conductivity - kernel pairs
G (%) k(M)
constant
G (o) 1
exponential
o) S
o] e )
V reat 4 bty ()
power c
( %Z)P K»(«&A)
C+
K))— (T:% A-) Y = ‘_P_
Y realpr0 l 2
hyperbolic
. 2 rcC
G, omhR w (Z+c) =
arg # 6 we colh we +/(>\c)2 t+ (wo)

q, conbh o (21¢)

VO\)}C

AC
wc,fwn/%ooc + l/(hc)7*+ (we)? T

trigonometric

g, oo w (Z+¢)

o<o/r%<’l‘|'

AC

we ol we + l/(hc)z__ () '

Oy coo?w (B4 ¢c)

i _
z S ag <

AC

_-C\)CtVVLOQC + V(lc)z—(wc)zl
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Kernel Functions for Discontinuous. o(z).

The. simple. models of table I apply. for. strictly contin-

uous conductivity functions o(z) and o(z). If these functions.

are only sectionally continuous, the potential function as-
sumes an entirely different analytic form in each region sep-
arated by planes where discontinuities in o(z) and o'(z) oc-
cur. Two conditions must be satisfied at each of these bound-
aries:

a). continuity of the petential function,

b). continuity of the normal component of the current

density.
Ul R cl(z) section 1
Zl -
Zi-1
Ui s oi(z) section i
z, EER By
: H
Zn-1 [ - '\
u, » o, (2) section n Z .

Figure 5.

Medium with a discontinuous. conductivity function
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The model for a discontinuous conductivity function con-

sists of an infinite half space composed of an arbitrary, fi-
Each section i of thickness 24

nite number n of sections.
is characterized by its own continuous conductivity

%1-1
function ci(z), as shown in figure 5.
The potential function Ui is given by:
U, (52) ~ S{A;E(h,z) ¢ B, 6, BT ()dr (22)
i=1, 2, ... , n; Z; 1 22223572 0;
Ai = Ai(A, Zss c(zi))a
Fi(x,z) and Gi(A,z) are two linearly independent solu-
tions of equation (6i). The constants A; and By are deter-

mined. from the. boundary conditions.

At the surface z = 0,

?_ -1 &
e U(md) = - o= (o) T
At each boundary z = Zy s
= U(',-” (Krl Z‘:)

UL (/Y”Zb)
. \O fe)
Z. =) (7 ZL G N et :
VEACVECES (2) 8z U(v2)
For the nth section z > Z 12

lim U (r,z) = 0
Zr® n
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which from page 15 requires that Bn 0.

The remaining 2n - 1 constants Ai and B

1
from a system of 2n - 1 linear equations

dependénce on A is omitted for simplicity; that 1s, if

F,;(zy) = F;(2,24), and F. (z ) = A5z,

3Zl

>

2y

then the system of linear equatlons may be written:

’ ! . "I
AR@ +B6 0 = 5w
AR GE)+BG6E) = ALEE) - B,6,(E)
cr,(z,){A.sz,)+—B.5.'(%.)} A LW AC
[ J

AL FI.,(ZL) + BLGC(}EL) - ALAI-I Egl‘z) B‘u-u 6L+(|Zl)
G’L(zd){ALFTb}(zLH.BLC&;(ZJ} = O (%) {4 F (Z) +BM6
?L |EL\TQL"’ * :Q—]Gn(-%“-') B A’VLE(\,<z“">
et (z'“ {A”" F'w(vz"”' * B’n- 6%-( M= )} = Gﬂ(z’“") AV\.F—'VI'. ( "‘")

@]

are. determined

.- If the functional

(23)
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The (2n-1) by (2n-1) determinant of system (23) 1is

F (o) G©) 0 o O eer O
F‘&c) G'(Z,) - E/izl) ‘62(5.) 0 e O
G F ,(Z.) a(z) 6:(5,) -(rz(z,),f-;' z) - Uz(z,)é’z(zl) O erens 0
0 0 B Gkl <F@E) - 0
0 0 GEEE) 0E)6E) - E)EE)0
A =
0 0 0 0 FE) -0

-"\/J\/\/\/\/\N\/\/\/\/\/\/\/\/\AMNVW

0 0 0w F &) G &) -Fl2)

0 0 0 0E) e ) o )6 @ ) -0 FE )
M- -1 ~oy ey et e Y e

With Aij denoting the cofactor of the element aij of
this determinant, the surface potential er,o) becomes from

equation (22),

Yo = L [CARO £ Ae6@ 3 anda
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, N | &d%uﬁm)+ A G, (0) N
U| (T7O) - 27 G(O) A” E‘(O) + A.Z 6.,(0) 7\-30 (/ T’)d'?\.o

[e]

The kernel functien is, consequently,

AQ\F—l(o) + qu,G| (O)
%&‘{A”E(o) +A‘26'(O)}

- A

i< ( ?\)

or alternatively,

Fe) + 2=G.(0) (21)

= - A -

Table II shows the functions F and G together with their
derivatives, corresponding to the conductivity laws listed in
table I. Equation (24) allows one to compute the analytic ex-
pression of the kernel corresponding to any combination of
these conductivibty functions. Table III gives the kernel
functions for a few. models consisting of two sections, each
characterized by. some conductivity law from table I. Most
widely used 1s model 1, the two-layer case. Exponential or

power. conductivity laws might be helpful for representing

Qertain geological situations. In some special cases they can.

also be used to approximate multi-layered models.
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Table III.

Some two-layer conductivity models

{1 —
K(A) = _____9_._
1 + Q@
where
Q 2 02- G, 2%,
Ut G
1 - Q
Koy = ——%
1 + Q@
e
Q o (szf - O"'N -2A%,
GT + g
ool
& Lffeen v r}
T+ 0@
where
Q s G - GT -5 (7o)
Gz)\. + G' o
- 4 %{\/sz(z,\)" +&}
amel
2
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model 5

1 - Q

K@) = =

aurbare

Q“A"‘ G2 K"I uIA‘) G Ky 7\-) “2/1'2’,, |
T2 Ko, (%7‘)“0[!(»(;_

amncl

< , 2
v = c+ kg, , 2

2N (¢ ,+12) ¢

|

Z’l Z
model 6

KQ) _ Kv(ﬁ. ) QI»G?%L)
Ko (£2) + QL (%4)
whase
Q 4 2Ky (E2) = GiKy- 1 (F2)
I, (g2) + 0T, (49)
K(?\,) K»(%A‘)_QI (5—"\)
‘5«‘527&) * QID | Jk )
et
Q - & Ky (22) Koy (320 6 K, (e K. ()

5 (320) K. TN+ l,,_l(;;;x)i‘f&(‘ah)

-
L —— A -0
v= T

A
) UEC &Zu 2= G lz,

Lo




T-1103

THE. KERNEL FUNCTION FOR A HORIZONTALLY

LAYERED MEDIUM

The purpose of the followlng development is to review,
discuss, and evaluate the kérnel_functions for media con-
sisting of an arbitrary number of horizontal layers with con-
stant conductivities. The first publicationscontithis:subject
appeared,in 1928 and 1929 ‘in a series of articles by J. N.
Hummel, who established what can be called the "Image School"
in electrical prospecting. A general development for the
n-layer case was first given by Stefanescu in collaboeration
with the Schlumberger brothers in 1930, in a paper that cre-
ated the "Harmonic School.'" Later development of different
expressions and. recurrence relations for the kernel function
is associated with the names of Slichter (1933), Pekeris
(1940), Sunde (1949), Flathe (1955), and Onodera (1960). A
review of their woerk is given by Roman (1963).

Of all the different expressions for the kernel func-
tion, two specific reéurrence relations, namely Sunde's and

Flathe's have been investigated closer in this thesis and
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are discussed briefly to. point out the difference in the nu-

merical calculatien of the kernel function.

Sunde's.Recurrence,Relationv

Equation.(2u) gives the kernel function for. quite gener-
at conductivity. laws. However, this expression‘can~be‘greatly
simplified for the.present case because. of the particularly -
simple relationship. between the exponential. function and its
derivatives.

With F = e—kz , G = e}‘Z in the determinant of the system

of simultaneous equations (23), the following recurrence re-

~lation can be established formally by simple row and column

operations:
—Z)Ld,|
\/ 1 ) &!23"'%6
123 " 1 + ktzs- ne—z;\.d.
Gp - G Vazg - m
&\23"'% = G—/
2t G Voay i
—Zﬁ.dz_
\/ 1 - R,ay n &
- - d
234 e m 1 +k236‘."m82"~»c
/@/ _ Gd& - GZ, \/3‘{-5 28
254 i 0-3+Cj’2/ v&‘#\g"-’\’b

. (25)

2



T-1103
y Y e—zxotn,,
(- { + % (m_‘)me-‘akd-w.—t
?(_ i - G’VL— Cw—( s
(=)m T+ Ty
where V123 n = K(A) 1is the. kernel function for a medium
consisting. of n layers,_kl23 n = k(1) is the reflection

function, and d; is the thickness of the 1th layer. With the
notation of figure 5, di =2y - 2y q-

This recurrence: relation has been derived by Sunde
(1949) in a very elegant way based on. the analogy of the
present boundary-value problem with a particular transmis-
sien line consisting of n different sections having the same
propagation constant.

The kernel function V is found by a series of

123...n
substitutions starting at the bottom of the sequence of lay-

ers. First V(n—l)n is computed, which corresponds to the ker-
nel of a two-layer case with a tep layer of cond}zctivity‘on_1

and thickness dn resting on an- infinite substratum of. re-

-1
sistivity I Next, the kernel of a two-layer case with a top

layer Qf conductiv1ty‘cn_2V(n_l)n and thickness dn—l resting

on an infinite half space of conductivity o is computed,

n-1
and so on.
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In the appendix, the flow chart is shown for a digital
computer program of Sunde's recurrence relation (25). The
computation time is appreximately 0.1 secx per layer. for each
value of the kernel function on the CDC 8090, a machine with

a cycle time of 6.3 usec.

Flathe's Recurrence .Relation

Stefanescu and others. (1930), wrote the surface potential

for a horizontally stratified earth in the following form:

A i r - .
R O g[)e(xﬂoa)om} . (28)

The first term on the right side of equation (26) is.
known as the primary potential. It is the potential of a homo-
geneous, semi-infinite half space having the conductivity of.
the surface layer. The second term is called the disturbing
potential; it arises from the presence of layers,wiph differ-
ent conductivities.

The follewing relation exists between the "total" kernel
function K(1A), eQuatien (25), and the "disturbing" kernel
function 0(1), equation (26):

K(x) = 1 + 26(r) . (27)

Flathe (1955) developed. and proved the following recur-
rence relations for the "disturbing" kernel function 6(iA) in

equation (26):
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B (W
6. = . ) (28)
v (%) Hp(w) = Ro(w) o
where u = e_2A, and n denotes the nth layer according to
figure 5.

Recurrence relations for Pn(u) and Hn(u) are given by:

(W) = P(a) + Hy(d) fep

‘L+|
(29)
- Z!
M., @) - H W+ B W) vy « ’
where 1. =1, 2, 3, ... , (n=-1);
and P1 =0, H1 =1,

This recurrence relation is just the opposite of (25),
in that successive layers are added at the bottom of- the se-
quence rather than on the- top as in the former. Equations
(29) are very convenient for obtaining the explicit analytic
expression of the kernel function. However, difficulties

arise when implementing them for a digital computer because:

of the inverse functional relatioenships P(ufl) and H(u_l).

A way to overcome this difficulty has been devised by Mooney:

and others (1966). Their procedure consists in allowing only
integer thicknesses for the layering, which is not a limita-

tion frem a practical point of view because. actual layer

4s
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thicknesses can always be scaled to integer values with a
specified accuracy. But, from a computatlonal point of view
difficulties arise in small-scale computers because of the
storage requirements for large matrices representing Pn(u)

and Hn(u).

Van'yan's. Recurrence Relation .

A very simple recurrence relation for the multi-layered
kernel function was given by Van'yan (1959), for the general
alternating-current case. Because its direct-current equiva-
lent can be derived directly from Sunde's expressions, it was
not implemented for the digital computer. However, analytical
compactness makes this. formula useful for manual computation
of kernels if a table of hyperbolic trigonometric functions.
is available. Since Van'yah’s-formula is: not well known in
the English literature on the subject of resistivity sounding,
a. short proof of it 1s gilven next.

Starting from Sunde's recurrence relation (25), and

writing k = in order to simplify, the kernel func-.

K123...n
tion for a medium consisting of n layers may be written:

‘.TIZ_ A'd'l = ‘>LC‘.
_ Re - &Fe T
123 - m ,&'é’e}'d“_‘, k"ié‘hd’l
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V e?\_OLl'-;,-ea'a»&_ e—CKdl‘_Lz&S’k)
AR e)\,d;(—ﬁ&oark*_ e'o‘-d’n—--‘i%h)

By the definition of the hyperbolic tangent function

this expression becomes

= Zanbh (Ad, + & zmaj?) ;

123 ¢ e 0 M

substituting the expression for k from (25),

= Bk (N, + L log < Lt ffz"zs m)
~ z\/ .
This formula can be. further simplified by. means of the
logarithmic representation of the 1lnverse hyperbolic tangent

(Abramowitz. and Stegun, 1965, p. 87),

Voo = Tmh (nd, o arclonh Zov )

The kefnel.function'for-the four-layer. case shown in
figure 4 was computed by Flathe's and by Sunde's algorithms-
and listed side by side. A comparison of the numerical values
of these two funcﬁions (Flathe's kernel function being con-
verted by means of relation (27)), shows a small random er-

ror with a maximum relative value of 0.074%, which is due to

b7
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round-off in the computations. It was established that.Sun-

de's algorithm is twice as fast as Flathe's. Concerning the

accuracy of the kernel functions, Sunde's relationship seems
to give better numerical values. It was seen,. for instance,

that the first two entries. of Flathe's formula converted to

Sunde's expression. are too large compared with. the theoreti-
cal value of the. kernel function at zero.

In summary, Sunde's algorithm for the numerical evalua-
tion of the unique kernel function. is simpler, faster, and
probably more accurate than Flathe's. Therefore, .all the tab-
ulated kernel functions used in this thesis are. based on the

former.
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A MODEL STUDY OF KERNEL FUNCTIONS FOR THE ADENA

OIL FIELD, MORGAN COUNTY, COLORADO

In this chapter the properties of kernel functions for
a specific multi-layered model are investigated. The purpose
is to gain some insight into the resolving power of the ker-
nel function. In other words, how much information on the
subsurface layering can be extracted from a given kernel
curve? Needless to say that this question is of fundamental
importance 1in the interpretation of resistivity sounding
curves. For, assuming that field data are measured and trans-
formed to the A-domain under ideal conditions of accuracy,
the question which then arises is, how accurate a model 1n
terms of number of layers, layer thicknesses, and resistiv-
ities can be established?

Because of the contemporary interest in the application
of electrical methods to petroleum exploration, a study of
synthetic kKernel curves over an idealized oil field was un-
dertaken. The o0il field model was selected for this study,

to take advantage of the tremendous amount of information
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on the electrical properties of the subsurface contained in
the existing well -logs. The apparent resistivities obtained
in this way are subject to sevé%al errors; mud resistivity .
in the well bore, well diameter, bed thickness, degree of in-
vasion of the rock, and type of logging array used. All these
errors may cause the measured resistivity to differ from the
true value. Another point to be considered 1n the compilation
of»fesistivities‘from well logs is the electrical microan-
isotropy, which is an inherent property, especially of sed-
iments, caused by a better conduction of the electric cur-
rent along the bedding planes than across the bedding planes.
A discussion of the influence of these disturbing factors on
the kernel function is presented. Keller (1966) has shown
statistically, that these errors are consistent, rather than
random, from well log to well log; thus in spite of the fact
that the actual kernel curves may not be precise, a compar-
ison of them for studying similarities or differences 1is

quite permissible.

General Description. of the Adena Field

The Adena field is located 65 miles northeast of Denver
and 10 miles south of Fort Morgan, in Morgan County, Colo-
rado. The surface elevation is approximately 4500 feets the

terrain is flat and treeless. The field covers 11425 acres:
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and is 7 miles long and 4 miles wide, the average depth 1is
5650 feet. According to Mygdal (1963, p. 222):

Adena o0il field is the giant of the Denver basin;

its cumulative production of 53.8 million barrels

through 1962 is approximately four times that of

the next largest:. fieldiincthe basiniandiis.ex=«t"

ceededcindColoradovonly by..the 'Rangley.

The sedimentary coelumn is normal for the central Denver
basin and could be divided into four gecelectric units as
described by Keller (1964, p. 58):

The near surface rocks belong to the Fox Hills

member of the Montana Group, underlain by the

Pierre Shale member of the Montana Group. The

next lower group of beds with consistent elec-

trical properties consists of the Morrison For-

..+l mation, the Dakota Sandstone, the Benton Forma-

tion and the Niobrara Formation. The deepest

electrical layer i1s composed of Paleozolc sed-

imentary rocks, which contain extensive evap-

orite. deposits in places.

Local structure 1s monoclinal, with west dips of ap-
proximately 50 feet per mile; there is no significant local
folding. The trap is entirely stratigraphics nevertheless
the field was discovered in May 1953 by drilling on a small
seismic anomaly which was later shown to be unrelated to the
monoclinal structure. 0il is produced from the "D" and "J"
sands of the Dakota Formation, the latter being by far the
more important producer. Mygdal (1963, p. 224) describes the
"J" sand reservoir as follows:

The "J" sand is continuous' over the region as a

massive sand zone containing minor shale breaks.
At Adena the top of the zone is approximately
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150 feet thick. An upper sand unit, called the

"First Bench", is separated from the main sand

body by an underlaying shale member which thick-

ens eastwards at the ‘expense of the "First

" Bench". This shale pinches out in the western

portion of the field. The "First Bench" thins

eastward and becomes more shaly so that eventu-

ally its permeability is decreased sufficiently

to prevent the escape of oll and gas. This per-

meability barrier extends south-eastward and up

dips along the north.edge of the field, then

. curves south and northwest and finally passes

below the oil water contact. The oil moving

eastward along the roof of the "J" sand has be=-

come trapped above the basal seal which prevents

its further movement up dip.

The "First Bench" sand is mostly clean and unbroken -
without continuous shale layers, thus constituting a single
reservolr over the entire fleld. The thickness of the net
pay sand, in the o0il zone averaged 30 feet with a maximum of
72 feet; the thickness of the gas cap averaged 18 feet.

Figure: 6 shows the medel on which the computation of
the kernel function for the Adena field is based. Surface
measurements in the area yield a resistivity of about 10
ohm-m for the surface layer. The resistivities of the sec-
tion between 110 and approximately 5600 feet were sampled
from- the short normal curve of selected well logs. The deep-
est well in the area (Weiss, no.42-32, sec. 32-3N-55W, Mor-
gan County, Colorado), which penetrates the Precambrian
basement, shows a thidkness of approximately 3000 feet for
the Paleozoic rocks underlaying the logged zone. The lon-

gitudinal resistivity of these rocks lies between 8 and 20
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Geoelectric model for the Adena. field

ohm-m (Keller, 1964); for this study an average resistivity

of 15 ohm-m was adopted. For the resistivity of the Precam-

brian basement consisting of . a complex of mainly schists

and gneisses.containing numerous ilgneous intrusions, a-

- valué of 600.ohm-m- -was chosen.

Figure 7 indicates the locations of the nine well logs

selected from the Adena field. The well Pure 0il, Hough no.l
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(Sec. T7-1N-57W, SE-SW-NW) is considered its representative
log (Parker, 1961). The upper part of this well log corres
sponds to the Tertiary and Upper Cretageous rocks with a
fairly uniform resistivity of 4 to 5 ohm-m. The transition
to the Pierre Shale having an almost constant resistivity of
approximately 2 ohm-m is gradual. A sharp break 1s observed
at the top of the Niobrara, 4710 feet below the kelly bush-
ing. The Niobrara, Benton, and Dakota Formations are charac-
terized by rapid changes in their resistivities in the range
2 to 10 ohm-m:. On this background, the "D" sand produces a
ten-foot. thick anomaly of about 20 ohm-m, (5550 feet below
the kelly bushing). The "First Bench" of the "J" sand shows
up- as.an anomaly of 100 ohm-m with a thickness of 35 feet.

The following analysis is based on this representative log.

The Kernel Functions for the Adena 0il Field

1. Effect of sampling interval.-- The short normal
electric log of Hough no.l was sampled with a ten-foot in-
terval, and the kernel for layer thicknesses of 50, 20, and
10 feet were computed, the latter being shown in figure 8.
Table IV shows the maximum absolute and relative errors, and
the root mean square deviation of the 50 and 20 feet_inter-
val kernels from the 10-foot interval kernel. Both maximum

absolute. errors occur in the vicinity of A ='5><lO‘_v6 and are
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produced by imperfect sampling of the Niobrara, Benton, and
..Dakota Formations. The maximum relative errors are too small
‘'to shoew the discrepancies between the kernel curves when

plotted on the scale of figure 8.

Table IV.
Effect of 50-and 20 feet sampling intervals of the kernel

functions as compared to 10-foot sampling interval

Sampling Max. ampl. Maximum Maximum- Root mean

interval of absolute absolute relative | square

in feet error curve | error error deviation
50 0.146 ~0.10 2.6 % 0.038
20 0.138 ~0.13 -0.9 % 0.047

For the computation of kernel functions a 10-foot in-
terval was used throughout, which yields sufficiently accu-
rate results within the limitations of the general procedure

discussed above.

2. Effect of random noise in the resistivities.-- The
effect of possible slight errors made during measurements
or sampling of the log was estimated by changing a few of.
the recorded résistivity values arbitrayily by plus or minus

five percent. The overall effect of these changes on the

kernel curve is negligible (maximum relative error 0.005 per-

cent).
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3. Equivalent layers for the geoelectric section.-- A
hypothetical 557~layer case is obtained by digitizing the
Hough no.1l electric log every ten feet. However, many of =
these layers may be lumped together using thé principle of
equivalence (Maillet, 1947). This principle states that an
anisoetropic layer of thickness h, and longitudinal resistiv-
ity Py and transverse resistivity Py is equivalent in its
outside effects, within a given range of error, to an iso-
tropic layer of thickness 6h (equivalent thickness), and
resistivity p (equivalent resistivity). Here 6 = bt/pl is
the coefficient of anisotropy, and p = /;IE—EE is the aver-
age resistivity.

A computer program was written to generate equivalent
thicknesses and resistivities from digitized electric logs.
The selection of the anisotropic sections to be transformed
into isotropic layers was based in part on sampling with
specified intervals, in part on natural breaks in the appar-
ent resistivities of the short normal curve. Over 50 equiva-
lent kernels were evaluated and compared with the original
557-layer kernel of Hough no.l. Each equivalent model is la-
beled by the number of layers and an identifier. For in-
stance, layer case (6-3) means model no.3 consisting of six
layers. The ‘degree of fit of the equilvalent with the orig-
inal kernel curve was measured in terms of the following

error criteria:
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a). maximum amplitude of the absolute error curve
MAX[KS(A) —.Ke(x)] - MIN[KS(A) - Ké(x)] R
b). maximum absolute error
MAX[X () - K (M),

¢). maximum relative error

o |K(A) = K_ (1)
S e

d). root mean square deviation

m Ve
[Ks<xi) - Ke(}‘ij
n b

=1

where KS(A) denotes the 557-layer, Ke(A) the equivalent ker-
nel, and n is the number of tabulated values of the kernel
function.

Only the maximum relative error proved to be of practi-
cal value, because 1f the curves are plotted on a regular
8.5-by 1ll-inch logarithmic paper, a 2 percent departure is
the treshold for clear distinction between them.

Figure 9 presents the original electric log, sampled
with a 20-foot interval, and some of 1ts equivalent models.
The fit of the five-layer kernel which divides the well log
section into two isotropic layers, with the 557-layer kernel
is shown in figure 10. The maximum relative departure between
the two curves is 3.4 percent. The degree of fit of the
other equivalent models drawn in figure 9 1s better than 2.5
percent and differences between original and equivalent ker-

nel curves are hardly detectible on the scale of figure 10.
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Keeping the number of layers fixed the overall fit of-
the equivalent models can be. improved considerably by subdi-
viding the upper part of the log, (Tertiary and Pierre).
Even if the general appearance of the electric log between
110 and 4700 feet is rather uniform compared with the re-
maining section, individual layers of this lower part, with
strong resistivity contrasts, do not contribute significant-
ly to the kernel function. This observation was well illus=-
trated by the equivalent models (24-1) and (24-2). The for-
mer was computed by sampling the whole length of the section
with a fixed 1nterval of 260 feet; the fit with the original
557-layer model 1s better than 1.4 percent. The latter re-
presents the section between 110 and 4710 feet by one layer,
from there on a sampling interval of 50 feet was taken; the
maximum relative error i1s 39 percent. This general insensi-
bility of the kernel function to deep resistivity variations
is further substantiated by cases (11-3) and (1l1l-4), where
different subdivisions of the section below 4710 feet do not
affect the overall fit.

This feature of the kernel functions means that in the
interpretation of the type of curves representing the Adena
field section, the layering parameters of the upper few hun-
dred feet only, could be found with reasonable accuracy from

sounding data alone. The need for additional information is
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also drastically demonstrated by figure 9, where all the dif-
ferent layering models could be considered valid interpreta-
tions.

This figure also illustrates graphically that without
knowledge of the coefficient of anisotropy for the individu-
al layers a correct interpretation of their thicknesses is
impossible.

In order to test the principle of equivalence, the ker-
nel functions for models (6-2) and (40) have been evaluated
using true thicknesses, transverse and longitudinal resistiv-
ities. The errors resulting from comparison with the stan-
dard curve show that selecting longitudinal resistivities
produces better fits than choosing transverse resistivities.
Nevertheless, the fit of the equivalent layer curves is still
better than the fit of the corresponding longitudinal resis-

tivity curve.

b, Detection,of.a target layer.-- The oll-producilng
zones of the Adena field ("D" sand and "First Bench" of "J"
sand) are represented on the Hough no.l well by two resis-
tant layers, 10 and 30 feet thick, respectively. Located ap-
proximately 5500 feet below the kelly bushing, they have re-
sistivities 10 times ("D" sand) and 50 times ("First Bench")

the background value. These layers produce on the surface
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kernel function a maximum deflection of 0.154 or 1 percent
with a root mean square deviation of 0.057. In table V, this.
anomaly 1s shown as even smaller in some of the other well
logs nearby. The effect of these target layers in the equiv-
alent models is almost exactly the same as in the standard
model. Consequently, an.accuracy of the kernel curve much
better than:1l percent is required to detect the presence of
those beds. Unfortunately, even if the measurements of field
data and their transformation to the A-domain would meet this

accuracy requirement, it does not mean that the existence of

the high resistant layers could be established from the know-

ledge of the kernel function alone. As shown in the preceding

section, some additional information is necessary, either in
the form of the coefficient of anisotropy, or depths of the

beds.

Table V.
Comparison of kernel functlons without "D" and "J" sand

in the section with the original kernel function

Well Total Transverse | Total Maximum
thickness | resistance | conductance | relative
inm in om?2 in mhos error

Hough no.1l 2646 20778 637.2 0.98 2%
Hough no.6 2624 21354 567.4 0.20 %
Geyer no.l 2643 21073 615.7 0.68 %
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5. Lateral variation of the kernel function.--

VI compares the kernel function for Hough no

65

Table

.1 with eight

kernel functions obtalned from four wells on a N-S and four

wells on a W=E line (see figure 7). There 1is

in the error indicator so that the variation

no uniform trend

must be attri-

buted to lateral changes of resistivities rather than lateral

changes of depths due to dipplng beds.

Comparison of the kernel function for

Hough no.

Table VI.

1 with the kernel functions

for some surrounding wells

Well Total Transverse | Total Maximum
thickness | resistance | conductance | relative
inm in om?2 in mhos error

Cochran 1 2679 21197 621.8 2.9 %
Cochran- 3 2667 21167 628.4 2.1 %
Hough 6 2624 22438 566.3 -11. %
Glenn B-2 2603 21032 584.5 - 7.4 %
Timpe 1 2630 21577 565.2 -20. %
Geyer. I-:- 2642 21919 611.3 3.9 %
Laughlin § 2646 22677 570.3 -10. %
Albert 4 2664 21078 616.7 6.3 %

Changes in resistivity or thickness of

do net account for the observed errors. For

instance,

the target layers

the

"First Bench" of Hough no.6 has a resistivity of 150 ohm-m

compared with a resistivity of 100 ohm-m for this bed 1in
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Hough no.l. However, this increase in resistivity does not
produce. any noticeable effect on the relative error listed
in table VII. Similarly, the Geyer no.l log shows a "First
Bench" ‘twice as thick as Hough's no.l, and &et it is seen
from the table that this effect is also negligible compared
with the total deflection of the kernel curve. Hence,1t must
be concluded that the lateral changes in the value of the.
kernel function are produced by changes in the resistivities

along the whole section of the log.

Table VII.
Comparisen of the kernel function for Hough no.l with the

‘kernel functions for two wells without "D" and "J" sand

Total .. Transverse | Total Maximum

Well thickness | resistance | conductance | relative
inm in Qm? in mhos error

Hough no.6 2624 21354 567.4 -11. %

Geyer no.l: 2642 21073 615.7 3.9 %

6. The effect of the disturbing factors in well logging
en: the true rock resistivities.-- The current method of cor-
rection for the apparent resistivities obtained by the vari-
ous. logging devices is based on the use of nomographs and
master charts. This procedure, oriented towards the evalua-

tion of individual layers, is too cumbersome for the
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correction of a whole section consisting of hundreds of beds.
It is, therefore, possible to get only an estimate of the in-
fluence of the disturbing factors for certain typical sec-
tions of the well log. For this purpose the Hough no.l elec-
tric log has been divided into three parts, each with con-
sistent electrical properties. Table VIII compares the geo-
electric parameters computed with the short and long nermal
arrays. Figures 11 to 14 show the probability density and.

distribution curves for the corresponding resistivities.

Table VIII.
Comparison of the geoelectric parameters measured

with the: short and long normal arrays.

Short nermal | Transverse|Total

array resistance|conductance pt(Qm) pl(ﬂm) 9
section (ft) | in am2 in mhos '
116 - 1500 2322.°2 84.5 5.48 5.01 1.045
1500 - 4710 2379.8 4au.9 2.43 2.30 1.027
4710 - 5680 2790.7 56.8 9.43 5.20 1.347

Loeng normal
array
section (ft)

110 -11500 2113.7 112.9 h.98 3.75 | 1.153
1500 - 4710 1634.6 623.6 1.67 1.59 | 1.031
4710 - 5680 2780.9 79.6 9.40 3.71 | 1.591

Pet transverse resistivity

Pyt longitudinal resistivity

8 : coefficient of anisotropy
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rThe»probability density curves (figures 11 and 12) of
Ehe first two sections are very narrow and peak at low resis-
tivity values. These characteristics indicate uniform elec-
trical properties with no large resistivity contrasts, which
is further confirmed by their coefficients of anisotropy: 6
(table VIII). Therefore; corrections for hole dlameter, bed
thickness, and adjacent beds are negligible for the first
two units. It can be observed on the well log that the short
normal and lateral curves are almost coincident over long
portions of the record. This circumstance means that if there
1s any significant invasion at all, the invaded zone has ap-
proximately the same resistivity value as the true rock re-
'sistivity and no corrections are necessary.

The prominent bed in the third section is the "J" sand
unit which presents a significant resistivity contrast with
respect to the surrounding rocks. The correction of its ap-
parent resistivity for hole diameter, mud resistivity, bed
thickness, and adjacent-bed effects, made with the Lane
Wells correction charts (Pirson, 1963), is negligible. The
correction for mud-filtrate invasion effects could not be
applied because the values of the resistivities fall outside
the range of the departure tables. The value of about 110
ohm-m obtained from the lateral log is probably a good esti-

mate for the resistivity of the "J" sand.
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The influence of the logging device was tested by com-
puting the kernel function for the Hough no.l well from long
normal resistivities sampled with a 10-foot interval. Com-
parison with the corresponding short normal kernel curve
shows. a maximum deflection of 27 percent. In spite of this
difference the "J" and "D" sand units still produce a 1 per-
cent anomaly as in the short normal curves, illustrating
once more that the exact kernel curve 1s not necessary for
comparison.

As pointed out eaflier, the microanisotropy is an in-
herent property of rocks primarily because of their intimate
structure. Its magnitude can not be evaluated in situ by
either surface or bore-hole resistivity surveys where the
current 1s flowing essentially in one direction. Laboratory
determinations are of questionable value as long as the con-
ditions of temperature, pressure, and.fluid content of the
original sample are not reproduced accurately.

The effect of the microcanisotropy is to increase the

general anisotropy 6, which increases the equivalent thick-

nesses of the geoelectric units by the same factor. Accord=.;

ing to Schlumberger and others (1934), this increase may be.
by a factor as high as 1.2 or 1.3 in some instances. The
overall effect of microanisotropy on the preceding compari-

son study of kernels would decrease the magnitude of the
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the error criteria defined on page 59. For illustration, the
magnitudes of the error criteria for the "D" and "J" sand
unitS‘in»the Hough no.l section with different values for
the coefficient of anisotropy of- the Paleozoic rocks are

listed in table IX.

Table IX.
Effect of anisotropy 6 of the Paleozoic rocks in Hough no.1l

on the "D" and "J" sand anomalies

Maximum . Max imum- Root "mean
] absolute relative sguare
error error deviation
1 0.154 0.979 % 0.0570
2 0.142 0.908 % 0.0520
3 0.131 0.855 % | 0.0479

Interéolation of the Kernel Function

The kernel functions discussed in the preceding sec-
tionS»Were all tabulated with a constant, multiplying in-
crement of the argument equal to 356 (i.e. three values of
K(A) per decade of A). It was established that this.spacing
1s adequate to guarantee the valldity of the resulting con-
clusions. by doubling the spacing to six values per decade
for some of the computations, without lntroducling significant

changes 1n the numerical values of the error criteria.
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From a different point of view, the kernel function
should be tabulated with a spacing such that polynomial in-
terpolation of a given order yields a specified accuracy in
the numerical values.lThis criterion is of practical impor-
tance in dealing with geoelectrical sections consisting of.
numerous layers, for instance digitized well logs, because
of a considerable saving in computing time.

A digital computer program for polynomial interpolation
based on“divided-differences3techniques.was developed and
applied to several tabulated kernel functions obtained from
the electric log of the Hough no.l well, Adena. However, for
the adopted modeis; serlous diffilculties arise in interpola-
ting near the origin. It was shown earlier that the kernel
function 1s singular at the origin if the lowest layer is a
perfect resistor. This singularity implies that higher or-
der derivatives become very large near that point, and so
does the error of the polynomial approximation, which is a
function of some suitable higher derivative. Numerically, it
is bad enough that the lowest layer has a large, but finite
resistivity (like 600 ohmi-m in the Adena field section com-
pared with 4 ohm-m for the overlaying layers) in order to
produce thié effect. To‘illﬁstrate the point, the divided
difference table for Hough no.l, equivalent model (6-2) is

shown 1in table X.
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Table X.

Divided difference table near the origin of the kernel

11078

2x10"8

3x10”8

4x10”8

5x10"8

6x10"8

K(a)

59.774

59.549

59.325
59.104
58.884

58.666

function for Hough ne.l, equivalent model (6=2)

[i] [ii] [1ii] [iv] Lv]
-2.25x107
7.89x1012
-2.23x107 L.66x1012
9.29 K012 -2.15x1027
-2.22x107 -3.94 X019 5.90 x10 3%
8.10 <012 8.01x1026
-2.20x107 -7.39x1020
7.88x1012
-2.18x107

The following relation holds between the fifth divided

difference [v] of this table and the fifth derivative K(i)

(v]

= -g%-KSKg) , 1078 < ¢ < 6x1078

It is seen 1n table X that higher differences lncrease

rapidly in value and become unstable in their signs. Com-

parison with the exact values of higher derivatives shows a

two-flgure agreement between the first derivative and first

difference. However, dlscrepancies between divided
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differences and derivatives become increasingly larger for
higher orders because of the inherent limitations of the

CDC 8090 computer, so that the fifth: difference as shown in
table X is numerically meaningless. Consequently, only low-
order interpolation (up to cubic) can be used on this.com-
puter  for the particular model under consideration. Closer. .
spatingcof the tabulatedovalues of the kernel function is

required to improve the accuracy of interpolation.
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THE NUMERICAL EVALUATION

OF HANKEL TRANSFORMS

The kernel function K()) defined by equation (10ii)
gives the complete and unique description of the electrical
direct-current properties of an'isotropic half space having
cylindrical symmetry. However, electrical measurements are
made in the "r" (distance) domain, yielding the potential,
the: electrical field, or the curvature of the field; direct
measurements of K(A) in the "A" domain are not feasible. The
passage from either one to the other domain 1s accomplished
by the Hankel transformation.. The following sections deal
with the transformation from the A to the r-demain, or in
other words, the computation of synthetic resistivity sound-

ing curves.

The Apparent Resistlivity for. some Common Arrays

It is customary in resistivity prospecting to convert
the variables measured in the field to apparent resistivities

[ This term 1s defined as the resistivity of the

a.
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homogeneous half space which would produce the observed elec-
trical quantity for a given spacing:- of the measuring array.
This concept may be illustrated with the example of the po-
tential measured around a single-current electrode as given
by equation (10i). If the ground is assumed homogeneous for

a given spacing r, i.e. K(A) = 1, then the surface resistiv-
ity p(0) is constant for the entire half. space. The value of
this constant resistivity is called the. apparent resistivity
measured with the array for the particular spacing r.

With these definitions equation (10i) becomes

U - 120 E () A

Ulr) — [ £6)
20 A (30)

The apparent resistivity is. computed. from the field da-

ta as

S(r) = 2T~ _l%éil ) (31)

replacing U(r) by its expression (101i)

L) = 4ﬂP@fKOJl(NﬂdK
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With ¢(A), the modified kernel function defined on page
23, the normalized apparent resistivity measured with the

single-pole array can be rewritten
£(x)/ P(o) =1-+¢(@@QWMA, (33)

The normalized apparent resistivities for some common
arréys obtained in a similar way are listed in table XI.

From the expressions in this table, it is seen immedi-
ately that for small spacings the apparent resistivity ap-
proaches the value of the surface resistivity,

(r) =.0(0) . (34)

lim p

r-0 a

If the resistivity is constant from a certain depth z,
on, i.e.

p(z) = pi(zn) z >z,

then: the apparent resistivity for any array in table XI ap-
proaches the lowermost constant resistivity for large spac-

ings,

lim p (r) = o(z) = p(=) . (35)

Y ->o0
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Table XI.

Apparent resistivities for several arrays

Normalized apparent

Array resistivity’pa(r)/D(O)
Single pole e
- . v 1+ TJ@(MJOCM)&&
A - M °
General quadripole
Lo+

I~ 7
v

{bo(mi-;wz) -Jo(m) 3,6

Wenner
“ r—v ¥ Y b Mrf@(k) J(M> ](m)}
A M N B
Schlumberger or equatorial dipole )
v — %Y — ¥ Lo+ rrz'(k@(k) 3 (rr)da
A M N B °
Polar dipole 1+ %?J:QXKXIQWJdN
yr T li" o 3%, 4
A'B M N = 2[20eLeR
General dipole M N
P iy S }ém o
w12 00> f@(x)](m)

2con @ cn [s * ac‘m,enfm[&
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The. proof of (35) follows directly from the asymptotic
expansion. for. the. apparent resistivities presented in equa-

tions (48) through (50).

The-Fundamental Integral.in. the Expressions. for Appareht.

Resistivities .

Table XI shows that the r-domain expression of @(A) de-
pends on. the geometrical configuration of the measuring elec-
trode array. The apparent resistivities for the arrays com-
monly .used in electrical prospecting are functions of the

following three integrals:

H @) = [@(A)Jo(zw) da 3 (36)

for potential arrays (single-pole, Wenner,.Lee, etec.);

H, () = gi@(x)J‘!(AﬂdJ ). (37)

0

fér electric field arrays (Schlumberger,. equatorial-dipole);

H, () ='[7\2:@(’\)3°(>V“)0L?1. ) (38)

0

for curvature arrays (polar-dipole, general dipole).
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A general expression for these integral transforms 1s

}

o0

H&(rr) = f@ (M)A, (am) d (39)

o L= 1,2,3;

; O/(’

o .

2./'

There are two basic approaches to the numerical evalua-
tion of formula (39): expansion of the integral in an infis=i
nite series, or numerical quadrature. Series expansions may:
be used for computing the integral transforms (39) for small
and. large values of r.

In the first case JV(Ar) is replaced by its ascending
power. series gAbramowitz,and Stegun, 1965, p. 360), yielding

the following expansion:

» - am (Cenem
4 = (‘792 w7 oo ) {A T dandn , (o)

Q

with the change of variable Ar = x this formula becomes.

oo

e = W6 ) e [T s o

o= Q

For a horizontally stratified medium consisting of n
layers, it follews. from Sunde's recurrence relation (25),
that

- zxd,./"f’

T
B() = -2 g s e [ 1

V2 se0 VL
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which shows that the rate of convergence of the integral in

(41) is determined by the rate at which_x“+V+2me-2Xd1/r

ap-
proaches. zero. Hence, formula (41) will be of practical use
only if d,/r is kept large, so.that. a few terms of the infi-
nite series give sufficient numerical accuracy.

With_pspgr), psl(r), and ppd(r) denoting the apparent
regsistivities measured. with the single-pole, Schlumberger,
.and: polar-dipole. arrays respectively (table XI), a first ap-

preximation for small spacings compared with the- first layer.

thickness is

fu() = Pt +e(@dn - F[TE0
+ %—I Ao )dr - ... } (42)
L6 = £ {1+ Tledeydr - %[ ()
S [7&6@0‘)0‘?& .. } (43)
.l = f(o) [ IR ;37"5 { 2B (1) dn

- Ser J?x d(da — ... } (44)



T-1103

Asymptotic. expansions of the integral transforms (39)

can be derived from expressions given by Tranter (1951, p.67):

J@(?Q Jy(Ameln  ~ if_)

4

o) et Lo B ) (45)

[re@3eman ~ £

ao i~ ) . . 2+ aZWL
v ) e e G 2o g (46)

ot
s
(f@@)l(hﬁem ~ -2 9
Z( )R e 8756, (A7)
(zwm-2)
Ir lim-gégl > 1 , then the series (45) to (47) di-
m->o @(O)

verge for all values of r. However, the value of the inte-
grals can be calculated with great accuracy for large ry by
using. only the decreasing part of the series, stopping at the
proper term. Under. these circumstances the. error is smaller
than the first neglected term, (Lanczes, 1956, p. 483).

If r is sufficiently large so that the first few terms
in series (45) to (47) decrease in absolute value, the approx-
imation to the apparent resistivities using four terms of the

asymptotic expansion becomes,
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()

(2)
£e) = Pl o+ P<°>{‘zl:z@(°> * g PO

@) N
- 0 | (48)

@ w)
50~ A=)+ O -zmde + 2 b

- 25 68 v } (49)

6 8

(2) Q)
P e+ PO HOO + 1 P

P>

-~ 70 H% + } (50)

8¢

Evaluation of the.Basic. Hankel.Transforms by Series. Expansion

The follewing paragraph, a synthesis of ideas developed.

by Baranov and Kunetz. (1958), and Bodvarsson. (1966), is pre- .

sented because. it gives. considerable- - insight into the physi-
cal nature of the problem and has a direct connection to
other branches. of geophysics.

Consider K(A) as unilateral Laplace transform of a cer-

tain function q(z), i.e.

KD = |g@e Fdz (51)
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If this integral is substituted inte (10i),

Pang

U = QLﬂQ¥[ chﬂémzl(wﬁdzdk

o

Interchange. of the: order of integration and application

of the Lipschitz integral (Erdelyi, 1954, v. 2, p. 9) yields

[~ ]

U('r) = IzJ:.v(O)J y,‘.zq;(% dz (52)

Hence, q(z) is Green's function for the general bounda-
ry-value. problem stated at the beginning of this thesis. It
can also be thought of.as a certain density distribution
along the vertical axis (see figure 1), producing the poten-
tial U(r). From still another point. of view,. q(z) may. be con-
sidered as. the impulse response - of a linear system character-

ized by a system functioen K(x) défined by (10ii).

In. certain cases g(z) can be computed independently from:

the inversion of (51) and is such that it simplifies expres-
sion (52) as illustrated next for the two-layer model. Its

kernel function is according to table IIT

—22h
KO\) = 1;2;27\.'%
where ,
-4
& S ~PI - PZ,
P+ £
14 ¢
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is the reflection coefficient, andxp2 arénthe: first:.iandic

&
second layer resistivities respectively, and h is the thick-

ness. of the first layer.

—2Ah|

Since, |ke <1, » 2 0, except for p, = 0, or =,

the kernel function can be .written

K = t+ z}Z (TJ?L);We-MML . (53)

The inverse Laplace transformation of. (53) yields
Q@) = 6(2) + 2 ) )Y E(z-2mh) . (54)
(VRN
Thus, q(z) consists. of an infinite train. of impulses

along the. vertical axis -through the cufrent electrode. Conse-

quently, it can be computed directly from the laws of geomet-

rical optics, or in the same way as.a synthetic impulse seis-

mogram with all the multiple,reflections in it. If (54) is
substituted into (52), the electrical potentlal around the
current electrode can be evaluated by summation of an infi=-

nite series,

(54)

This is the familiar result obtained by Hummel (1929),

applying the theory of Kelvin's images.
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Generalization to a multilayered model is possible if
the thicknesses of the beds-in-the section have integer val-
ues. Under this condition g(z) 1s computed either as a syn-
thetic impulse seismogram (Baranov and Kunetz, 1958), or by
expanding Flathe's kernel function into an infinite series
of exponential terms (Mooney and others, 1966). The advantage
of the method is the simplicity'of the computations if the
series converge fast. The disadvantage is that the method 1s-
not general enough to be applicable to any kernel function

or to the inversion of field data.

Evaluation of the Basic Hankel:Transforms. by Numerical

Quafirature

1. Polyaniél approximation of the kernel function.--
The method consists in replacing sections of the kernel func-
tion by an approximating polynomial.in order to simplify the
integral. Quadfatic approximation was used by Mooney and
Wetzel (1957), and Galbraith and others (1964). The algorithm
for the general nth order approximation 1s developed next.

For numericalhcomputatibns with a fixed number of digilts,
as for instance when workingmin single precision on the CDC
8090 computer (eight digits), the upper. limit of the integrals
(39) becomes finite, because ¢()A) becomes smaller than the

smallést number in the range of the machine for some large,
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but finite A. The numerical value of this upper limit Ac for

the horizontal layer case 1s found from (25),

rd,

-2
_ Y .
KM= AT myemt 7 fecn] < 1

by ebserving that with an accuracy of.eight digits K(a) =1,

whenever4|k(x)efzkd1| < 1078, an upper bound A, for A such
that this relation holds is found by setting |k(ix)| = 1, then
e~2hcd) 8 8 log 10 » 10

- 1 —io - = T -
< 10 7, and Ao > 24, ° hence, Ac( 3, is an appropri
ate upper bound for the variable of integration, and equation

(39) can be rewritten

p hy

H, () = {C(A)AMJDCM)M : (56)

o

Next the range. of integration 0 < A <A, is divided in-
to m subintervals,; or panels such:.-as AiVéAK'; Xi+l’ i=1, 2,
3, «++« , m in figure 15, so that (56) is replaced by
m .

HJ”O ~ Z ((;L?’OA”‘J”(WOLA. (57)

=1 n

©

On each interval (ii’?xi+l> the modified kernel curve is..

approximated by a polynomial of degree n passing through ex-

actly n+l points of o(r), i.e.

By Lq.yé , (58)

J

Tﬂ;

J=o0
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Figure 15.

Approximation of the kernel

The following quadrature formula 1s obtained by combin-
ing (57) and (58), and making the change of variable Ar = x:

7\,,4-
Lt

He = f Z E ”J(x)dx . (59)

L!J:O

The evaluatlion of the deflnite integrals in this approx-
imation can be carried out by using elther power-series ex-

pansions or reductlons formulas.
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a). Powers~series expansions:

Taylor series (Luke, 1962, p. 4i),

o0 vk
(-l)kC%)

~Z

/u,+|
th‘J,,(t)oLt - Z E&,/(ﬂ+u+z?z—+‘)r(”*h+l) - (00
o k=0

Asymptotic expansion (Luke, 1962, p. 54),

,»ZM 2’/4'[_—"(1—'::4724_+ ) 3, )
Jt J»(t)ol,t = ,_"(;_’uj’ —(’Wz) ( cose+351ne) 3 (61)
(o] ) 2
where
— il Nt
6 = 2 - 22— + ;
and
— £ -2k N Y S
f o~ ZH) Y 74T Z(“) % rt : (62)
.. k=0 s R0 -
The a, are given by the following recurrence. formula:
2(k+i)a, - [2(he D) (f+g) - 2o (ra)) - »7] a,
_ (63)
- (% + % + u)(%ﬁr;‘_— —v)(&~lg ) Ry 0
with
5 vz
a.o = 4 ] a, = —g— - = ——Zj

A computer program based on equations (60) to (63) was
written to test the feasibility of this procedure. To accom-

plish an overall accuracy of six digits, a large number of
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~terms in series (60) had to be added. Because the correspond-
ing increase in computing time makes the method very ineffi-
cient for small-scale computers, it was abandoned.

b). Reduction formulas: The following two reductions for-
mulas obtained from expressions given by Abramowitz and Steg-

un (1965, p. 483) are useful:

~7\'L!£| .
T/u__i(j:_ [tm*d Jo(t) dt = lT [[7\/4«*4 J' (x1)
‘ . ‘?LLr
. )\'c',-o-l ,
" }\'/Uv*‘.j -1 /'*"‘::j -1 ,j (»;LJT\')] ‘
. Yo )\.—“ .

L

A 3
(s g =) th‘f-ﬁtf‘z J. (t) dt (64)

T ,u.+(j

7\,54‘

)\‘L+Iﬁr 7\'(:1_—[-
t' M-’-J _ ,a.f-J ,(4,+J.—l
_rrTT Jt Jl (t) dt - W { t Jc (t> ol-t
AT '7\‘£T
Mia
M
RS
2 ], () (65)
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Computer programs were wriltten to evaluate the functions
Jo(x), Jl(x), and JXJO(t)dt by polynomial approximation
(Abramowitz and Ste;un, 1965, Hitchcock, 1957). Expressions
(64) and (65) give satisfactory numerical results if the
factors multiplying the integrals in (59) are smaller than 1.
This is the case when rj > aj,’where the aj are the coeffi-
cients of the polynomial approximation to ¢()x) as given by
(58). The constants a, were computed by the method of divid-
ed differences.

The coefficients for the polynomial approximation of the
kernel functions representing the Adena field are very large,
as 1llustrated by the equivalent layer case (6-2) for the
Hough no.l well log. The approximating polynomial of order

6 <A< 2.89x10‘6 is

five on the interval 1.29x10"

P(A) = 58.6 - 2.13x107x + 6.55x1012)2 — 1,49x1018)3

+ 2.10x1023)% - 1.34%1028)5

The large magnitude of these.coefficients, together with
their alternating signs, makes any computations by (59) mean-
ingless, unless r is taken large enough to compensate the aj.
A comparison of the Hough no.l, (6-2) case computed by Gaus-
sian_qﬁadratufe (correct to five digits) and by the above
method points this out clearly (table XII). Because of these
severe limitations and its slowness (2.5 min of computing

time per layer for one transform value on the CDC 8090), this

approach was discarded for the numerical evaluation of (39).
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Table XIT.
Comparison of the Hankel transforms Hl(r)
computed. in two different ways
r Gauss:  quadr. |.Poly. approx.:
103 -0.0210727 -1.2241106
10" 4.9679009 L,809944
10° 25.395790 25.395470
106 54.009592 54.009884
2. Polynomial‘approximation of the integrand.-- In nu-

merical quadrature formulas, the integral is approximated by
a finite sum of weighted ordinates of the function. The
weights are obtained from the polynomial which matches the
function exactly at certain sample points. There are two -
types of quadrature formulas, Newton-Cotes formulas where the
samples are equally spaced, and Gaussian formulas where the
samples are determined by the zeros of Legendre polynomials
Pn(x). The latter has the advantage of requiring only half
the number of ordinates for a given order of the approximat-
ing polynomial. In other words, with n sample points the de-
gree of the polynomial approximation of the integrand is n-1
for Newton-Cotes, and 2n-1 for Gauss. In addition, the inter-

polation by Legendre polynomials in Gauss' method converges
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more rapidly than the interpolation by Lagrangian polynomi-
als in Newton-Cotes' formula (Lanczos, 1957, p. 403). Further-
more, the saving of ordinates does not only economize comput-
ing time, it also reduces the round-off error in the arith-
metic operations. Because of the advantages 1t was declded to
use Gaussian quadrature: rather than Newton-Cotes formulas for
the numerical evaluation of synthetic sounding curves.

Gauss' rule of order n for an arbitrary interval (a,b)

is
& m
[%("&)"Uj = @2—’@2 Wi.]((*d;) + RVL ’ (66)
ou% A =1
(Abramowitz and Stegun, 1965, p. 887)
with

5, - g v 2 (67
and the remainder
(8 )znn /) 4 2,w+l (2n)
"‘(L
R, = L= I [(5) » a=¥v<6. (68

The abscissas X and weights Wy gliven by

Pk) -0 > W, o= — = o (69)
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have been tabulated for selected values of n up to 96,
(Abramowitz and Stegun, 1965, p. 916).
With. x = Ar the general expressions. for the basic Han-

kel transforms (39) can be rewritten

1) =+ 00T () x (10)

o
B=1,2,2; m=0,1,27 2=051.

The effgct of the transform variable is to scale the
kernel C%J“@Z%J'with respect to the Bessel function Jv(x).
For small r the kernel functlon appears very compressed, but
stretches out as r increases, as shown in figure 16 for the
case k = 1 in formula (70).

Wheri.xc = Acr is reasonably'small, laying in the first
few cycles of the Bessel functions, formula (66) can be ap-
plied directly with a = 0 and b = X, For large Xgs exceeding
several cycles of Jv(x) this process becomes too slow, even
for a large-scale computer. The following example 1llustrates
this point. The thickness of the first layer d; of the Hough

no.l section is 33.5 m; for a relatively small spacing

r = 1000 m,

. . 10r _ 10000
c d; 33.5

~which corresponds to about 50 cycles of Jv(x), to be taken

= 300,

into account in the integration.



T-1103

Figure 16.

Effect.of the transform variable r on

the product ¢(A)Jo(x)

Longmann (1957), has given a method to overcome this
difficulty. for "well behaved" ﬁpﬂbtions ¢(Ar), as the ones.
dealt with here, presenting an exponential tail. Hishproce—
dure consists in applying formula‘(66) successively to half
a cycle of the Bessel functions; a and b are consecutive ze-
ros of Jv(x). By this procedure, it is observed that beyond
a certain value of the abscissa x the integration yields an
alternating, slowly convergent series. The sum of this series
can be speeded up by applying an Euler transformation

(Bromwich, 1931, p. 62) to a few terms of it.

98



T-1103

This procedure may be adapted to the evaluation of Han-

kel transforms by writing (70) as

" Z:

|%ﬁﬂ¢) ~ wj”+'§:: ( ;;ﬂ@(%%)Jv@)dx > (71)

=0 TFj

where m 1s a finite integer selected according to the re-

guired accuracy, and z. is given by

Jv(zj) =0, v=20,1

5 J=0,1, 2, ... m. (72)
When the definite integrals in (71) are approximated by
Gauss' rule of order n, the following finite series is ob-
tained:
- | ? Zom %\ oy '
H&(¢) = rr/“" 2 ZWLA?L’_I@(_%L) Jp(jij) (73)
j:o t=1
' i ) .
H&(r) ~ ~ M b(,/ (7}4)
j=0
The yij in (73) are given by (67) with a = z =

j° b = Zj+l’
If the terms uj in series (74) are slowly decreasing in mag-
nitude and alternating in sign starting with J

= p, (7T4) can
be rewritten

H) = —= [E j +Z(-0J|un} (75)

The sum of the second series in (75) can be obtained:

with improved accuracy by "eulerizing" it

Y H
i i
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- i : 4-!

Z(—t) u = % Up + 4'—Aup + .., t ﬁA oy, + Rq, (76)

J=P 4 sm-p
where AJup denotes the jth leading difference of up in the
set {uj}, The remainder is given by

Rq, Y _Z'T[Aq’up = A%u—p*. + Aq(upu - ... ] : (77)

Longman (1957) gives the abscissas yij for Gauss' rule
of order 16 and the corresponding values of Jo(yij) and
Jl(yij) for the first ten cycles. For the transformation of
the Adena oil field kernels it was necessary fo extend these

coefficients to at least 50 cycles.

The firsqﬁsggp in evaluating the abscissas yij from
Z'.,'_ 5;" Zies ¥ Z)
%L,d - 2 poF 2 : (78)
i=1,2, ... 16 ; 3 =20, 21, ... 99

consists in finding the zeros Zj of Jo(x) and Jl(x). For this

purpose the following approximations given by Jahnke and Emde

(1945, p. 143), were used:

Jo(zj) = 0 for .

Zi L05¢
i ~ - 1, 00 0661 _ ©0.0530Hi 4 0:262051 _

e 4 Hj - (G- Cej-1)5 o /
- (79)

100



T-1103
Jl(zj) = 0 for
By pogp ok . 0151982 0.015299 _ 245270
v = g N (45—1 (k5 + 0)*
j P

These formulas give the values of Z50 with an accuracy

of eight digits. The higher order zerds:.are even better ap-
s

proximated because of the %ymptotic behavior of the expres-

sions.

Next, the yij are obtained from (78) and the tabulated

values of x, for n = 16 (Abramowitz and Stegun, 1965, p.916).

Jo(yij) and Jl(yij) are computed from the asymptotic expan-

sion (Luke, 1962, p. 31):

J»(Z) _ (L‘)’/Z{COS(Z-% m - |T )P(\))g) +

TZ
sin (& = £ YT =~ %W)Q(v,z)] (80)
with (2] —= oo \wg, (z)‘ =T
V. -0 (2«+)’) (2 )))2.&
PO ~ hZ T (e (81)

Sl
=0

S0

CD(D z) ~ >__' %(§Z+V>zk+|<§"@z&+u (82)

(2+1)l (22)29“"

LA
. L
L=0
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where (a)O 2 1, and (a)k 2 a(atl)(a+2) ... (atk-1). The terms
Ui’ Ti in series (81) and (82) may be computed by the follow-

ing iteration scheme:

Ly +2h-2)(grve2h-)($-vr2k-2)(4-ve2R-1)

- - z 8
U& Lk-u 2k (20-1) (22)* (83)
U, =1

o (Erverek=)(Erre2R)(E -2 v2R-) (B0 2R) o
Tk T;q 2&3(b?{+|)(22)2 (84)

T1 _ (%‘”Q(%‘”> .

o 2 Z

The computations where. carried out in double precision
(16 digits) on the IBM 7044 at the University of Colorado
Graduate School Computing Center. With only five terms of
each. series P(v,z) and-Q(v,z), the Bessel'functions of argu-
ments greater than 60 are correct to 12 decimal places, as
checked with the tables from the Harvard Computation Labora-
tory (1947).

Formula (73) is further simplified by lumping the dif-

ferent constants together into one weight

'S zJ’*’l - Zj . ' /Ml
= S WL Y. ) (85)
tj -2 b gtj*

80 that the final expresslon for quadrature becomes

¢ = 1, (%)
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g /
w16
H&CT) ~ ,r.l/uﬂ Z E\I\/bj/( Uf) 9 M < 50 . (86)

\‘ =0 L:l

Transform. programs were written both in Fortran for the
CDC 8090, and in Fortran IV for the IBM 7044. Because of large
storage requirements (10000 locations for constants), the pro-
gram for. the. CDC 8090 had to- be broken up into three parts.
Magnetic tape. operations are required heavily which brings the
average computing time per layer for one transform value to
25 sec. The average computing time per layer for one transform
value 1s approximately 0.3 sec on the IBM 7044. The flow chart
for these computer.programs.is given in the appendix.

There are three sources of errors in the procedure used:

a). The error of the Gaussian quadrature. The tradition-
al error estimate is given by (68). This formula is of no
practical help. because the knowledge of the derivative of or-
der. 2n .of f(x) throughout the interval of integration is re-
‘quired. It . shows, however, that the quadrature formula (66) is
exact if f(x) is precisely a polynomial of degree 2n-1 between
the limits of integration. From this property the following
qualitative statements on the numerical accuracy can be made:

The error for spacings r smaller than the first layer
.thickness will depend on how well the integrand can be approx-
imated by a polynomial of degree 95 on the maximum inter-

val (0,10).
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For larger spacings, up to r = 30x(first layer-thickness),

the error is determined by the accuracy with which a polyno-
mial of degree 31 approximates the integrand between consecu-
tive: zeros of the Bessel functions (approximately n/2).

b). The error in the Euler transformation. The remainder
Ra defined by (77) can be used for estimating the error in
the summation formula (76) if the leading differences Aqun,
n =g, gtl, ... , are always positive and decrease as n in-

creases, because then

| < 2 [a% |

IR
5a'" p

q
However, the conditions stated by Bromwich (1931, p. 62),

for this inequality do not hold for the present case. There-
fore, the following accuracy test is used: the transformation
is applied successively to an increasing number of terms; if
the relative error between two consecutive sums sj and Sj+l
is smaller than a prescribéd positive constant, the result

S5+l

1s accepted as satisfactory.

¢). The round-off error. This error arises from the lim-
itation of using only a finite number of decimal places in
the computations. A theoretical discussion of its effects is
rather unsatisfactory for lengthy programs; perhaps the best
way of estimating it is to use the computer itself for an in-
dication of its magnitude. For this objective the transforms

-10600Ax

of o(x) = 1000xe were evaluated both in closed form
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and by the quadrature program in order to compare the numer-

ical values. The following formulas were employed for the

exact Hankel transformations:

<0

o

0

J’}\’&’H e—a,7\. 3?{(7\'1‘)6’,7\.

|ahe ™ 3, dn -

[o*

(Erdélyi, 1954, v. 2, p.

&/
. 4_2]'/2.’%1.«- Yz E (

e [ (Rr2)

W Eaz+rr

(Erdélyi, 1954, v. 2, p. 29).

z}%)« 32

)

[a? + ~*

<3

The errors between closed and approximated transforms

(39) in terms of the error criteria given on page 59 are

shown in table XIII.

Errors

Table XIII.

between exact and approximated transforms

9)

Max. ampl. | Maximum Maximum Root mean
Transform | of error absolute relative square
curve error error deviation
. rH, (1) 7x10_8 -7Xl0_8 —9><10'-5 3XIO_8
r2H, (r) 1x10"7 ~1x1077 —6x10"" 5x1078
r3H, (r) 2x107° ~3x107° ~3x1073 3x107°

Table XIII shows that for this

particular
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transformation round-off and quadrature errors are not se-
vere and that five digits accuracy can be obtained in case
of good convergence of the integrals.

It is most important to notice that if these integrals
converge slowly, for instance 1f the geoelectric section has
a very resistant basement, the alternating series (76) might
have to be truncated too soon, thus diminishing the accuracy
of the corresponding apparent resistivities for.lérge spac-
ings of r. But under these cilrcumstances the apparent resis-
tivity curves approach'a straight line with a slope of plus 1
(Keller and Frischknecht, 1966, p. 116), for large spacings

of . r.

Synthetic Sounding Curves for the Adena Field

The single-pole, Schlumberger, and polar-dipole apparent
resistivities were computed for the Hough no.l (6-2), (11-3),
(25-1), and 40 layer cases of the Adena field. Six functional
>Values were tabulated per decade of the spacing r between 1 m
and. 1000 km in the first example, and between 1 m and 31 km
in the rest. It was impossible té compute synthetic sounding
curves for the well log sampled with a ten—foot.interval be-
cause of the length of computing time involved: for one pro-
file of 30 points, 120 hours, (5 days) on the CDC 8090, and

1.5 hours on the IBM T7044.
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The Hough no.l, (6-2) sounding curves were checked with
the asymptotic expansion formulas (48) to (50) for the spac-
ing r = 1@7 m. Table XIV compares the apparent resistivities
computed by the asymptotic expansion with the coerresponding
values obtained by the Hankel transform program on the

IBM 7044,

Table XIV.
Comparison of apparent resistivities computed

"by:.asymptotic. expansion: and. by quadrature

Array Asymptotic Quadrature

.expansion ap. res. (qm)
ap. res.(qm)
Single pole 599,147 599.15
Schlumberger: 597.463 597 .47
Polar dipole 595,865 594,99

The agreement between the respective single-pole and
Schlumberger apparent resistivities is essentially correct
to five places. The.polar-dipole apparent resistivities
show: a difference«which»could be expected, because the se=
ries (76) did not converge for thé specified error bound
(10_7), as in the former cases.

Figure 17 shows the three sounding curves for Hough

no.l, (6-2) plotted one on top of the other. The minimum in
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the apparent resistivities produced by the conductive Pilerre
shale is more emphasized and has more character in the
Schlumberger and polar-dipole arrays than in the single-pole
array. The sounding curves are shifted, one with respect to
the other, the single-pole curve approaching the final asymp-
totlc value fastes. Comparison with the Hough no.l, 4o-layer
case plotted in figure 18 shows that the. biggest differences
between corresponding. sounding curves occur.in thelr lower
parts, for spacings smaller than 300 m. This observation is
in agreement with the observatioh made. for the kernel func-
tions, that the upper layers have considerably more weight
in fitting the correct model.

A quantitative comparisoen study. of. single-pole apﬁarent
resistivityccurves for several equivalent models of Hough
no.l, Adena, showed that relative departures. between them are
of the same magnitude as the relative departures between the
corresponding kernel curves. This behavior suggests that the
gquantitative effects of the layering parameters could be
studied in the A-domain, which is of course, an advantage,
because kernel functions are considerably easier to generate
than sounding curves.

The relative departures between Schlumberger and polar-
dipole apparent resistivities for different equivalent mod-

els of the Adena field increase slightly. For instance,
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'comparison of equivalent model (6-2) with equivalent model
(40) gives the following relative departures: single-pole
13.7 percent, Schlumberger 18.8 percent, polar-dipole 21.4
percent. These anomalies indicate that Schlumberger and po-
lar-dipole measurements-have, at least theoretically, higher
resolving power than the single-pole measurements, which is,
however, lost when transformed into the.kerneiidomain.

As stated before on page 64 in order to detect the re-
sistant target layers representing the "D" and "J" sands of
the Adena. oll field an. accuracy 1in measurements much better
than 1 percent.is required.. This hypothetical anomaly in-
creases slightly for the Schlumberger and polar-dipole ar-
rays,at the same time requiring greater spacings (approxi-

mately 2.5 and 4 miles, respectively).
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THE INTERPRETATION OF RESISTIVITY

DATA VIA KERNEL FUNCTION

Two steps are involved in the transformation of a given
resistivity variation along. the vertical axilis of a semi infi-
nite medium to the corresponding distributlon of the poten-
tial of the electric field on its surface. The first step,
discussed in the first two chapters, consists of the non-lin-
ear process of evaluating the kernel functlon for the medium,.
The second step, presented in the chapter preceding this one,
is a linear integral transformation (Hankel, or Fourier-Bes-
sel transform) of the kernel function into an apparent-resis-
tivity function. It is tempting to reverse these two steps.
in order to obtain the vertical resistivity profile of the
medium from observed resistivity sounding curves. This ap-
proach was first suggested by Slichter (1933), and later tak-
en on by Pekeris (1940), Vozoff (1958),. and Koefoed (1965a,

and 1965b).
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This interpretational procedure starts then by first ap-
plying an inverse Hankel transformation to the field data.
The inversion formulas, developed in the next paragraphs, de-
pend on the particular type of array used for measuring ap-

parent resistivities.

Formulas for the Inversion of. Apparent Resistivities

1. Single-pole array.-- The apparent resistivity mea-
sured with the single-pole array psp(r), in terms of the ker-
nel function K(A) = ¢(rx) + 1 is according to table XI

SP

P (r) = Lo [K(}Q Jo(ar)dn (87)

applying Hankel's inversion theorem

KO = 2 gﬁp(ﬁ)l(nr)dr ., (88)

In order to improve the rate of convergence of the inte-
gral (88), it was suggested by Koefoed (1965b), an auxiliary
function which approaches zero for large spacings of r be
used. Since psp(r) - p(zn) when r » «, where p(Zn) is the
lowermost constant resistivity of the medium extending to in-
finite depth, the following auxiliary function might be used:

. f)sp('r) - »P(zw-)
P(o)

P(r) =
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with this change equation (88) can be rewritten as

o0

N = ?vng(T):%(AT)AA’<+ (2 (89)

Lo o/
Uy 200)
For numerical computations, 1t is convenient. to make the

change of variable Ar = x, so that the inversion formula for

apparent resistivities of the single-pole type becomes final-
ly

oo

OIS RICRIOER (50)

(o]

2. Wenner array.-- The expression for the apparent re-
sistivity of the Wenner array pw(r), can not be inverted di-

rectly, as seen from the formula

oo

Py = 2 P(O)rv)(K(x){Jo(m) -3, ()] (91)

o}

A change of variable A = 0.5A in the second Bessel func-
tion of the integrand was proposed by Van Nostrand and Cook

(1966), so that equation (91) becomes.

0

pore | [2K (- K@ D0

o]

I

5,00

w

which can be inverted to
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o

2k - K@) = Z5|LmaeI

The kernel function’K(A) might be obtained from 2K(A) -
K(0.51) by a procedure analogous to the reduction of Wenner
to single-pole apparent resistivities, which is discussed
next.

Koefoed (1966) developed a curve-matching procedure for
-the inverse transformation of equation (91). Another possi-
bllity consists in reducing the Wenner curve to a single-pole
curve.

Combining equations (87) and (91), the apparent resis-
tivity of the Wenner array can be expressed in terms:of sin-
gle-pole apparent resistivities:

0 (r) = 20 () = o (2r) (92)

Applying (92) successively for r = $r, zr, 3r, coe T,

and multiplying each side by 1, 2, b, ... 2n-1, respectively:

: CEEY = 28 - 20
2. 28,G7) = b8 - 2 £,(59)

P AGY) - 88350 - 4R
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M-l 7“'2’f>w (zi‘“ ¢) _ Zﬂ-lﬁp(# ,,,) _Z“'zﬁP(EL__ZI'r)
ne 2R (R = 2783 -2 (G )

adding equations i to n:

VAN - DR - £

but,
psp§r) + p(0) when r » 0 ;
hence,
" = L-1
gm o~ 2P0 - ) 2TeE) . (93)

L=

Likewise, an expression of the single-pole apparent re-
sistivity 1in terms of the Wenner curve for increasing spac-

ings of r is obtained by using formula (92) for r = 2r, be,

8r, ... 2nr, multiplying both sides, respectively, by i,-ﬁ,?

. iw, and adding the equations:

) FYLEY = 280 - F A G

L=0
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In this case psp(r) + p(») when r » «, which yields the
following. approximation to the single pole apparent resistiv-

ity derived from Wenner data:

£~ PR ¢ Z(-;-)‘“ﬁw(z%) _ (94)

Two criteria can be employed to find the proper number
n of terms in series. (93), and (94). Let npsp(r) denote the
apparent single-pole resistivity computed with n terms of

these series; then the computations can be stopped, whenever

i Re (7)
oo (%)

_1 < & NL=\)L7—--;

where e is a specified error bound depending on the accuracy
of the data.
Another way to determine when to truncate the series

consists 1n using the inequalities:

£(0)
£(3=)
and
P(Zn) ,
'7(—‘71 = c

for equations (93) and (94), respectively, with ¢ as defined

before.
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The Wenner curve must be specified for all spacings r
in order to make the transformation to the single-pole curve.
This condition imposes the same requirements on the data as
the inversion formula (89), and in particular the need for
reasonably accurate values of p(0) and p(«). For transforma-
tion of field data, a great amount of interpolation might be

necessary.

3. Schlumberger array.-- If"pSl denotes the Schlumber-

ger .apparent resistivity, then
Plx) = P(o) {t+ ¢2ghxﬁ(k)Jka)dh}
SL o

can be solved for ¢(x) by the inversion

o0

50y - J( AT S ar
B I 0 PR I (P
Po) ) L

0 o

but,

0

[ J,((:LT). dr - 1 .
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hence,

©0

K{n) = f%[f,f—ﬂ J (w)dr (95)

0

As before. with the inversion of single-pole apparent re-
sistivities, 1t 1is convenient to change the integrand of. for-
mula (95) to achieve stronger convergencé»of the integral.

With

L PSL('T) - LP(ZM-)
() £(o)

the inversion for Schlumberger apparent. resistivities becomes

. B <) P(=.
K(Z&) ,,—_-.\[i%—).jl(-?w)dr + P(—O)) (96)

Q

or, if the change of variable Ar = x is made,

K = fW(‘%)J—viﬂdx o L 51

In many field cases the lowermost stratum has a very
high resistivity compared with the overlaying formations, for

instance the igneous or metamorphic basement of a sedimentary

basin. Because of the limitations of instrumentation and ter-.

rain, the survey generally can not be expanded far enough to

define the resistivity of the substratum. For instance, to
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record the basement resistivity with an accuracy of 2 percent
from the synthetic Schlumberger sounding curve for the Adena
field, the survey has to be carried out 4600 km! This is, of
course, technically impossible, even. if the required current
intensity were available, and enough land mass were around,
the lateral effects would be overwhelming. Furthermore, the
curvature of the earth would not allow applying the horizon-
tal layer model. All one 1is able to detect is the first part
of the branch of the sounding curve, raising with a slope of
1. Because the lowermost constant resistivity p(Zn) can not
be obtained. from surface measurements, equation (96) is not:
applicable, and another approach is necessary. It 1s shown
in Keller and Frischknecht (1966, p. 116.) that in the case
of a perfectly resistant substratum

psl(r) =r/S , r > o, (98)

In practice, a substratum with a sufficiently strong

resistivity contrast displays. the rising branch beginning at
some finite spacing r,. In the Hough no.l, (6-2) layer case
with a basement resistivity of 600 ohm-m, and a longitudinal
resistivity of 4.2 ohm-m, (coefficient of anisotropy = 1.23),
for the 3000 m of sedimentary fill, the value of r, is about
five km, (see figure 17).

From (98) and (95) one can write

K@)==0@)[f£%210ﬂ&r+-é{iﬁﬂdﬁ

(]
C
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K@) = g { K—JOS:(T) :}\ (M‘)dT + —3"8(;8‘) }

This last formula can be manipulated into a more conve-

nient form.as follows:

e

K() = Go) { f Ps&);fstm J(ndr + {ééiﬁ J () dr

o

0

3,(x%)
nS
K() = [ () 2LDdr - fi‘gﬁ}")(a'i”) de
Jo (a1)
toS j
P)aS
where,
q}(‘r) £ f)s:,("'j)(;) 'PSLC‘*‘) )
and,
T, At
R (Jc,()()d_)( - J (x1)

9 0
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Hence, the inversion of Schlumberger sounding data in

the case of a resistant basement is

0 N T
, B J.(ar) S ()
Ky = ](Lf)(f) e o) { Ljo(x) o x

Q0

Jo (1 1.)
—J‘(M)} Lo L0m) o L (gg)
- Ple)nS Te
This form has the advantage that Hankel's infinite in-
tegral, rather than a definite integral, is required, so
that for numerical computations, only three correction terms
have to be evaluated in addition te the usual Hankel trans-

form.

Ik, Polar-dipole array.-- There are two approaches to
the inversion of the observed polar-dipole resistivity func-
tion ppd(r), one leading to a double integral, the other
making use of equatorial—dipolé or Schlumberger apparent re-
sistivities.

a). The kernel  function as a double integral of the po-
lar-dipole resistivity.

By definition

P & w20

(o}
—t

where,

U = %‘%L{—}r—+[@(n)30(m)o(,x} ;

0
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hence,

o0

3 9% '
50 = 2@ 3L [ 4 v [93,6man]
o]
integrating with respect to r,
T

J_Lﬁx(;"ctx +C - LP0) & {% + J@(k) JO(N)OU\}

[}

L Plo) { -4 f@(n) AJ, (?\.T)dh} ;

[}

with the change. of variable Ar = x, the last equation becomes

[PO% £ C - P(o){ e %Jé(:—)xJ&x)dX}.(lOO’
Let r - », then
[j%#‘ldx = -C ’
X’}
[¢]
which can be rewritten as
R oo
c - (fxi-)d _{&:_g_ux

o T
Hence, equation (100) becomes
{p L) — P() {'—Tz + [@@Q kJ,(?\N)o()\,}

)<5

~
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% f—ﬁ";ﬁ‘) R [@(x)w,m)om )

0

which can be inverted to

QO

) = J;?—)f [—_-—P”ii’() + 3, (r1)dxdr ~ ( J.E—M) o

0 &
Finally, the.kernel function of the apparent polar-di-

pole resistivity is given by

Xb

K@) = P?o) I J Sol) wd (xr)dxdT (101)

~

b). Inversion of resistivity sounding. data by combining
-polar and equatorial-dipole curves.

From table XI:

(e =]

£l = P(o){i+¢Z(A<I><A>J,(kT)oL>»} ) (102)

o]

I P IS CSRCS LS

<0

iy [ X T (ar) dn } , (103)

0o
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let
F(r) = o (r) - opd(r) + p(0) , (104)

then from- (102) and (103),

oo

F() = —%i~Pﬁ0(A?©(k%%(kﬂcik ’

which can be inverted to

b0 - j%)f ST, () (105)

[e]
This inversion formula can be used only if both P71 and
Ppa curves are available (crossed-dipole measurements), and

if no lateral effects are present.

A Numerical Technique for the Inversion of Resistivity

Sounding Data

The integral transforms derived so far have to be eval-
uated by approximate quadrature methods. Slichter (1933) uti-
lized a mechanical integrator; Kocefoed (1965a, and 1965b)
developed a curve-matching procedure for the transformation.
A numerical method, based on the Hankel transform technique
described eérlier, was used by the author to compute kernel

functions frem apparent resistivities.
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Basically,bthe procedure used for computing synthetic
sounding curves 1s applicable with minor modifications. The
main difference is that apparent resistivities are empirical
functions in contrast to‘the kernel function, which is eval-
uated analytically. Thus, interpolation between the measured
resistivityfvalues is required. Another aspect. of field data
is the problem of noise; perturbing factors, mainly of. geo-
‘logical origin, known generally as lateral effects, are prac-
tically always présent,to some degree. Also, resistivity
soundings can seldom be carried out far enough to define the
apparent-resistivity curve adequately, especially in the com-
mon case of a resistant basement. If in this situation the
branch - of the Schlumberger curve rising with a slope of 1 can
be clearly'determined,;formula (99) should be used to obtain
that part of the kernel function corresponding to A > 1/(max-
imum spacing).

Figure 19 shows the truncation effect of the synthetic
Schlumberger curve for-fhe electric log of Hough no.l, model
(6=2) in- the Hénkel;transformation. The kernel inverted from
this;apparent—resistivity curve evaluated for spacings up to
108!m agrees within 1 percent with the original kernel curve,
and.departures cén not:be;shéwn on a plot of this scale. A
truncation of the Sch;umbergér‘curve at a spacing r = .lO6 m

produces a discrepancy of about 20 percent between original
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and inverted kernels for small values of A. Figure 20 shows
the portion of the. kernel function obtained by inverting the
Schlumberger sounding data with a maximum spacing of 10 km
using.formula (99). Once more, the agreement. between original
and inverted kernel i1s such that on this graph onecurve falls
on top of the other.

The transforms of the simulated field data listed in ta-

"val-

ble XV are shown in figure 21. The kernel curve labeled
ues picked from smooth curve" was. obtained by reading appar-
ent resistivities off the synthetic sounding graph at 20
spacings ranging from 10 m tb 5 km. The transform agrees
with the original kernel to the degree that discrepancies
can~nof 5e plotted to the adopted scale. The effect of noise
was simulated by the data shown in table XV; its effect is
ppominent‘only for larger values of A (about 0.1) as seen in
figure 21. It was further found in these examples that cubic
interpolation gave better results than quintic interpolation.
For even more "noisy" measurements, smoothing, either by
low-pass filters, by drawing smooth curves through the data

points, or by fitting polynomials in the least-square sense

is probably necessary.
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Table XV.

Simulated Schlumberger fleld data

for Adena fileld

Spacing
in m

?SIKP)
smooth

in m

from

curve

psl(r) with
artific¢ial
noise in Om

10
15
20
25
35
50
70
100
150
200
250
350
500
700
1000
1500 -
2000
2500
3500
5000

=
o o
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‘The- Interpretation of: the«Kernel. Function. .

The interpretatibn methods of resistivity sounding data
can be: roughly divided into direct methods and indirect meth-
ods. The direct methods consist of evaluating the resistivity
as a function of depth analytically from the kernel function,
whereas. indirect methods are ‘based on cut-and-try procedures,
such as curve matching.

Langer $¢1933) solved theoretically the problem of deter-
minig analytically the-continuous resistivity function of
depth. from the kernel funetion. However, his methoed has not
been.applied;because of the algebraic difficulties involved
and because the discontinuous resistivity functien is much
more. important in practice. In 1940,; Pekeris presented a di-
rect method for interpretingva horizontally layered earth
model, if the bed thicknesses increase with depth. His pro-
cedure 1is based on two properties: of the layer-kernel- func-
tion, first the fact that the kernel curve approaches asymp-
totically a two-layer case for large values. of the argument,
second, that the effect of the top layer of a section might
be removed -analytically if its thickness and reflection co-
efficient with respect to the lower layer are known. A proof
of these properties based on Sunde's recurrence relation' (25)
&is'very simple and compares favorably with the rather invol-
ved original presentation making use of determinants. It is,

therefore, worthwhile to give an outline of Pekeris' methed.
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1. Asymptotic behavior of the kernel function.-- In a
section consisting of n layers, let Vi(x) be Sunde's kernel

function on top of.the ith layer (figure 22).

Surface
Layer 1 -, d-
1 1
| v, (x)

Layer 1 Ps> di Vi+l(k)
Layer i+l pi+i’ di+1
Layer n P
(infinite substratum) '

Figure 22.

Horizontally layered earth model

From (25)

- 2xdy
Vin) = L= &k:Me _ L= G
L( ) 1 + %;(7\’)6_27\'0“’ 1 + GL(N) ’ (106)
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where.Gi(A) is defined by

s —2Ad4 .
G, () 2k (\)em M (107)

furthermore,

/%’L(h) — 'fDo _ Vﬁ-‘-l \/L'H (A) ‘ (108)

Poo+ Py Vo OV

Taking logarithms of the terms in equation (107)
log{G,(A)} = -2xds + log{k; (M)} , (109)
when A increases Vi+l(A) -+ 1 by (15), hence, it can be ob-

served from (108) that,

Lom &LO") = MI_ =S ) (110)

A —~ oo ‘Po + S Ly Lt

k denotes the reflection coefficient of the ith bed

i,i+1
with(respect to the layer beneath it.

Thus, 1t is seen that equation (109) plotted as semi-
logarithmic- curve, log{Gi(A)} versus A, approaches a straight
line for large values of A. The intersection of this line

with the Gi(k) axis furnishes the value of the reflection

coefficient, its slope the thickness of layer 1.

2. Stripping off the top layer.-- Solving (108) for

Vig (0

— .P;, 1 - Pe;(k)
V{,OQ 1+ £&;(0)
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_ oL+ R 1 - k()
\/L+|(h) B 1 - %. i, ‘ 1 + 9?,(:(7») ! (111)

¢

where ki(k) is found from (106),
- \/s d; .
&LO‘) - 1 \\//LE)\)) e/27» ¢ 66 Ck)e,led"' . (112)

By combining formulas (112) and (111), one. can compute
the kernel. function Vi+l'in terms of. the kernel function Vi
on top of the overlaying bed (see figure 22), if the reflec-
tion coefficient between the two layers. and the bed thickness
of the upper. layer are. known. This process. differs from- the
partial curve-matching. procedure in the r-domain,:in that the
top layer is effectively removed and not.:replaced by a fic-
titious layer.

Indirect interpretation is based mainly on graphical
methods consisting. of comparing the observed kernel function
with a set of theoretical master curves. . to pick out the most
likely models. A catalog of kernel master curves. is not. yet
available, at least not to the authors knowledge. However,
with a digital computer and a plotter, a considerable number
of kernels can be generated efficiently in.a short time and

compared with the transformed data curve. In this way,

o
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a number of equivalent models fitting the original data with
approximately. the same. error might be obtained, ﬁhe choilce
of the most probable -layering has then to . be based on addi-
tional geophysical and geoclogical information.

An indirect numerical technique proposed by Vozoff
(1958) consists of fitting the kernel function of an approx-
imate model to the transform of field data in the least-
square. sense..The layering parameters of the model are ad-
justed successively by some method, for example steepest des-
cent, until the sum of the squares of the differences bet-
ween. observed. and model-kernel function is minimized.

In practice, a semidirect. technique, i.e. a combination
of direct and indirect methods, will probably give good re-
sults. Pekeris' or auxiliary point methods (Zhody, 1965)
might be used to get a preliminary, approximate model, which
is then adjusted to the transformed sounding curve by modi-

fying the layering parameters.
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SUMMARY AND CONCLUSIONS

The kernel function contains all the information on the
resistivity variation of a horizontally.uniform medium, sep-
arated. from the. effect of source and recording.-electrodes.
This function can, therefore, be used for. computation of
theoretical sounding curves, or for. interpretation of resis-
tivity sounding data.

Apparent resistivities and kernel functions are mutually
related by a Hankel transformation. The numerical evaluation
of this linear-integral transform by. Gausslan quadrature,
combined with an Euler transformatilion, suggested by Longman
(1957), yields sufficiently accurate results for exploration.
The advantage of this technique over the image method of com-
puting theoretical sounding curves is that more general re-
sistivity variations than horizontal layering might be con-
sidered. This point is illustréted by the computation of syn-

thetlic sounding curves from representative electrical well
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logs for guiding exploration and interpretation. of resistiv-
ity measurements.in.the.vécinity of. the wells. In a specific
example it is concluded. that "direct" location of oil-satu-
rated zones in the Adena oil-field. (Moergan County, Colorado)
by surface-based resistivity: surveys requires an accuracy of
the measurements. exceeding 1 percent for spacings of three

te five miles.

The quadrature method used in this. thesis can be applied

to evaluate the kernel function by inverse Hankel transfor-
mation of apparent-resistivity curves obtained in electrical
surveys. Sufficient. numerical accuracy is achieved for the:. .
inversion of the synthetic-sounding curves for the Adena
‘field, making it possible to use the kernel. functien fer
their interpretation.

The kernel-domain approeach in interpreting resistivity
soundings offers several advantages:

l. Because. of the uniqueness of the. Hankel transforma-

tion, the kernel function can be considered processed data,

‘without addition of information .like an apparent-resistivity

curve, which 1s only determined by the. accuracy of.the mea~
surements.

2. The indetermination in the interpretation arises in
the step from the kernel function to the resistivity varia-
tion with depth. The interpretation, more an art, than' a.

science, should be limited to this step.
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3. Kernel curves. can be computed much faster and easier
than apparent-resistivity curves. Consequently, any indirect,
numerical cut-and-try method works more .efficiently in the!
A-domain than in the r-domain. Furthermore, necessary addi-
tibnal information on the layering parameters, obtained from,
adjacent resistivity soundings, from electric logs, from
other geophysical surveys, or from geological sources can be
built easily into the kernel function.

4, Because the kernel function is independent from the
particular measuring array.-used, only.:.one interpretation
scheme ‘1s required- for all the different types of apparent-
resistivity curves.

| 5. The symmetry property of the kernel domain simplifies
interpretation procedures based on curve matching -with a
catalog of master kernel curves.

6. The kernel-domain approach can be generalized to the
interpretétion of alternating-current resistivity‘soundings
(Van'yan, 1961).

Before the kernel-domain approach is used in the inter-
pretation of a survey, 1t has to be decided whether the sound-
ing data are sufficiently accurate, and lateral effects are
small enough to guaranty.good results in the. inverse Hankel

transformation.
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Future work. in the area of kernel-demaln interpretation
has to consider the problem of the removal of lateral ef-
fects and other "noise," either by field techniques or by
some processing scheme, in order to prepare. the data for in-

version.
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APPENDIX
LIST AND .FLOW CHARTS OF COMPUTER

PROGRAMS - USED

The source deck, object code, program constants, and a

complete listing of each program iszkept on file in the Geo-

physics Department of the Colorado School of Mines.

List of Computer Programs.

No.

Program name and description
Kernel function for a layered medium, version 1l.-- This
program computes the kernel function. for a layered me-
dium with a specified error at the lower and upper end
of the argument. Its mailn purpose is to get a complete,
detailed tabulatien of-single kernel functions.
Kernel function for a layered medium, version 2.-- This
program evaluates the kernel function for a. gecelectric
section consisting of a surface layer, a sequence of
thin layers obtained from a'digitized well log, and a
lowest layer located between the last resistivity read-

ing on the electric log and the infinite basement.
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3. Kernel function for a layered medium, version 3.-- This
program computes the kernel. function of a layered me-
dium with speeified initial and final values of its ar-
gumént.yIESAmain«purposehi§;thegpnéductioﬁmof}families
of kernel functions. |

4. Equivalent layers in well-log sections.-- The geoelec-
tric parameters for a specified section of a digitized
electric. log, and the thickness and resistivity of the
equivalent isotropic sectlon are evaluated by this pro-
gram.

5. Probability density and distribution for resistivities
sampled from electric logs.--

6. Synthetic sounding curves package.-- This program com-
putes the integrals in the apparent resistivity formu-
las. for the single-pole, Schlumberger, and/or polar-di-
pole arrays for a horizontally layered medium. (For-
tran IV program).

7. Inversion of the Hankel transform.-- This program eval-
uates the kernel—functibn from Schlumberger apparent
resistivities (Fortran IV program).

8. Subroutine BESFJ0.-- This subprogram computes Jo(x) for
real x.

9. Subroutine BESFJl.-- This subprogram computes Jl(x) for

real x.
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10.

11.

12.

13.

14.

X

Subroutine BESIJ0.-- This program computes J‘Jo(t)dt
¢]

for real x.

Subroutine. BINOl.-- This subprogram computes the values
to to

of J ~thO(rt)dt, and J thl(rt)dt by recurrence rela-
t, t,

tions.

Evaluation of Bessel functions for large arguments.--
(Fortran IV program in double precision).

Subroutine. INTPOL.~-- This subroutine. interpolates bet-
ween. a set of tabulated entries using the method of di-

vided differences.

Subroutine APROX1l.-- This subroutine evaluates the poly-

nomial passing through a set of unequally spaced points

by the method of divided differences.
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FLOW CHART FOR SUBROUTINE KERNEL

144

A : ARGUMENT OF KERNEL FUNCTION
n : NUMBER OF LAYERS
COMMUNICATE hy : THICKNESS OF LAYER 1
Asn,h,o ot : RESISTIVITY OF LAYER 1
v® : VALUE OF THE KERNEL FUNCTION.

f

[
o
=

Y

_ _n-1 T Pn+l-i e-2xhn_i
.+ .
Ph-i Ph+1-1i

1 -1+ 1

NO

|

YES

RETURN
v
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GENERALIZED FLOW CHART
FOR HANKEL TRANSFORM PROGRAM

READ

DATA
SUBPROGRAMS REQUIRED:
Bessel functions Jo and Jl,

r=r Kernel function A(A).
> Xo = igz INPUT:
1. .
Program constants, abscissas and

welights for Gausslian guadrature.

. v 1
YES Data,- thicknesses (hi)’ and re-
. Ap. APPLY 48 POINT 1 _ ¢ lectric
ro>oerer GAUSS QUADRATURE | + sistivities (py) of geve
section; initial (rl), final (rn),

41,NO and multiplying increment (Ar) of

4

transform variable r.

4 INSTRUCTIONAL CONTROL CARDS:
APPLY 16 POINT

GAUSS QUADRATURE For selection of transform to
TO TEN CYCLES OF

-be computed and for peripheral
J_(x) TO GET G P perip

i operations.
~ YES
. COMPUTE
Hy (r) AUXILIARY ARRAYS AND VARIABLES:
r g Gi : Value of the basic integral
evaluated over 1/2 cycle of
COMPUTE EULER
TRANSFORNS S| P J, (A =1,2, ... 20).
i OF TERMS Gi . SJ : Euler transforms of Gi’
T = ISJ+1/SJ - 1]
. OUTPUT:
Hankel transforms H (r)
COMPUTE YES ' koo

A

. mamm e
Hk(h)

Hi(r) = rf"A(03 (Gr)dx (Y

Hy(r)

”

F2LTAANDI (i) da

Hy(r) = r3£”x2A(x)Jo(xr)dx

PRINT

FOR NONCONVERGENCE
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