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ABSTRACT

The apparent resistivity obtained by direct-current 
resistivity sounding over a horizontally layered earth can 
be expressed as a Hankel transform of the so-called kernel 
function. This function depends only on the layer thick­
nesses and resistivities, and not on the particular elec­
trode arrays used in the measurements. This research was 
conducted to study the analytical properties and the use of 
the kernel function in interpreting resistivity sounding da­
ta. The numerical techniques developed for this purpose are 
implemented for digital computers and applied to the analy­
sis of theoretical geoelectric models.

The value of the kernel function at the origin is giv­
en by the ratio of the resistivity of the lowermost infinite 
substratum to the surface resistivity. For large values of 
its argument, the kernel function approaches the value one, 
with a rate determined by the first layer thickness. In a 
logarithmic coordinate system, resistivity functions
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symmetric with respect to depth.produce kernel functions 
symmetric with respect to their argument.»For a perfectly 
resistant or a perfectly,conductive basement, the kernel: 
function, plotted logarithmically, approaches asymptoti­
cally a straight line with a slope of. minus 1 or plus 1, 
respectively. The position of this line depends on the ra­
tio of the surface conductivity to the total conductance 
of the overlaying formations in the first case, and on the 
ratio of the surface resistivity to the transverse resis­
tance in the second case.

Representative kernel functions for the Adena oil 
field, (Morgan County, Colorado), are- computed from elec­
tric well logs digitized with a ten-foot interval. A ,Han- 
kel transformation, of these kernels, using Gaussian quad­
rature, furnishes "synthetic" resistivity sounding curves 
for the.Adena. field. These.curves can be used to study ex­
ploration: requirements of resistivity sounding surveys in 
the area. For "direct" detection of the pay zones in this 
particular oil field, an accuracy of.field measurements 
much better than 1.percent at a distance of three to five 
miles from the. current source is required*

Electrical soundings can be interpreted in the ker- 
nel-domain by inverse Hankel transformation of the observ­
ed apparent resistivity curves. This procedure probably

iv
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leads to a more nearly accurate, determination of the layer­
ing parameters than curve matching, methods. For the inver­
sion of sounding curves recorded over a section with a re­
sistant basement, the numerical technique developed for the 
Hankel. transformation, can be applied., making the, correction 
for the branch: of. the curve raising, with a slope of 1. The 
application of this formula to the inversion of simulated 
apparent resistivity data for the Adena field shows that the 
numerical accuracy is sufficient for practical purposes.
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INTRODUCTION

The geophysicist interpreting resistivity sounding 
curves is often faced with multi-layered earth models for 
which no set of master curves is available. Partial curve 
matching is useful for finding approximate solutions to the 
problem, however, this procedure does not make use of the 
inherent accuracy of the data. Consequently, some of the in­
formation contained in the observations is lost at the in­
terpretation stage. Modern digital computer technology pro­
vides the tools to attack this problem numerically. The 
so-called "kernel function" offers the most promising path 
to its solution because this function is more directly re­
lated to the geoelectrical model than the apparent resisti­
vity is.

The literature on the subject of interpretation in the 
kernel-domain includes papers by Slichter (1933)* Pekeris 
(19^0), Vozoff (1958), and Koefoed (1965a, 1965b, and 1966). 
The work of these authors is concentrated on the step of
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obtaining the bed thicknesses and resistivities of the sec­
tion from the. kernel function. Except for Koefoed (1965a, 
and 1965b), who presents a graphical method, the. step of ob­
taining the kernel function by a Hankel transform of ob­
served apparent resistivities has not been considered.

Thus, this thesis was undertaken to develop an accurate 
numerical technique for the Hankel transformation and to 
study the general properties of kernel functions. Little at­
tention is paid to "direct" interpretation methods, con­
sisting in the analytical determination of the resistivity 
function of the medium from its kernel. The writer believes 
that determining the layering model from the kernel function 
is, as in every other interpretation problem in geophysics, 
essentially a step where geological judgment, past experi­
ence, and ingenuity a r e .significant.

A mathematical model study is used throughout this the­
sis. The necessary digital computer programs are developed 
and then applied to a reasonable geological situation to 
test the requirements on the different variables involved.

The first chapter is a detailed discussion of the phys­
ical properties of direct-current flow in a horizontally 
uniform medium. Next, different algorithms for computing the 
kernel function for a horizontally layered earth are ana­
lyzed, and Sunde’s recurrence relation is applied to a
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model study of kernel functions for the Adena oil field, 
Morgan County, Colorado. The next chapter pertains to nu­
merical methods for evaluating Hankel transforms, suitable 
for digital computers. Finally, the interpretation of resis­
tivity sounding data in the kernel domain is considered.
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SURFACE POTENTIAL AND KERNEL FUNCTION 
ASSOCIATED WITH DIRECT-CURRENT FLOW

Statement of the Resistivity Sounding Problem

The basic physical concepts of direct current-resistiv- 
ity sounding are explained by the theoretical single-pole 
setup shown in figure 1.

T Z <  0  , CT = 0

* A X

vs

v  U(r)

\ | m

Z z  » 0  >

Figure 1.
The single-electrode configuration

4
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A point electrode located at the origin A of an orthog­
onal cartesian coordinate system supplies a direct-current 
of intensity I (amperes) to an isotropic, horizontally uni-, 
form.half space of conductivity a(z) (mhos/m). The surface 
potential U(r), expressed in volts, arising from the current 
flow in the medium is measured with another point electrode 
at the point M, a distance of r meters away from the source 
A. (The MKS system of units is used throughout this thesis.) 
The fundamental geophysical problem is to obtain the conduc­
tivity variation with depth o(z) of the medium from the po­
tential measured at a number of observation points M.

The single-pole configuration is a mathematical ab­
straction analogous to an isolated simple electrostatic 
charge. In actual field surveys, other electrode arrays* 
involving at least four electrodes are used instead.

The differential equation for the potential U is estab­
lished from the following fundamental relationships,

v - u O' O  (OjO; o) =<=>

J : current density (amp/m)
(1)

(2)
E : electric field (volt/m)
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£  = - vo/ (3)

v-(cr(z)E) = £f(z)V-£: ^ - E - v  cr(H) -  Ov

+ T7 -, VCT(h) • v u  =  0 . (4)<T[Z)

Because of the axial symmetry of the current flow, it 
is convenient to adopt a cylindrical system of coordinates, 
then

U = U(r,z) ,
and equation (4) becomes

Q ZC/ , j__ d U DZU a  D u  r\ (cr \
D ^  'r D r D ' er (z) <)z.

0 < a(z) < * , r ^ O  3 z >,0 , a(z) = ^ z) , 

a(z) and a(z) are continuous.
Equation (5) is a second-brder partial differential 

equation of the elliptic type; for its solution two inde­
pendent boundary conditions are required:

Dirichlet conditions on the infinite halfsphere 
R = /r 2 + z2 ,

U(r,z) 0 as R -* » , (5i)
Neumann conditions on the infinite plane z = 0,
J (r,0) = 0  r t 0 *

Z i



T-1103

There Is no current flow across the plane z = 0, except 
at the point electrode at r = 0,

2  N sf (*, O )

I

^ 'TTrr ( °  ? o)

1
nr =  O

From the continuity of current flow it follows that,

f ^ 77 J z C'-.o)

I dt =  1

The last-three equations show that 2-nrJ_(r,0)/I behavesz

like Dirac’s delta function; hence,

. i M
2 ii rr

^ s ('r)°) “  = - O'C0) ^  U(r,o) .

Therefore, the Neumann conditions can be rewritten

(j(rt,o) = j (5ii)7>Z V J <f(o)rr

Uniqueness of Solution

Theorem: If there exists a solution to the boundary-value 
problem (5)» then this is the only one possible.
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Proof: With the assumption that U = U(r,z) is one solution 
satisfying conditions (5), and that there exists 
U# = u*(r,z) also satisfying (5), it follows that,

I &(*)
z - o

-*■

C>£

If W = U - U*, then

=  0

Z T T  Cf(o) rr

a v
c) Z

which implies J(r,z) = 0 at r = 0, where J is the current 
density associated with the potential W. In other words, the 
current flow I* is zero. Hence, J(r,z) = 0 everywhere, and

<r(E)E(/T,z) = - c r ( z ) V V / 0 , z )  = O

Excluding the ease o(z) = 0, which is only of academic 
interest,

VW(r,z) = 0
W = constanto

Prom the Dirichlet conditions
U(r,z) 0 as r--► » and
U*(r,z) 0 as r -> » , which shows

that the value of the constant must be zero, i.e.
W = 0 for all. space, hence,

U* = U for all space, Q.E.D.
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Formal Solution of Problem (5)

The boundary value problem (5) has been solved by sepa­
ration of variables (Slichter3 1933). The solution using in­
tegral transform techniques is given in the following devel­
opment .

Starting with the Hankel transform pair

where Jn (x) is the Bessel function of the first kind and nth, 
Qrder, and setting n = 0, the potential function may be writ­
ten

o

»o
U(-rr'£) - [ V ( ^ , z )  X. (\-r) I X  ,

O

r
=  V 0 - ; 2 J  A. JQ

Differentiating
ao

g - U C ^ , 2 )  =  J V M x  i p
O

O

and,
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§ 7  ^ O , * )  = " V(it)2) ^  x > 3 , C ^ ) c ( A . .
o

Prom the formulas for derivatives of Bessel functions 

A- U.CA-r) = A.q<V) - i 3 ,0 ) 

it follows that

U G m h )

Hence,

?ytj . ' 3 U
0 'f D'r

• also,

^  crVz) ZU 
© a 2, <T(29

Consequently ,

/ c*° 2- ) i

( ^  f c V M  - ^ V ( M ) ] ^ » i U O ,
G

One possible solution of this integral equation is that 
the expression in the braces vanishes. From the uniqueness 
of solution proved earlier, it is seen that this is "the" so­
lution. Thus, problem (5) has the formal solution

^ V ( K , z )  +  ^slA-\'(K,z) - * V ( \ , Z ) -  O  (6i)
dz* ' <ru)63L

oo _

- - ( VQ-.Z) K [a. 0o Cat) - -L q (At)] dx.

oO

A* V ( / U * )  A, J 0 cLA. ;

+ ?i*) l y i j  Cx_+ U ^
L <L z* cr(i) i jJ
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\J('L^)X~30 C?̂ /r) d X  • (6ii)

Conditions (5i) and (5ii) will be introduced after dis­
cussing equation (6i).

Some Properties of Equation , (6i)

Equation (6i) is an ordinary, linear differential equa­
tion with variable coefficients. Unfortunately, there is no 
general solution.available for this second-order equation,as 
there is for the corresponding first-order equation. Unless 
equation (6i) reduces to a type with constant coefficients, 
which can.be integrated in terms of elementary functions, the 
solution has to be expressed in-infinite form.. That is, an 
infinite series, a definite integral, a contour integral, or 
continued.fractions are.required. The solutions of. some stan­
dard, forms, arising frequently in mathematical, physics, as for 
instance the Bessel, equations, have-been expressed in special 
transcendental, functions.

Approximate methods, such as asymptotic solutions, or 
the WKBJ method, can not be applied to equation (6i), because 
they require a large parameter A, which is not the case in 
the. present problem where 0 • <. A 4

U0r;£) *  j
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Even if the solution to equation (6i) is not known ex­
plicitly, some of its fundamental properties can be estab­
lished.. The corresponding general theory has been developed 
by Sturm (Ince, 1956), who studied extensively equations of 
the type

K(x) and G(x) are continuous and real functions in some 
interval (a,b).

Equation (6i) can be written as the Sturmian equation

O

>}
7?cr(z) \/(\,%) =0 M7)

where
K = a(z) , G = A2a(z) .

The initial conditions of equation (7) are:

G

(7i)

o

(7ii)
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Sturm established the fundamental theorem that the ini­
tial value problem (7) has one and only one solution. This 
unique solution, can. be expressed as the. sum. of two linearly 
independent solutions if the Wronskian W(z) does not vanish 
on the interval Q 4  z 4  «>. Consequently, the general solu­
tion of (7 ) can be written

V(X,z). = ■C1 U ) V r (X,z) + C 2(.X)V2 (X,z) , 
where both and satisfy equations (7)- From Abel’s iden­
tity (Ince, 1956, p. 75) it follows that

The last two relationships .show. that' there, are ..two ’ inde­
pendent solutions V 1 and V 2 of equations (7)} as long as 
o(z) remains bounded, and C f 0.

Another consequence of Sturm’s theory is that the solu­
tions of the equation L(y) =,0 are non-oscillatory (having
at most one zero), if G ^  0 in the interval (a,b). Since in

d. V, cLVz 
<iZ

^ C z ) " oxz)

where;
c = v1(x,0)V2(x,o) -% ,v2u,o)y^(x,0)..
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in equation (7) A2a(z) ^ 0, the important result arises that 
and are both non-oscillatory. for all z.

The behavior of the solutions and. V 2 for large A may 
be studied by reducing equation (7) to an equation not con­
taining the first derivative. To achieve this the following 
change of variable is carried out

V O ) U, exp
I cr(aL)

yU.

Equation (7) changes to

10) - o
where

(8 )

10) -
2.
TV. 4- 4-

CT(z)
-4- z

crQ)]
<TO)i

Given that a(z) ^ 0 3 and a(z), a(z) are both continuous 
for all z, equation (8) becomes

o l V
o U *

— Tv. ^  — O ) ?v c O

its solution is
u = C1 (x)e"Xz + C2 (x)e+Xz ; 

hence3 the solution of equation (7) for large A approaches

VCVj^) ~ C, O) -£==; + C W-p=, to— ~ . ̂ ' iw  ^ /crCzl
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This expression shows that one solution remains bounded, 
the other unbounded,with, either z or X .

The Kernel Function

In the last paragraph it was shown that the solution to 
equation (6i ) can be written

With V 2 the solution which is unbounded as z -* it 
is reasonable by considering (6ii) and (5i) to set C2 (A) = 0. 
This arbitrary assumption yields a solution of the boundary 
value problem (5)* From the uniqueness of- solution proved 
on page 8 it follows that this solution is the only one pos­
sible .

V(7L,z) = C1 (A)V1(A,z) + C2(A)V2 (A,z ).

Hence,
oO

- ' G, (X) V (X.,0) ̂ZIo(A.'T)iA
2T ~ 0 o

where

From (5ii)
-I G, Ĉ )Y'(x,d)xJ0(̂ )cl-K ,2?r (T(o)rr

o
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inverting this transform yields

- Ic (a.)v  (yo) 7T (T(o)

so that the potential is given be

UC°r?x) =  -------  ( — A. J  (vr) o(a. . (9)v 7 y zTrcr(o) Jo \J'(K,0) °

The surface potential is of interest in prospecting,

Soo

V,' t,o)O 1 I

Denoting by K(A) the kernel function corresponding to 
a given conductivity function o(z), the surface potential 
can be written

T C
= 2̂ ~G-(0y  j k o o i 0(*-tU *  doi)

K W  - -A. -V lXIz-0)- (1Qii>y
It is customary in mathematical physics to call J Q (Ar) 

the kernel of the integral transform (10i). However, Slich- 
ter (1933)^ assigned the name "kernel" to the function given 
by equation (lOii), a designation which has been followed
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later by other authors- and is now well established in the 
literature on electrical prospecting.

Relationship, between-, the- Kernel; Function .and the - Two-Dimen­
sional Fourier.- Transform, of the- Surface Potential,..

Expression (lOi) shows that
/vooIo

is the surface potential expressed as Fourier-Bessel trans­
form. From the identity

f Lxr COS V .e dir =  z rr J0 (a.t) >
O

the Fourier-Bessel integral can be transformed to

(. OO r 2f\\

o I
Changing from the polar coordinate systems, in both the. 

X and r-domains to orthogonal cartesian coordinates by the 
transformation

* = Acos<f> x = rcose
3 = Asin<|) y = rsine ,

and letting
ip = <t> - e 

dip = d.<f>
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Arcos^= Arcos(<j> - 0)
ax + gy .

The Jacobian of the transformation is given by

c) CX. c) p
J A.

sin <$ c osA A.

A = / ge2 + $ 2:' ;

and the potential in the new system of coordinates becomes

Fourier transform pair. In effect, equation (lOi) is a spe­
cial case of a two-dimensional Fourier transform resulting 
from the cylindrical symmetry of the problem. Equation (11) 
could have been derived by applying the two-dimensional 
Fourier transform to equation (4) expressed in orthogonal 
cartesian coordinates. But, the expression of the potential 
as a Hankel transform of the kernel function, equation (lOi), 
is better suited for numerical computation because only one 
integration is required.

(11)

The potential function U(x,y) and the function
constitute a two-dimensional
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Some, Properties of the-Kernel-Function,

1. Langer's reciprocal relation.—  If K(x) is the ker­
nel; corresponding to a(z), then Q(x) = 1/K(x) is 'the kernel 
corresponding to p(z) = l/a(z)3 (Slichter, 1933)*

2. Behavior of K(x) for large X.—

k  OO =  JL\rr\, - X  ^  C^.g)A. oo V ;(X.o)' ' ' ft * o
from page 14

and

y c ^ , o )

/

cr(2)

V/(V>) - A, C(o) ~ ~k & (°)
[ ^ O ) ]

81. w  .K (X) iX m  — ?v
X,-v °c

OYo)
“ X  G"' (o) " C  )

(< (X) ± ,
X-+~

(15)
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3. Behavior of K(A) for small A*—  

Defining
K ( 0) = lim K(A) ?

A->0
then from equation (lOii),

K (o) - ■— (̂ -°2
IrXO-.cO

?

and from, equations (7i) and (7ii)

V  C=L,0) =  c ^  U H ^ r J o
1 o

§ v ( v ;o) -  L  j
2  M C  (A.)

hence
f"°K(0) * U(n-) n- JQ C^r) oL̂r ^-L JOJ A.-*0 J

with the change of variable Ar = x
OO

K (°) - f h  V"L U(-eirJa(x)d.x .
o

Prom (10i) it is seen that if the medium is homoge­
neous (K (A) = 1 ) ,  then

U M  - -L£SL .
2. IT rr

X
If the medium is homogeneous from a certain depth z 

on:, or in other words, if. the lowermost layer of the section
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extends to infinite depth with a constant, finite resistiv­
ity p ( z  ), this* layer will ultimately determine the behavior 
of the potential function for large r, i.e.

If the resistivity of the substratum at depth zn is ei­
ther unbounded or zero, equation (16) does not apply, and 
another method has to be used to find the behavior of the 
kernel function, at the.origin-

A perfectly resistant or conductive bed of finite thick­
ness located at some depth z^ of the section^acts as a screen 
eliminating every direct current effect of the underlaying 
medium. This phenomenon can be easily visualized by consider­
ing the paths of the current flow under these circunstances.

For a perfect resistor at depth z i t  follows from the 
continuity of current flow, that

(16)

Consequently, by taking the limit of the integrand

O

(17)
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I = ft j ' d S
(5)

^cr(z) V  U * cLS 
05)

Because no current flows through the planes z = 0 and 
z = zn3 the surface S can be considered to include only the 
vertical surface of the cylinder with radius r and height z 
shown in figure 2.

n

I u

o' = o

Figure 2„
The potential of a section overlaying a perfect resistor

pThe current vector J will be essentially parallel to 
the horizontal boundaries of the disc if r is taken suffi­
ciently large compared with zn «
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Under this condition

T

and

I
if

r, ■*-

5 =  CT(z) dz
Jo

is the total conductance of the section resting on top of the 
resistor,

Integrating with respect to r, and defining the poten­
tial such that the integration constant becomes zero,

which, shows that the potential is logarithmic for large spac­
ing r, and tends, to -°° rather than zero as. in formula (16).

The kernel function for this limiting case is obtained 
3 Ufrom —  instead of U, Setting K( a ) = $(a ) + 1 in equation 

(lOi) in order to secure the convergence of the integrals in 
the following steps,

i (18)
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U(t) - I f_L2TT a(o) | r -f- $ W J Q (a/t)cL7l

then

'I
ZT\ CQ-} [i-+ j j.o-Ocuj

h U W  h A. c£> CA.) J, (X'T) o/A ;

inverting,
oo o£)

>̂CA.) = - -*2L52°L j T |y J CA-r)dr -  | <^r ,

but

Q J ±r^  <= 1 :or (Abramowitz and Stegun, 1965,rp. 486)
consequently,

k W  = -

This integral may be written

^ m  3,(Ar)d.r =  f T +
r 30

3 U 1When r becomes vanishingly small, —  is of order —  2,

and J^(xr) is of order r, which shows that the first inte­
gral on the right side vanishes as e -*• .0. With the change
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of variable Ar =,x in the second integral on the right side
it is seen that when A + 0, r » (x / 0), so that. t h e . value 

9Uof r —  obtained from equation (18) can be substituted into dr
the integral provided that A becomes vanishingly small,

is called the transverse resistance of the upper section.

The kernel function in. logarithmic, coordinates.—  

There are several, advantages of plotting, the kernel, function 
in logarithmic coordinates. As a consequence.of hanger’s re­
ciprocal relation, log{K(A)} corresponding to a conductivity 
variation a(z), and log{Q(A)} corresponding to the recip­
rocal of a(z) are symmetric with respect to the A-axis. This

&yvrL K" (A) 
A. O

hence }

k O )  = ^  ; c-fej o . (191)' x 5

For a perfect conductor at depth, from Langer’s recip­
rocal relation

0 (1911)
where

T
o
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property does not hold for the logarithmic graphs, of the po­
tential or apparent resistivities plotted against, some spac­
ing factor. Thus, a catalog of kernel function curves for 
layered media would need only half the number of curves of 
the corresponding resistivity catalog.

The slope of the kernel function for the resistant base­
ment, case. is obtained from equation (19i)',

L ̂  =  - ^ 7°^ ̂  ^ v ° *

This linear equation shows that log{K(A)} is asymp­
totic, for, small values of A to a straight line, with slope of 
minus 1 passing, through, the point X = , K = 1.

Similarly, for a perfect conductor at depth, log{K(A)} 
approaches, asymptotically a straight line with slope of 
plus 1. through the point A = -p^ ^  , K = 1.

Because only one perfect resistor or conductor can be 
observed in a particular kernel curve, its slope must lie 
between plus and minus 1. In practice, however, beds with fi­
nite thickness and. relatively large resistivity contrasts 
produce slopes of 1, which do not occur at the origin if the 
substratum has a finite resistivity. The kernel function of 
the Hough, no.l well log from the Adena field, (Morgan County, 
Colorado) resolved into 560 layers (figure 10), provides an 
example. Here the resistivity contrast of the lowest layers
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is 1 : 40, and the. kernel, function is tangent to a straight 
line with slope of minus 1, cutting the A-axis at A - 0.00015. 
With a total conductance of S = 6 3 0  mhos, and a surface re­
sistivity of 10 ohm-m, the theoretical crossing point is

If several sufficiently thick layers with strong resis­
tivity .contrasts are present, the. kernel curve will approach 
several lines with slope of 1. As before., the intersection of 
each asymptotic line will be determined by the. total conduc­
tance or the transverse resistance of. the, overlaying beds. 
Illustrations of repeating slopes, of about plus and about mi­
nus 1 are presented in figures 3 and 4.

Kernel Functions for Continuous a(z)

The solution of equation. (6i) for simple, continuous 
conductivity functions a(z) allows the evaluation of the 
kernel.function in closed form. The eonductivity-kernel pairs 
presented in table I, except for the power conductivity law 
derived in, the following development, are taken from Slichter

(1933).
For the conductivity function a(z) = (a(0) + kz)p , 

p real 0, k > 0, a(0) > Q, equation (6i) becomes

VO;2) - \ZV(̂Z) =0.(20)
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The change of variable-x = a(0) + kz reduces this equa­
tion to a particular type of Bessel equation,

df' V('Vv*) ir O
d X z

Its solution is expressed in terms, of modifiedx or Bes­
sel functions, of imaginary argument (Abramowitz and Stegun, 
1965, P- 362)

vu,x) - [c.ia o  + c; k  ,(*»)
The second term remains bounded for large argument; 

therefore, the appropiate solution to equation (20) is:

<n°)
Jk, ->]

V £  J— JB.
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The differentiation formula

gives
(Abramowitz and Stegun, 1965, P* 376)

V,'(x;o) -  - A. (Tfo/K,,., O JhL

and finally,

K(M K, ( A- 
K.v-\

(21)

For the linear law a(z) = a(0) + kz ,

K W
K„ ( ^ )
K,(W '

For the quadratic law a(z) = (a(0) + kz)2 , making use 
of the identity K (z) = Kv (z ) (Abramowitz and Stegun, 1965> 

P. 375).

X.
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Table I. 
Conductivity - kernel pairs

c r ( 2.) K  ( M

c o n s ta n t

CT(6 ) 1

e x p o n e n t ia l  

CT(o) e
2 A,

ft- +  /  %,Z + (2/1) Z

power

( c +  & z ) P

V ‘yea£/»j:0>

K v ( X A)
K-A^) T

h y p e r b o l ic

2,

oon-^L. <-0 +~ C )

Gsrg O

X, c

coc ccr&l  toe +  f  X.c)'*' + (coo)

cco^u co t-£ )

\f &J J c

A c

COc W A w c  •+- (co c )2.

t r ig o n o m e t r i c

CT̂  ogyl*' co (j£4-c)

o < a/rcy < T

X c

c° °  Cot coc +- j / ( / \ .C) Z -  (coc)Z

0^ Cco2co + c )
£r sir 
£  < ^  < IT

Xc

-  coc tW t CO c 4- | /  C Tlc) a -  (’coc)2'
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Kernel.Functions for Discontinuous a(z)

The- simple-models of table:I apply.for.strictly contin­
uous conductivity functions a(z) and c/(z)„ If these functions 
are only sectionally continuous, the potential, function as­
sumes an entirely different analytic form in each region sep­
arated by planes where discontinuities in a(z) and a(z) oc­
cur. Two conditions must be satisfied at each of. these bound­
aries :

a), continuity of the potential function,
b). continuity of the.normal component of the current 

density.

■i-l

'n-l

U1 , ax (z)

U. , a.(z)

U , a (z ) n 3 n

section 1

section i

section n

Figure 5«
Medium with a discontinuous, conductivity function
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The model for a discontinuous conductivity function con­
sists of an infinite half space composed of an arbitrary, fi­
nite number n of sections. Each section i of thickness - 
z^ ^ is characterized by its own continuous conductivity 
function cr^(z), as shown in figure 5°

The potential function is given by:

00
~ CXr) ^  >. (22)

o
i = 1 , 2 , ... , n; z^_1 4  z 4 z.̂ ; r ^ 0 ;

Ai = Ai (x’ zi>
P.(X,z) and G^(X,z) are two linearly independent solu­

tions of equation (6i ). The constants and are deter­
mined, from, the- boundary conditions.

At the surface z = 0,

.(J =  - _L____
W  J Z7T <T(oj T

At each boundary z = z^,

UifaZi) = U.+( & Z l)

zd " & & r Q ( r ' Zs-)irtt

For the nth section z ^  z
lim U (r,z) = 0 nẑ -«>
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which from page 15 requires that B^ = 0.
The remaining 2n - 1 constants and B^. are., determined 

from a system of 2n - 1 linear equations. If the functional 
dependence on A is omitted for simplicity; that is, if 

Fi(zi) = P1(x,zi), and F̂ (Z±) = |-F±( x jZ±) | ̂  , 
then the system of linear equations may be written:

a ,f̂ o) + e .s »  =

fe) +£?, 6,(2,) = A ^ O , )  +■ 3 ^ G ZC2,)

(z,) + B2G1(z ,)]

+ £>M*0 = A. F)U.) + E>. G. (2;) ̂L ' L-H L+l L+l L -f 1
(23)

<5£;){A iFl’(z .) + B.s!(z,)] -  crjzj {A.+iF.'(z.) + B  6* te) iJ

A t B  .6(2^..,) -  A  )Yl- j nr̂ - | 'Yt-| ‘a-I L ^

°L (Aj{̂ ., F>..,) “- A J A . G a .,)



T-1103

The (2n-l) by (2n-l) determinant of system (23) is

A  =

F'(o) G'(o)

0

0

o o 0 0

0

0

0 0 E G O  -  0

o F fe ) G (* ) -F(* )ra-l mt-| *vi—I «VL 'n.-l

0 0 0-<r(z«.-,)F’te ) s-fe.i&'cz: 1-trot irfe )w  in-1 m-i «w..,a”' n-1 ^  -n «-i W

With A., denoting the cofactor of the element a., of i J J
this determinant3,the surface potential U(r.,0) becomes from 

equation (22)a

■U'too) = ( Z M M .  ± * ™& SSL- KJ0(A-t)o6/\1 j&Tr<r(o} J A
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u ,

A„fTCo) + 6 , CO) x  J
ô n̂ 'fo) +4llG,’Coj

The kernel function is, consequently,

Kfx.) = _ ̂  _ j V W  + A^GjJoj___
J { A ^ f o )  ^A^e.Co)]ol
cLz

or alternatively,

K fr) = .5f°2 . + y G 'c0) (24)
u  ^ o )  - - ^ s  fo;ii

Table II shows the functions F and G together, with their 
derivatives, corresponding to the conductivity laws listed in 
table I ... Equation ■( 24) allows one to compute the analytic ex­
pression of the kernel corresponding to any combination of 
these conductivity functions <> Table III gives the kernel 
functions, for a. few, models consisting of two sections, each 
characterized by.some conductivity law from table I. Most 
widely used is model 1, the two-layer case. Exponential or 
power, conductivity laws might be helpful for. representing 
certain geological situations. In some special cases they can 
also be used to approximate multi-layered models.
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Table III.

Some two-layer conductivity models

model 1

a2
kzce

i
X

model 2

K(A.) = 1 - Q  1 + Q
Q  « Gzs'f — 0", TV,-----------  ̂

ĉr. + X,

'T =

kzce

zl
model 3

K(x)
lujQ&re.

Q

r - ̂ Q
nr +- o Q 
 ̂ r -2.a_ - 0| T"  ̂1 
-+(7,0

nr
-  H + + 4}

<WUJL 
0 J L ' £ /g- + (2\f- <tjto
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model 4

K (A.) =
Q

1 + Q

a ^  Kv-i (■it!*') ~ G"r Kv ( ^  *-)Q= rr—-- r̂-:--- —— re
°i<v, (£»■)+<[ *»(■&»■)

QyyicC. 
&U C "t" | j

p

model 5

Kft) ! 

Q =

Ky> C't)L)~ Q Zj>(£x)
**>(&)+Gl.Xk*)

GzKx ( 4) a) ~ G"|Ky-|(Vx)
^  O N +-a » . ( (I1*.)

zz 1
model 6

koo K» ( a'1) - Q I„ ( £*)
!(-**) - q I-, O )

'Vu'̂U&'t'fc

Q - 01 Ku ((^'*0' 0
r» C$*)K., (?'A) + o;

v A 2. > x- - J C,- fez, > «,
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THE. KERNEL FUNCTION FOR A HORIZONTALLY 
LAYERED MEDIUM

The purpose of the following development is to review, 
discuss, and evaluate the kernel.functions for media con­
sisting of an arbitrary number of horizontal layers with con­
stant conductivities.. The first publicationscantthis•..su^j.ect 
appeared in 1928. and 1929 in a series of articles by J. N. 
Hummel, who established■ what can be. called the. ’’Image School" 
in.electrical prospecting. A.general development for the 
n-layer case was first given by Stefanescu in collaboration 
with the Schlumberger brothers in 1930 * in a paper that cre­
ated the "Harmonic School." Later development of different 
expressions and. recurrence; relations for the kernel function 
is associated with the names of Slichter (1933)* Pekeris 
(1940), Sunde (1949)* Flathe (1955)* and Onodera (I960). A 
review of their work is given by Roman (1963).

Of all the different expressions for the kernel func­
tion, two specific recurrence relations, namely Sundefs and 
Flathe1s have been investigated closer in this thesis and

41
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are discussed briefly to.point out the difference in the nu­
merical calculation of the kernel function.

Sunde*s Recurrence.Relation

: Equation. (24) gives the kernel, function for quite gener- 
at conductivity,laws..However, this expression, can be greatly 
simplified for the present case because, of the particularly 
simple relationship, between the exponential, function and its 
derivatives.

— A z  A zWith F = e 3 G = e in the determinant of the system 
of simultaneous equations (23), the following recurrence re­
lation can be established formally by. simple row and column 
operations:

X 2.3 • • • -\a

* • * 'vu

2̂.5 • - • 'YL

&

1  - A 12.3. ♦ • • 'VL ^

■ 2,\.cL x

1  + A t Z 3  • • •  va  e
■ ZT^dL y

0 1 - G "T - -  '  V L

+■ ■ * * <VL

{ ^  2 . 3  ^  • /VT 2 -

1 ^ - 2 3 ^  • * •
—2. ^ . 5

- v i  e .

C T x, \/3+S • • • V L

3 ^ u o

(25)
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V,

where V. = K(x) is the. kernel function for a medium
Jib w  ̂ • • « X 1

function, and is the thickness of the ith layer. With the 

notation of figure 5, d^ = zj_ ~ zi-i*
This recurrence: relation has been derived by Sunde 

(1949)' in a very elegant way based on. the. analogy of. the 
present, boundary-value problem with a. particular transmis­
sion line consisting of n different sections having the same 
propagation constant.

The kernel function is found by a series of* 1l j *« # n
substitutions starting at the bottom of the sequence of lay^ 
ers. First V, is computed, which corresponds to the ker­
nel of a two-layer case with a top layer of conductivity an_^
and thickness d resting on an infinite, substratum of■re-n-1
sistivity an> Next, the kernel of a. two-layer case with a top
layer of conductivity a nV/ n % and thickness d_ n resting 17 ° ■ n-2 (n-lj n n-1 0
on an infinite half space of conductivity is computed,
and so on.

consisting of n layers, k123...n k(A) is the reflection
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In the appendix,the flow chart is shown for a digital 
computer program, of Sunde*s recurrence relation (25). The 
computation time is approximately 0.1 see* per layer.for each 
value of the kernel function on the CDC 8090, a machine with 
a cycle time of 6.3 usee.

FlatheTs Recurrence Relation :

Stefanescu and others (1930), wrote the surface potential 
for a horizontally stratified earth in the following form:

The first term on the right side of. equation (26) is .
known as the primary potential. It is the potential of a homo­
geneous, semi-infinite half space having, the conductivity of 
the,surface layer. The second term is called, the disturbing 
potential; it arises from the presence of layers with differ­
ent conductivities.

The following, relation exists between the "total" kernel 
function K,( A), equation (25), and the "disturbing” kernel
function 0 (a ), equation (26):

Flathe (1955) developed and proved the following recur­
rence relations for the "disturbing" kernel function 0(A) in 
equation (26):

|  ̂few J0(*0
o

(26)

K(x) = 1 + 20(X) . (27)
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(28)

where u = e-2 A and n denotes the nth layer according to
figure 5»

Recurrence relations for pn (u) and H (u) are given by:

where i. = 1, 2, 3, ... , (n-1); 
and P^ = 0, = 1.

This recurrence relation is just the opposite of (25), 
in that successive layers are added at the bottom of- the se­
quence rather than on the- top as in the former.. Equations 
(29) are very convenient for obtaining the explicit analytic 
expression of the kernel function. However, difficulties 
arise when implementing them for a digital computer because 
of the inverse functional relationships P(u-1 ) and H(u-1).
A way to overcome this difficulty has been devised by Mooney 
and others (1966). Their procedure consists in allowing only 
integer thicknesses for the layering, which is not a limita­
tion from a practical point of view because actual layer

FL, M  = R W  +
(29)
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thicknesses can always be scaled to integer values with a 
specified accuracy. But, from a computational point of view 
difficulties arise in. small-scale computers because of the 
storage requirements for large matrices, representing Pn (u) 
and Hn (u).

Van'yan's Recurrence Relation

A very simple recurrence relation for the multi-layered 
kernel function was given by Van'yan (1959), for the general 
alternating-current case. Because its direct-current equiva­
lent can be derived directly from SundeTs expressions, it was 
not implemented for the digital computer. However, analytical 
compactness makes this, formula useful for manual computation 
of kernels if a table of hyperbolic trigonometric functions 
is available. Since Van'yan’s-formula is. not well known in 
the English literature on the subject-of resistivity sounding, 
a short proof of it is given next.

Starting from Sunde's recurrence relation (25), and 
writing k = k-. in order to simplify, the. kernel fune-J j  • • • li

tion for a medium consisting of n layers may be written:
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\ol|- ^ £cn*Qz)
V/ = —S---------------- -------------------

\2 ,^ - - - -vu e  VcC, €o^- fe ^  Cx-ol, _  -i.

By the definition of the hyperbolic tangent function 
this expression becomes

Substituting.the expression for k from (25),

v - ; s w i  (xcC, + 4- ^.o i + 'fev» - ^ )
ia3.--na v 1 4 _ j51 V  'L 0*2, a-i •- • n-

This.formula can be.further simplified by. means of the 
logarithmic representation of the inverse hyperbolic tangent 
(Abramowitz. and Stegun, 1965, p. 87)s

V  - ' f a n A .  CA-cL, 4 c u r d & y i A  — \f )12.3 ■••'n. v 1 (fa * 3 •

The kernel function for the four-layer.case shown in 
figure 4 was computed by Flathefs and by Sunde’s algorithms 
and listed side by side. A comparison of the numerical values 
of these two functions (Flathe’s kernel function being con­
verted by means of relation (27)), shows a small random er­
ror with a maximum relative value of 0.074$, which is due to
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round-off in the computations. It was established that Sun­
de's algorithm is: twice as fast as Flathe's. Concerning the 
accuracy of the kernel functions, Sunde's relationship seems 
to give better numerical values. It was seen,, for instance, 
that the first two entries, of Flathe's formula converted to 
Sunde's expression, are too large compared with-the theoreti­
cal value of the^ kernel function at zero.

In summary, Sunde's algorithm for the numerical evalua­
tion of the unique kernel function, is simpler., faster, and 
probably more accurate than Flathe's. Therefore.,..all the tab­
ulated kernel functions used in this thesis are. based on the 
former.
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A MODEL STUDY.OF KERNEL FUNCTIONS FOR THE ADENA 
OIL FIELD, MORGAN COUNTY, COLORADO

In this chapter the properties of kernel functions for 
a specific multi-layered model are investigated. The purpose 
is to gain some insight into the resolving power of the ker­
nel function. In other words, how much information on the 
subsurface layering can be extracted from a.given kernel 
curve? Needless to say that this question is of fundamental 
importance in the interpretation of resistivity sounding 
curves. For, assuming that field data are measured and trans­
formed to the A-domain under ideal conditions of accuracy, 
the question which then arises is, how accurate a model in 
terms of number of layers, layer thicknesses, and resistiv­
ities can be established?

Because of the contemporary interest in the application 
of electrical methods to petroleum exploration, a study of 
synthetic kernel curves over an idealized oil field was un­
dertaken. The oil field model was selected for this study, 
to take advantage of the tremendous amount of information

49
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on the electrical properties of the subsurface contained in 
the existing well logs. The apparent resistivities obtained 
in this way are subject to several errors; mud resistivity 
in the well bore, well diameter, bed thickness, degree of in­
vasion of the rock, and type of logging array used. All these 
errors may cause the measured resistivity to differ from the 
true value. Another point to be considered in the compilation 
of resistivities from well logs is the electrical microan­
isotropy, which is an inherent property, especially of sed­
iments, caused by a better conduction of the electric cur­
rent along the bedding planes than across the bedding planes. 
A discussion of the influence of these disturbing factors on 
the kernel function is presented. Keller (1966) has shown 
statistically, that these errors are consistent, rather than 
random; from well log to well log; thus in spite of the fact 
that t he.actual kernel curves may not be precise, a compar­
ison of them for studying similarities or differences is 
quite permissible.

General Description, of the Adena Field

The Adena field is located 65 miles northeast of Denver 
and 10 miles south of Fort Morgan, in Morgan County, Colo­
rado. The surface elevation is approximately 4500 feet$ the 
terrain is flat and treeless. The field covers 11425 acres;
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and is 7 miles long and 4 miles wide, the average depth is
565Q feet. According to Mygdal (1963* p. 222):

Adena oil field is the giant of the Denver basin; 
its cumulative production of 53*8 million barrels 
through 1962 is approximately four times that of 
the next largest, field ; in-the’ basin .and is- ex-- ; ' 1 
ceededc indColoi?p.dbyoniy by- the: Rangley.
The sedimentary column is normal for the central Denver

basin and could be.divided into four geoelectric units as
described by Keller (1964, p. 58):

The near surface rocks belong to the Fox Hills 
member of the Montana Group, underlain by the 
Pierre Shale member of the Montana Group. The 
next lower group of beds with consistent elec­
trical properties consists of the Morrison For- 

Li mation, the Dakota Sandstone, the Benton Forma­
tion and the Niobrara Formation. The deepest 
electrical layer is composed of Paleozoic sed­
imentary rocks, which contain extensive evap- 
orite. deposits in places.
Local structure is monoclinal, with west dips of ap­

proximately 50 feet per mile; there is no significant local 
folding. The trap is entirely stratigraphic; nevertheless 
the field was discovered in May 1953 by drilling on a small 
seismic anomaly which was later shown to be unrelated to the 
monoclinal structure. Oil is produced from the "D" and "JM 
sands of the Dakota Formation, the latter being by far the 
more important producer. Mygdal (1963> P* 224) describes the 
"J" sand reservoir as follows:

The ”J M sand is continuous1 over the region as a 
massive sand zone containing minor shale breaks.
A t •Adena the top of the zone is approximately
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150 feet thick. An upper sand unit, called the 
"First Bench", is separated from the main sand 
body by an underlaying shale member which thick­
ens eastwards at the expense of the "First 
Bench". This shale pinches out in the western 
portion of the field. The "First Bench" thins 
eastward and becomes more shaly so that eventu­
ally its permeability is decreased sufficiently 
to prevent the escape of oil and gas. This per­
meability barrier extends south-eastward and up 
dips along the north.edge of the field, then 
curves south and northwest and finally passes 
below the oil water contact. The oil moving 
eastward along the roof of the "J" sand has ber 
come trapped above the,basal seal which prevents 
its further movement up dip.
The"First Bench" sand is mostly clean and unbroken 

without continuous shale layers, thus constituting a single 
reservoir over the entire field. The thickness of the net 
pay sand:in the oil zone averaged 30 feet with a maximum of 
72 feet; the thickness of the gas cap averaged 18 feet.

Figure=6 shows the model on which the computation of 
the kernel function for the Adena field is based. Surface 
measurements in the area yield a resistivity of about 10 
ohm-m for the surface layer. The resistivities of the sec­
tion between 110 and.approximately 5600 feet were sampled 
from the short normal curve of selected well logs. The deep­
est, well in the area (Weiss, no.42-32, sec. 32-3N-55W, Mor­
gan County, Colorado), which penetrates the Precambrian 
basement, shows a thickness of approximately 3000 feet for 
the Paleozoic rocks ..underlaying the logged zone. The lon­
gitudinal resistivity of these rocks lies between 8 and 20
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Figure 6.
Geoelectric model for the Adena field

ohm-m (Keller3 1964); for this study an average resistivity 
of 15 ohm-m was adopted. For the resistivity of the Precam­
brian basement consisting of > a complex of mainly schists 
and gneisses .containing numerous igneous intrusions , a 
value of 600 ohm-m-was chosen.

Figure 7 indicates the locations of the nine well logs 
selected from the Adena field. The well Pure 0il3 Hough no.l
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(Sec. 7-1N-57W, SE-SW-NW) is considered its representative 
log (Parker, 1961). The upper part of this well log corre­
sponds to the Tertiary and Upper Cretaceous rocks with a 
fairly uniform resistivity of 4 to 5 ohm-m. The transition 
to the Pierre Shale having an almost constant resistivity of 
approximately 2 ohm-m is gradual. A sharp break is observed 
at the top of the Niobrara, 4710 feet below the kelly bush­
ing. The Niobrara, Benton, and Dakota Formations are charac­
terized by rapid changes in their resistivities in the range 
2 to 10 ohm-m. On this background, the "D" sand produces a 
ten-foot thick anomaly of about 20 ohm-m, (5550 feet below 
the kelly bushing). The "First Bench" of the "J" sand shows 
up as an anomaly of 100 ohm-m with a thickness of 35 feet. 
The following analysis is based on this representative log.

The Kernel Functions for the Adena Oil Field

1. Effect of sampling interval.—  The short normal 
electric log of Hough no.l was sampled with a ten-foot in­
terval, and the kernel for layer thicknesses of 50, 20, and 
10 feet were computed, the latter being shown in figure 8. 
Table IV shows the maximum absolute and relative errors,, and 
the root mean square deviation of the 50 and 20 feet inter­
val kernels from the 10-foot interval kernel. Both maximum, 
absolute errors occur in the vicinity of A = 5*10^6 and are
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produced by imperfect sampling of the Niobrara, Benton, and 
:Dakota Formations. The maximum relative errors are too small 
'to s-how the discrepancies between the kernel curves when 
plotted on the scale of figure 8.

Table IV.
Effect of 50'and 20 foot sampling intervals of the kernel 

functions as compared to 10-foot sampling interval

Sampling Max. ampl. Maximum Maximum Root mean
interval of absolute absolute relative square
in feet error curve error error deviation

50 0.146 -0.10 2.6 % 0.038
20 0.138 -0.13 -0.9 % 0.047

For the computation of kernel functions a 10-foot in­
terval was used throughout, which yields sufficiently accu­
rate results within the limitations of the general procedure 
discussed above.

2. Effect of random noise in the resistivities.—  The 
effect of possible slight errors made during measurements 
or sampling of the log was estimated by changing a few of 
the recorded resistivity values arbitrarily by plus or minus 
five percent. The overall effect of these changes on the 
kernel curve is negligible (maximum relative error 0.005 per­
cent ) .
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3. Equivalent layers for the geoelectric section.-—  A 
hypothetical 557-layer case is obtained by digitizing the 
Hough no.l electric log every ten feet. However, many of ■ 
these layers may be lumped together using the principle of 
equivalence (Maillet, 1947). This principle states that an 
anisotropic layer of thickness h, and longitudinal resistiv­
ity and transverse resistivity p̂. is equivalent in its 
outside effects, within a given range of error, to an iso­
tropic layer of thickness eh (equivalent thickness), and 
resistivity p (equivalent resistivity). Here 0 = is
the coefficient of anisotropy, and p = / p p ^  is the aver­
age resistivity.

A computer program was written to generate equivalent 
thicknesses and resistivities from digitized electric logs. 
The selection of the anisotropic sections to be transformed 
into isotropic layers was based in part on sampling with . 
specified intervals, in part on natural breaks in the appar­
ent. resistivities of the short normal curve. Over 50 equiva­
lent kernels were evaluated and compared with the original 
557-layer kernel of Hough no.l. Each equivalent model is la­
beled by the number of layers and an identifier. For in­
stance, layer case (6-3) means model no.3 consisting of six 
layers. The degree of fit of the equivalent with the orig­
inal kernel curve was measured in terms of the following 
error criteria:
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a ) . maximum amplitude; of the absolute error curve
MAX[K_ (A) - K (A)] - MIN[K (A) - K . ( A ) ] ,O “ Q “

b). maximum absolute error 
MAX[Ks (x) - Ke (X)] ,

c). maximum relative error

MAX
K r ( X )  -  Kf i ( X )

KS (X)
d ) . root mean square deviation

n
where K (x) denotes the 557-layer, K (a ) the equivalent ker-

S €

nel, and n is the number of tabulated values of the kernel 
function.

Only the maximum relative error proved to be of practi­
cal value, because if the curves are plotted on a regular 
8.5-by! 11-inch logarithmic paper, a 2 percent departure is 
the treshold for clear distinction between them.

Figure 9 presents the original electric log, sampled 
with a 20-foot interval, and some of its equivalent models. 
The fit of the five-layer kernel which divides the well log 
section into two isotropic layers, with the 557-layer kernel 
is shown in figure 10. The maximum relative departure between 
the two curves is 3*^ percent. The 1 degree of fit of the 
other equivalent models drawn in figure 9 is better than 2.5 
percent and differences between original and equivalent ker­
nel curves are hardly detectible on the scale of figure 10.
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Keeping the numbe-r of layers fixed the overall fit of, 
the equivalent models can be.improved considerably by subdi­
viding the upper part of the log, (Tertiary and Pierre).
Even if the general appearance of the electric log between 
110 and 4700 feet is rather uniform compared with the re­
maining section, individual layers of this lower part, with 
strong resistivity contrasts, do not contribute significant­
ly to the kernel function. This observation was well.illus­
trated by the equivalent models (24-1) and (24-2). The for­
mer was computed by sampling the whole length of the section 
with a fixed interval of 260 feet; the fit with the original 
557-layer model is better than 1.4 percent. The latter re­
presents the section between 110 and 4710 feet by one layer, 
from there-on a sampling interval of 50 feet was taken; the 
maximum relative error is 39 percent. This general insensi­
bility of the kernel function to deep resistivity variations 
is further substantiated by cases (11-3) and (11-4), where 
different subdivisions of the section below 4710 feet do not 
affect the overall fit.

This feature of the kernel functions means that in the 
interpretation of the type of curves representing the Adena 
field section, the layering parameters of the upper few hun­
dred feet only, could be found with reasonable accuracy from 
sounding data alone. The need for additional information is
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also drastically demonstrated by figure 9 where all the dif­
ferent layering models could be considered valid interpreta­
tions .

This figure also illustrates graphically that without 
knowledge of the coefficient of anisotropy for the individu­
al layers a correct interpretation of their thicknesses is 
impossible.

In order to test the principle of equivalence, the ker­
nel functions for models (6-2) and (40) have been evaluated 
using true thicknesses, transverse and longitudinal resistiv­
ities. The errors resulting from comparison with the stan­
dard curve show that selecting longitudinal resistivities 
produces better fits than choosing transverse resistivities. 
Nevertheless, the fit of the equivalent layer curves is still 
better than the fit of the corresponding longitudinal resis­
tivity curve.

4. Detection.of a target layer.—  The oil-producing 
zones of the Adena field ("D" sand and "First Bench” of "J” 
sand) are represented on the Hough no.l well by two resis­
tant layers, 10 and 30 feet thick, respectively. Located ap­
proximately 5500 feet below the kelly bushing, they have re­
sistivities 10 times ("D" sand) and 50 times ("First Bench") 
the background value. These layers produce on the surface
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kernel function a maximum deflection of 0.154 or 1 percent 
with a root mean square deviation of 0.057. In table V, this 
anomaly is shown as even smaller in some of the other well 
logs nearby. The effect of these target layers in the equiv­
alent models is almost exactly the same as in the standard 
model. Consequently, an.accuracy of the kernel curve much 
better than 1 percent is required to detect the presence of 
those, beds. Unfortunately, even if the measurements of field 
data and their transformation to the A-domain would meet this 
accuracy requirement, it does not mean that the existence of 
the high resistant layers could be established from the know­
ledge of the kernel function alone. As shown in the preceding 
section, some additional information is necessary, either in 
the form of the coefficient of anisotropy, or depths of the 
beds.

Table V.
Comparison of kernel functions without "D" and ,fJ M sand 

in the section with the original kernel function

Well Total 
thickness 
in m

Transverse 
resistance 
in qm2

Total
conductance 
in mhos.

Maximum
relative
error

Hough no.l 2646 20778 637.2 0.98 %
Hough n o .6 2624 21354 567- 4 0.20 %
Geyer no.l 2643 21073 615.7 0.68 %
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5. Lateral variation of the kernel function.—  Table 
VI compares the kernel function for Hough no.l with eight 
kernel functions obtained from four wells on a N-S and four 
wells on a W-E line (see figure 7). There is no uniform trend 
in the error indicator so that the variation must be attri­
buted to lateral changes of resistivities rather than lateral 
changes of depths due to dipping beds.

Table VI.
Comparison of the kernel function for 
Hough no. 1 with the kernel functions 

for some surrounding wells

Well Total 
thickness 
in m

Transverse 
resistance 
in ftm2

Total
conductance 
in mhos

Maximum
relative
error

Cochran 1 2679 21197 621.8 ' 2;. 9 %
Cochran 3 2667 21167 628.4 2.1 %
Hough 6 2624 22438 566.3 -11. %
Glenn B-2 2603 21032 584.5 - 7.4 %
Timpe 1 2630 21577 565.2 -20. %
Geyer 1 : 2642 21919 611.3 3.9 %
Laughlin 5 2646 22677 570.3 -10. %
Albert 4 2664 21078 616.7 6.3 %

Changes in resistivity or thickness of the target layers 
do not account for the observed errors. For instance, the 
"First Bench" of Hough no.6 has a resistivity of 150 ohm-m 
compared with a resistivity of 100 ohm-m for this bed in
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Hough no.l. However, this increase in resistivity does not 
produce.any noticeable effect on the relative error listed 
in table VII. Similarly, the Geyer no.l log shows a "First 
Bench" twice as thick as Hough's no.l, and yet it is seen 
from the table that this effect is also negligible compared 
with the total deflection of the kernel curve. Hence^ it must 
be- concluded that the lateral changes in the value of the 
kernel function are produced by changes in the resistivities 
along the whole section of the log.

Table VII.
Comparison of the kernel function for Hough no.l with the 
kernel functions for two wells without "D" and "J" sand

Total Transverse Total Maximum
Well thickness resistance conductance relative

in m in ~£2m2 in mhos error
Hough no.6 2624 21354 567.4 -11. %
Geyer no.1 2642 21073 615.7 3.9 %

6. The effect of the disturbing factors in well logging 
on the true rock resistivities.—  The current method of cor­
rection for the apparent resistivities obtained by the vari­
ous logging devices is based on the use of nomographs and 
master charts.. This procedure, oriented towards the evalua­
tion of individual layers, is too cumbersome for the
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correction of a whole section consisting of hundreds of beds 
It is, therefore, possible to get only an estimate of the in 
fluence of the disturbing factors for certain typical sec­
tions of the well log. For this purpose the Hough no.l elec­
tric log has been divided into three parts, each with.con­
sistent electrical properties. Table VIII compares the geo­
electric parameters computed with the short and long normal 
arrays. Figures 11 to 14 show the probability density and 
distribution curves for the corresponding resistivities.

Table VIII.
Comparison of the geoelectric parameters measured 

with the short and long normal arrays .

Short normal 
array 

section (ft)
Transverse 
resistance 
in ftm2

Total
conductance 
in mhos

P t  (  t a n ) P (  ftm) 0

110 - 1500 
1500 - 4710 
4710 - 5680

2322.2 
2379.8 
2790.7

84.5
424.9
56.8

5.48
2.43
9.43

5.01
2.30
5.20

1.045
1.027
1.347

Long normal 
array 

section (ft)
110 -11500 

1500 - 4710 
;4710 - 5680

2113.7 
1634.6 
2780.9

112.9 
623.6 
79.6

4.98
1.67
9.40

3.75
1.59
3.71

1.153
1.031
1.591

p̂ .: transverse resistivity 
p^: longitudinal resistivity 
0 : coefficient of anisotropy
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The probability density curves (figures 11 and 12) of 
the first two sections are very narrow and peak at low resis­
tivity values. These characteristics indicate uniform, elec­
trical properties with no large resistivity contrasts, which 
is further confirmed by their coefficients of anisotropy^ 0 
(table VIII). Therefore; corrections for hole diameter, bed 
thickness, and adjacent beds are negligible for the first 
two units. It can be observed on the well log that the short 
normal and lateral curves are almost coincident over long 
portions of the record. This circumstance means that if.there 
is any significant invasion at all, the invaded zone has ap­
proximately the same resistivity value as t h e ;true rock re­
sistivity and no corrections are necessary.

The prominent bed in the third section is the "JM sand 
unit which presents a significant resistivity contrast with 
respect to the surrounding rocks. The correction of its ap­
parent resistivity for hole diameter, mud resistivity, bed 
thickness, and adjacent-bed effects, made with the Lane 
Wells correction charts (Pirson, 1963), is negligible. The 
correction for mud-filtrate invasion effects could not be 
applied because the values of the resistivities fall outside 
the,range of the departure tables. The value of about 11Q 
ohm-m. obtained from the lateral log is probably a good esti­
mate for the resistivity of the "JM sand.
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The influence of the logging device was tested by com­
puting the kernel function for the Hough no.l well from long 
normal resistivities sampled with a 10-foot interval. Com­
parison with the corresponding short normal kernel curve 
shows a maximum deflection of 27 percent. In spite of this 
difference the MJ" and "D” sand units still produce a 1 per­
cent anomaly as in the short normal curves, illustrating 
once.more that the exact kernel curve is not necessary for 
comparison.

As pointed out earlier, the microanisotropy is an in­
herent property of rocks primarily because of their intimate 
structure. Its magnitude can not be evaluated in situ by 
either surface or bore-hole resistivity surveys where the 
current is flowing essentially in one direction. Laboratory 
determinations are of questionable value as long as.the con­
ditions of temperature, pressure, and: fluid content of the 
original sample are not reproduced accurately.

The effect of the microanisotropy is to increase the 
general anisotropy 6, which increases the equivalent thick­
nesses of the geoelectric units by the same factor. Accord^- 
ing to Schlumberger and others (193*0, this increase may be 
by a factor as high as 1.2 or 1.3 in some instances. The 
overall effect of microanisotropy on the preceding compari­
son study of kernels would decrease the magnitude of the
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the error criteria defined on page 59* For illustration, the 
magnitudes of the error criteria for the "D" and "J" sand 
units in the Hough no.l section with different values for 
the coefficient of anisotropy of the Paleozoic rocks are 
listed in table IX,

Table IX.
Effect of anisotropy Q of the Paleozoic rocks in Hough no.l 

on the "D" and "J” sand anomalies

e
Maximum . 
absolute 
error

Maximum
relative
error

Root mean
square
deviation

l 0.154 0.979 % 0.0570
2 0.142 0.908 % 0.0520
3 0.131 0.855 % 0.0479

Interpolation of the Kernel Function

The kernel functions discussed in the preceding sec­
tions were all tabulated.with a constant, multiplying in­
crement of the argument equal to fer (i.e. three values of 
K(A) per decade of,A). It was established that this.spacing 
is adequate to guarantee the validity of the resulting con­
clusions- by doubling the spacing to six values per decade 
for some of the computations, without introducing significant 
changes in the numerical values of the error criteria.
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‘Prom a different point of view, the kernel function 
should be tabulated with a spacing such that polynomial in­
terpolation of a given order yields a specified accuracy in 
the numerical values. This criterion is of practical impor­
tance in dealing with geoelectrical sections consisting of-, 
numerous layers, for instance digitized well logs, because 
of a considerable saving in computing time.

A digital computer program for polynomial interpolation 
based on divided differences techniques was developed and 
applied to several tabulated kernel functions obtained from 
the electric log of the Hough no.l well, Adena. However, for 
the adopted models, serious difficulties arise in interpola­
ting near the origin. It was shown earlier that the kernel 
function is singular at the origin if the lowest layer is a 
perfect resistor. This singularity implies that higher or­
der derivatives become very large near that point, and so 
does the error of the polynomial approximation, which is a 
function of some suitable higher derivative. Numerically, it 
is bad enough that the lowest.layer has a large, but finite 
resistivity (like 600 dhrri-m in the Adena field section com­
pared with 4 ohm-m for the overlaying layers) in order to 
produce this effect. To illustrate the point, the divided 
difference table for Hough no.l, equivalent model (6-2) is 
shown in table X.
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Table X.
Divided difference table near the origin of- the kernel 

function for Hough no.l, equivalent model (6-2)

[i] [ii] [iii] [iv] [v]

- 2 . 2 5 *10 7
7. 89 xlO12 

-2.23 xlO7 4.66 *L019
9.29 xl0 12 -2 .15 xl027

-2.22 xl07 -3.94 xlO 1 9 5 .9 0 x1034
8.10 *L0 12 8.01 xl026

-2.20 xl07 -7.39 xlO20
7 . 88;xlQl2

-2.18 Xl07

X K( A)

1 Xl0“ 8 59.774

2 xl0“ 8 59.549

3 Xl0“ 8 59.325

4 xl0-8 59.104

5 x L 0 “ 8 58.884

6 xl0"8 58.666

The following relation holds between the fifth divided 
difference [v] of this table and the fifth derivative K(a )

[v] = -jU- K ® U )  , 10"8 < c < 6 X l O-8 .

It is seen in table X that higher differences increase 
rapidly in value and become unstable in their signs. Com­
parison with the exact values of higher derivatives shows a 
two-figure agreement between the first derivative and first 
difference. However, discrepancies between divided
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differences and derivatives become increasingly larger for 
higher orders because of the inherent limitations of the 
CDC 8090 computer, so that the fifth, difference as shown in 
table'X is numerically meaningless. Consequently, only low- 
order interpolation (up to cubic) can be used on this•com­
puter - for - the particular model under consideration. Closer.., 
spacingoof the tabulatedotfalues of the kernel function is 
required to improve the accuracy of interpolation.
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THE NUMERICAL EVALUATION 
OF HANKEL TRANSFORMS

The kernel function K(A) defined by equation (lOii) 
gives the complete and. unique, description of the electrical 
direct-current properties of an isotropic half space having 
cylindrical symmetry. However, electrical measurements are 
made in the "r" (distance) domain, yielding, the potential, 
the electrical field., or the curvature of the field.; direct 
measurements of K( a ) in the "A" domain are not feasible. The 
passage from either one to the other domain is accomplished 
by the Hankel transformation. The following sections deal 
with the transformation from.the A to the r-domain, or,in 
other words, the computation of synthetic resistivity sound­
ing curves.

The Apparent Resistivity for, some Common Arrays

It is customary in resistivity prospecting to convert 
the variables measured in the field to apparent resistivities 
p . This term is defined as the resistivity of the

78
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homogeneous half space which would produce the observed elec­
trical quantity for a given spacing, of.the measuring array. 
This concept may be illustrated with the example of the.po­
tential measured around a single-current electrode as given 
by equation (lOi). If the ground is assumed homogeneous for 
a given spacing. r 9 i.e. K(a) = 1, then the surface resistiv­
ity p (0) is constant-for the entire half, space. The value of 
this constant resistivity is called the. apparent resistivity 
measured with the array for the particular spacing r.

With these definitions equation. (lOi) becomes

The. apparent resistivity is- computed, from the field da­
ta as

U  (?) =  2̂. IT nr (30)

(31)

replacing U(r) by Its expression (101)

( r r )  -  rr J>(p) ,



T-1103 80

With $(-A), the modified kernel function defined on page 
23, the normalized apparent resistivity measured with the 
single-pole array can be rewritten

oo
-£(-0/f(°) - 1 > ^ $(A.) J0 (^r)dA . (33)

'o

The normalized apparent resistivities for some common 
arrays obtained in a similar way are listed in table XI.

From the expressions in this table, it is seen immedi­
ately that for small spacings the apparent resistivity ap­
proaches the value of the surface resistivity,

l i m  p ( r )  = p ( 0 )  . ( 3 4 )
r-s-0 a

If the resistivity is constant from a certain depth-z
on, i.e.

P(z ) = P<zn ) z =  zn

then, the apparent resistivity for any array in table XI ap­
proaches the lowermost constant resistivity for large spac­
ings,

lim Pa (r) = p(zn ) = p (°0 - (35)
p-+oo
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Table XI.
Apparent resistivities for several arrays

Array Normalized apparent 
resistivity p (r)/p(0)cl

Single pole
%--------- lt--------- 1A - M

■ r 0O
1 + r $(71) J0(a.t)oU. 

0

General quadripole

/

1 + 1_ J. _ . * .^  ^
{j0frO "^(^0

r°° *
0
i) + Jo

Wenner
*-- r ---*---r--- *— T----W
A M  N B

O0
1 + ^T-|$(^)[30(Ar)-X(2A.T)Jix

Schlumberger or equatorial dipole 
I------T---- M ---- T------»A M N B

A  ̂1 + T
OOr?L$Ol) J,(̂)cLA. 
0

Polar dipole
M -----:— r------- MA B M  N

z. r°° 
i + ^ A.$(A° 3 

Tz
a

)2XKr)<L*'

General dipole

B A ^ ^
T

A f , CO© C® “ f3)2. coS©cps>̂ 2> r>Onj@%i/v\jb

1 oo0co/2> r2 eero © c<jo ji + oCn,©rtcVt̂2>

o£>(!
X̂ (ji)3[(mJoCx.
0 -Coo
0
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The. proof of (35) follows directly from the asymptotic 
expansion, for. the. apparent resistivities presented in equa­
tions (48) through (50).

The ■ Fundamental Integral . in. the Expressions, for ..Apparent 
Resistivities

Table XI shows that the r-domain expression of $(A) de­
pends on. the geometrical configuration of the measuring elec­
trode array. The apparent resistivities, for the arrays com­
monly, used in electrical prospecting are functions of the 
following three integrals:

for electric field arrays (Schlumberger.,. equatorial-dipole);

OO

o

for potential arrays (single-pole, Wenner,. Lee, etc.);

oo

; (37)
0

(38)
0

for curvature arrays (polar-dipole, general dipole).
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A general expression for these integral transforms is

(39)
— I J "3 j  — Oy ' y 

^  = O , I .

There are two basic approaches to the numerical evalua­
tion of formula (39): expansion of the integral in an infi-' 
nite series, or numerical quadrature. Series expansions may 
be used for computing the integral transforms (39).for small 
and. large values of r.

In the first case J^(Ar) is replaced by its ascending 
power, series (Abramowitz and Stegun, 1965, p* 360), yielding 
the following expansion:

with the change of variable Ar = x this formula becomes

For a horizontally stratified medium consisting of n 
layers, it follows, from Sunde’s recurrence relation (25),

(-£-) ^ ^)(Ar)cL?t ) (40)

(jp (At) cL A_ . (41)

that

_  a.'<cLyf'T

e - -2- X cLJre
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which shows that the rate of convergence of the integral in 
(4l) is determined by the rate at which xy+v+^me ^xd^/r ap­
proaches zero.. Hence., formula (4l) will be of practical use 
only if di/r is. kept large, so.that, a few terms of the infi­
nite series give sufficient numerical accuracy.

With p (r), p -.(r), and p H (r) denoting the apparent
S p  S -L p  Q

resistivities measured, with the single-pole, Schlumberger, 
and. polar-dipole arrays respectively (table XI), a first ap­
proximation for small spacings compared, with the-first layer 
thickness is

f(o) 1 + «r (J) (A.) ci?i ~ A. cLx

-f~ nr
w A - (42)

,co s f

+ •b8¥ A, di\ (43)

f W
Pd

/(o) 1

76 8

TV. ^  (A.) oLTv. + 3rr
3Z $  (*) ̂

. o o

A£$(A.)oLa. -  ... J (44)
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Asymptotic expansions of the integral transforms (39) 
can be derived from expressions given by Tranter (1951* p.67)

°o

$  O O  J q  far) oix  ~

00

+ r C - o "  ‘" ^ V u H r - - 11 <*5)/ 1 ,2. rw \ J  nr a  A~ -

\$WI(AT)dX -  ^

OO

+ y n r  i j 5 '5 ' • • • - X z t o  ( n 6 )
<T*X-

<VYV= |

*?$'(\)30.(\r)sfa' ^ n-33
00 z z
J > r 1 i ^ § « .  <47)+
rrn,~2.

If lim >. 1 , then the series (45) to (47) di-
m+°° 0(0)

verge for all values of r. However, the value of the inte­
grals can be calculated with great accuracy for large r^ by 
using only the decreasing part of the series, stopping at the 
proper term. Under these circumstances the error is smaller 
than the first neglected terra., ’ (Lanczos, 1956, p. 483)°

If r is sufficiently large so that the first few.terms 
in series (45) to (47) decrease in absolute value, the approx 
imation to the apparent resistivities using four terms of the 
asymptotic expansion becomes,
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/(°°) +- P(p)
SP

O 4Z <r

*r (2-)$Co; +
w

8 H-L $C°)

16 T
(48)

tJ) ~ + P(°)
X C2-) 
5>Co)Z Anr

+ I <5 x»)
8 rr * $  (°)

'<35
16 rT6 Pti) (49)

J’M  + _P(o)[- p: $(°) + jp, $(°)

70
8 rT6

-J- (£>)Q  C°) +• (50)

Evaluation of the Basic. Hankel-.Transforms-.-by Series. Expansion

The following paragraph, a synthesis of ideas developed, 
by Baranov and Kunetz. (1958), and Bodvarsson (1966), is pre- . 
sented because,it gives, considerable'insight into the physi­
cal nature, of the problem and has a direct connection to 
other branches, of geophysics.

Consider K(x) as unilateral Laplace transform of a cer­
tain function q(z), i.e.

k o o  - <}(z)e XZd.z (51)
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If this integral:is-substituted into (lOi),

Interchange, of the. order of integration and application 
of the. Lipschitz integral (Erdelyi, 195^> v. 2, p. 9) yields

Hence, q(z) is Green’s function for the general bounda.- 
ry-value problem stated at the beginning of this thesis. It 
can also be thought of. as a certain density distribution 
along the vertical axis (see figure 1), producing the poten­
tial U(r). From still another point.of view,. q(z) may. be con­
sidered as the impulse response of a linear system character­
ized by a system function K(A) defined by (lOii).

In.certain cases q(z) can be computed independently from 
the inversion of (51) and is such that it simplifies expres­
sion (52) as illustrated next for the two-layer model. Its 
kernel function is according to table III

(52)

- 2X Pb

where ;
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is the reflection coefficient, and are the: first :andi:C 
second layer resistivities respectively, and h is the thick­
ness of the first layer.

Since, |ke | < 1> X ^  0, except for p2 = 0, or «> ,
the kernel function can be written

Thus, q(z) consists, of.an.infinite train, of impulses 
along the. vertical axis -through the current electrode,. Conse 
quently, it can be computed directly from the laws of geomet 
rical optics, or in the same way as .a synthetic impulse seis 
mogram with all the multiple: reflections in it. If (5^) is 
substituted into (52), the electrical potential around, the 
current electrode can be evaluated by summation of an infi­
nite series,

This is the familiar result obtained by Hummel (1929).* 
applying the theory of Kelvin’s images.

(53)

The inverse Laplace transformation of. (53) yields

o o

U M
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Generalization to a multilayered model is possible if 
the thicknesses of the-beds in the section have integer val-, 
ues. Under this condition q(z) is computed either as a syn­
thetic impulse seismograrn (Baranov and Kunetz, 1958), or by 
expanding Flathe's kernel, function into an infinite series 
of exponential terms (Mooney and others, 1966). The advantage 
of the method is the simplicity of the computations if the 
series converge fast. The disadvantage is. that the method is- 
not general enough to be applicable to. any kernel function 
or to the inversion of field data.

Evaluation of. t he.Basic. Hankel-Transforms by Numerical 
Quadrature

1. Polynomial approximation of the.kernel function.-- 
The method consists in.replacing sections of the kernel func­
tion by an approximating polynomial in order to simplify the 
integral. Quadratic approximation was used by Mooney and 
Wetzel (1957), and Galbraith and others. (1964). The algorithm 
for the.general nth order approximation is developed next.

For numerical, computations with a fixed number of digits, 
as for instance when working in single precision o n :the CDC 
8090 computer (eight digits), the upper-limit of the integrals 
(39) becomes finite, because $(A) becomes smaller than the 
smallest number in the range of the machine for some large,



but finite A. The numerical value of this upper limit XQ for 
the horizontal layer case is found from (25),

k m -  i - m < i

by observing that with an accuracy of eight digits,K(x) = 1 ,
2 X d 8whenever |k(A)e” 1 | < 1 0"’. An upper bound A for A such0

that this relation holds is found by setting |k(A) | = 1 , then
-2Acdi in-8 , . 8&&*o 1-0,.e ° 1 < 10 , and Ac > ~2d~° > hence, Ac = is an appropri­

ate upper bound for the variable of integration, and equation
(39) can be rewritten

H ^ )
f  r \

dx . (56)

Next, the range- of integration 0 4  A 4  Ac is divided in­
to m subintervals, or panels such; as A^ .<_ X <_ X^+ -̂, i = 1, 2, 
3 , ... , m in figure 15, so that (56) is replaced by

H  w  « . (57.)
1^=1 A-

IOn each interval (X^, A^+ -̂) the modified kernel curve is 
approximated by a polynomial of degree n passing through ex­
actly n+1 points of $(A), i.e.

(p w  * , (58)j
J = o
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L-t-l
X

Figure 15®
Approximation of the kernel

The following quadrature formula is obtained by bombin- 
ing (57) and (58), and making the change of variable Ar = x:

H. W

~K. 't- P t+i
V ' (59)

The evaluation of the definite integrals in this approx­
imation can be carried out by using either power-series ex­
pansions or reductions formulas.
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a). Powerf-sefies expansions:
Taylor series (Luke, 1962, p. 44),

rZ °°
J d (t)cit = 2 \ ' n / r tv ir~rv fo IT- * (60) ̂ ' j_i iCL ! (/<- + » -t- .2 fe,+ () ( (y + +()

° *.-0

Asymptotic expansion (Luke, 1962, p. 54),

Jrjv)̂  - -jY^zziy ~ fer) (f<=“®+3^e) > <6l>
where

fs —  -r 1) 11 . TTe - 2 ---- ^ ~

and

- Zh,

ft*0 . , ^=0 (" !
The a^ are given by the following recurrence.formula:

2 (&. -t-1) a = | 3 +- i ) O  + -f0 -
(63)

- ( & . + j +»)( ft + i -»)(&.--z-/“•) >

with
a = ± j cl, -  — -  —0 1 8 ' z*

A computer program based on equations (60) to (63) was 
written to test the feasibility of this procedure. To accom­
plish an overall accuracy of six digits, a large number of
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terms in series (60) had to be added. Because the correspond­
ing increase in computing time makes the method very ineffi­
cient for small-scale computers, it was abandoned.

b). Reduction formulas: The following two reductions for­
mulas obtained from expressions given by Abramowitz and Steg- 
un (1965* p. 483) are useful:

- “'A.rL

(64)
T  A

z. C

T

T *
t J J, (t) dt

JA.r
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Computer programs were written to evaluate the functions 
fX J (t)dt by polynomial approximationJ q ( x ) 5 J 1 ( x ) ,  a n d o o

(Abramowitz and Stegun, 1965* Hitchcock* 1957)® Expressions
(64) and (65) give satisfactory numerical results if the
factors multiplying the integrals in (59) are smaller than 1 .
This is the case when r1̂ > a., where the a. are the coeffi-J J
c i e n t s  o f  t h e  p o l y n o m i a l  a p p r o x i m a t i o n  t o  $ ( A )  a s  g i v e n  b y

(58). The constants a. were computed by the method of divid-
3

ed differences.
The coefficients for the polynomial approximation of the 

kernel functions representing the Adena field are very large* 
as illustrated by the equivalent layer case (6-2) for the 
Hough no.1. well log..The approximating polynomial of order

— 6 —fifive on the interval 1.29x10 4  A 4 2.89x10~ is
P(X) = 58.6 - 2.13x107X + 6.55*1012X2 - 1.49X1018X3 

+ 2.10xl023Xlt - 1.3^xl028X 5 .
The large magnitude of these, coefficients * together with 

their alternating signs* makes any computations by (59) mean­
ingless, unless r is taken large enough to compensate the a..

3

A comparison of the Hough no.l* (6-2) case computed by Gaus­
sian quadrature (correct to five digits) and by the above 
method points, this out clearly (table XII). Because of these 
severe limitations and its slowness (2.5 min of computing 
time per layer for one transform value on the CDC 8090)* this 
approach was discarded for the numerical evaluation of (39)®
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Table XII.
Comparison of the Hankel transforms. Ĥ .( r) 

computed, in two different ways

r Gauss quadr. . Poly-. ’I approx„ <
103 -0.0210727 -1.2241106
10 *♦ 4.9679009 4* 809944
105 25.395790 25.395470
106 54.009592 54.009884

2. Polynomial approximation of the integrand.—  In nu­
merical quadrature formulas, the integral is approximated by 
a finite sum of weighted ordinates of the function. The 
weights are obtained from the polynomial which matches the 
function exactly at certain sample points. There are two /  

types of quadrature formulas, Newton-Cotes formulas where the 
samples are equally spaced, and Gaussian formulas where the 
samples are determined by the zeros of Legendre polynomials 
P (x). The latter has the advantage of requiring only half 
the number of ordinates for a given order of the approximat­
ing polynomial. In,other words, with n sample points the de­
gree of the polynomial approximation of the integrand is n-1 
for Newton-Cotes, and 2n-l for Gauss. In addition, the inter­
polation by Legendre polynomials in Gauss' method converges



T-1103 96

more rapidly than the interpolation by Lagrangian polynomi­
als in Newton-Cotes’ formula (Lanczos, 1957, p. 403-). Further­
more, the saving of ordinates does not only economize comput­
ing time, it also reduces the round-off error in the arith­
metic operations. Because of the advantages it was decided to 
use Gaussian quadrature rather than Newton-Cotes formulas for 
the numerical evaluation of synthetic sounding curves.

Gauss’ rule of order n for an arbitrary interval (a,b)

is

*
(66)

6 = I

(Abramowitz and Stegun, .19-65, p. 887)
with

&  + CL.
z (67)

and the remainder

The abscissas and weights w^ given by

I = I ... Yl j

(69)
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have been tabulated for selected values of n up to 96, 
(Abramowitz and Stegun, 1965* p. 916).

With x = Ar the general expressions, for the basic Han- 
kel transforms (39) can be rewritten

For small r the kernel function appears very compressed, but 
stretches out as r increases, as shown in figure. 16 for the 
case k = 1 in formula (70).

When xc = ^ r  is reasonably small, laying in the first 
few cycles of the Bessel functions, formula (66) can be ap­
plied directly with a = 0 and b = x . For large x , exceedingc c
several cycles of J”v (x) this process becomes too slow, even 
for a large-scale computer. The following example illustrates 
this point. The thickness of the first layer dx of the Hough 
no.l section is 33-5 m; for a relatively small spacing 
r = 1000 rri,

which corresponds to about 50 cycles of J (x), to be taken 
into account in the integration.

(70)o

The effect of the transform variable is to scale the
vX li 'Xkernel (— ) $(— ) with respect to the Bessel function J (x).
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Figure 1 6 .
Effect.of the transform variable r on 

the product $(A)J (x)

Longmann (1957)^ has given a method to overcome this 
difficulty for "well behaved" flections $(A), as the ones 
dealt with here,, presenting an exponential tail. His proce­
dure consists in applying formula (66) successively to half 
a cycle of the Bessel functions; a and b are consecutive ze­
ros of J (x). By this procedure, it is observed that beyond 
a certain value of the abscissa x the integration yields an 
alternating, slowly convergent series. The sum of this series 
can be speeded up by applying an Euler transformation 
(Bromwich, 1931* P* 62) to a few terms of it.
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This procedure may be adapted to the evaluation of Han- 
kel transforms by writing (70) as

^  ZjV,
~ ^  3v(x)cLx ; (71)

j=o zi

where m is a finite integer selected according to the re­
quired accuracy, and z. is given byJ

J (z.) = 0 3 v = 0 3 1 ; j = 0, 1, 2, .... m. (72)
^ J

When the definite integrals in (71) are approximated by 
Gauss’ rule of order n 9 the following finite series is ob­
tained :

'm. 'v v

h w - ^ (73)
j  = 0

2^  “•/ (74)
j =°

The y .. in (73) are given by (67) with a = z., b = z - + -i
U J J J T  J.

If the terms u. in series (7*0 are slowly decreasing in mag- J
nitude and alternating in sign starting with j = p, (7*0 can 
be rewritten

V=> ~ I wv
H tW  * m  uj - ^ H ) V j | ]  (75)

j  = 0 j = p

The sum of the second series in (75) can be obtained 
with improved accuracy by ?’eulefizing” it 'i. 1,
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'w\
(-|)Jay * -L up + -^AUp + ... + (76)

J ~ 1°  ̂VVX - p ^

where denotes the jth.leading difference of in the
set {u.}. The remainder is given by J

z

Longman (1957) gives the abscissas y . . for Gauss’ rule
-J-J

of order 16. and the corresponding values of J Q (y ) and 
J-, (y. . ) for the first ten cycles. For the transformation of

-L -LJ

the Adena oil. field.kernels it was necessary to extend these 
coefficients to at least 5 0  cycles.

The first^,step in evaluating the abscissas y. . from
-L J

nj *1 ~~ "x. -1- ZjV| + ,%L /7n\Jtj 2 1 z (78)
i  =  1 ,  2 ,  . . .  16' ; j  =  2 0 ,  2 1 ,  . . .  9 9  

consists in finding the zeros z. of J Q (x) and J^(x). For this 
purpose the following approximations given by Jahnke and Emde 

(1-94 5, P* 143), were used:
J (z .) = 0  for° J v

rZj _  : _  j _  4- 0‘05QQ&  f _ Q.o5 30k\ O.Z6 2Q 5 1
Tf ~  J ] - I (4j - I ) 3 O  j - r)5 '

(79)
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J-. ( z .) = 0 for 
-L 3

.Si.- ^IT
0-1 51 3 ); 8 2  K 0 .0 1 5  3 9  9“r
' 4J + 1

-z k-szvo 
c C ^ i - o 5"

3-p
These formulas give the values of z2Q with an accuracy 

of eight digits. The higher order zeros:are even better ap- 
proximated because of the ^ymptotic behavior, of the expres­
sions .

Next, the y.. are obtained from (78) and the tabulated J
values of x^ for n = 16 (Abramowitz and Stegun, 1965, p.916) 
J o (yij) and J 1 (yij) are computed from the asymptotic expan­
sion (Luke, 1962, p. 31):

72
cos ( z - r>' -Tr)P (»,£)

sm(it - - -j—TT) Q  (v , Z ) (80)

with

C-i)fe
^ « 0 
00

(2. i (£3*)

c = o
pO

Q O ’z)

-r

C~Q v)g fe +
(2 1)! ( 2z) 2

(81)

(82)
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where (a) = 1, and (a), - a(a+l)(a+2) ... (a+k-1). The termsO K
IL, T^ in series (81) and (82) may be computed by.the follow­
ing iteration scheme:

fi _|i Ci +2<k -2)(JzVv + 'Z
k " Ufe-I 2 fa. (2^-,) (Zz.')*’

- i

T  =  rT  + » + £&)(£ ~ v +2fe-l)(^-» + 2fe)
ft. fe-i 2. 92' Q2. + I ) (2Z)2-

T  = Ci: (n ~ p)'o ~ z z

The. computations where carried out in double precision 
(16 digits) on the IBM 7044 at the University of Colorado 
Graduate School Computing Center. With only five terms of 
each, series P.(v.,z) and.Q(v,z), the Bessel functions of argu­
ments greater than 60 are correct to 12 decimal places, as 
checked with the tables from the Harvard Computation Labora­

tory (1947).
Formula (73) is further simplified by lumping the dif­

ferent constants together into one weight

V/. » - "'I > (85)
so that the final expression for quadrature becomes

< - X  O ' )
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J r'W L ^  5 0  . (86)

4 =0 <- = 1

Transform,programs were^written both in Fortran for the 
CDC 8090, and in Fortran IV for the IBM 7044. Because of large 
storage requirements (10000 locations for constants), the pro­
gram for. the. CDC 8090 had to be broken up into three parts. 
Magnetic tape, operations are required heavily which brings the 
average computing, time per layer for one transform value to 
25 sec. The average computing time per layer for one transform 
value is approximately 0.3 sec on the IBM 7044. The flow chart 
for these computer.programs is given in the appendix.

There are three sources of errors in the procedure used:
a). The error of the Gaussian quadrature. The tradition­

al error estimate is given by (68). This formula is of no 
practical help.because the knowledge of the derivative of or­
der 2n of f (x ) throughout the interval of integration is re­
quired. I t .shows,. however,. that the quadrature formula (66) is 
exact if f(x) is precisely a polynomial of degree 2n-l between 
the limits of integration. From this property the following 
qualitative statements on the numerical accuracy can be made: 

The error for spacings r smaller than the first layer 
thickness will depend on how well the integrand can be approx­
imated by a polynomial of degree 95 on the maximum inter­
val (0,10).
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For larger spacings, up to r = 30x(first layer-thickness), 
the error is determined by the accuracy with which a polyno­
mial of degree 31 approximates the integrand between consecu­
tive; zeros of the Bessel functions (approximately tt/2).

b). The error in the Euler transformation. The remainder
Ft defined by (77) can be used for estimating the error in Q
the summation formula (76) if the leading differences A^un , 
n - q, q+l3 3 are always positive and decrease as n in­
creases , because then

|R | < ~-i|Aqu | •1 q 1 2q 1 p 1 .
However, the conditions stated by Bromwich (1-931, P* 62), 

for this inequality do not hold for the present case. There­
fore, the following accuracy test is used: the transformation 
is applied successively to an increasing number of terms; if
the relative error between two consecutive sums s. and s.,.J J+l
is smaller than a prescribed positive constant, the result 
s. ... is accepted as satisfactory.

c). The round-off error. This error arises from the lim­
itation of using only a finite number of decimal places in 
the computations. A theoretical discussion of its effects is 
rather unsatisfactory for lengthy programs; perhaps the best 
way of estimating it is to use the computer itself for an in­
dication of its magnitude. For this objective the transforms 
of $(A) = lOOOAe-^ ^ ^  were evaluated both in closed form
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and by the quadrature program in order to compare the numer­
ical values. The following formulas were employed for the 
exact Hankel transformations:

- 7,. P f e M
/(Erdelyi, 1 9 5 ^  v. 2 a p. 9)

* C \/ ^  \

& -H  -O .A . “7 /  \  , 1 9 ( ' ( ^  + 2: /  h\ e J (XTjiA. =  .—, 2   r._ . olt
ft ffT +

(Erdelyi3 195^ 3 v. 2, p. 29) 
The errors between closed and approximated transforms

(39) in terms of the error criteria given on page 59 are 
shown in table XIII.

Table XIII.
Errors between, exact and. approximated transforms

Transform
Max. ampl. 
of error 
curve

Maximum
absolute
error

Maximum
relative
error

Root mean
square
deviation

- r H 1(r) 7xl0"8 -7*10 -9xl0-5 3xl0-8
r 2H 2,(r) lxio-7 -lxio-7 -6x10 5x10
r 3H 3(r) 2xl0"5 -3xl0-5 -3xl0-3 3xl0"6

Table XIII shows that for this particular
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transformation round-off and quadrature errors are not se­
vere and that five digits accuracy can be obtained in case 
of good convergence of the integrals.

It is most important to notice that< if these integrals 
converge slowly, for instance i f .the geoelectric section has 
a very resistant basement, the alternating series (76) might 
have to be truncated too soon, thus diminishing the accuracy 
of the corresponding apparent resistivities for. large spac- 
ings of r. But under these circumstances the apparent resis­
tivity curves approach a straight line with a slope of plus 1 
(Keller and Frischknecht, 1966, p. 116), for large spacings 
of r .

Synthetic Sounding Curves for the A d ena■Field

The single-pole, Schlumberger, and polar-dipole apparent 
resistivities were computed for the Hough no.1 (6-2), (11-3), 
(25-1)5 and 40 layer cases of the Adena field. Six functional 
values were tabulated per decade of the spacing r between 1 m 
and 1000 km in the first example, and between 1 m and 31 km 
in the rest. It was impossible to compute synthetic sounding 
curves for the well log sampled with a ten-foot interval be­
cause of the length of computing time involved: for one pro­
file of 30 points, 120 hours, (5 days) on the CDC 8090, and 
1.5 hours on the IBM 7044.
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The Hough no.1, (6-2) sounding curves were checked with 
the asymptotic expansion formulas (48) to (50) for the spac-

7ing r = 10 m. Table XIV compares the apparent resistivities 
computed by the asymptotic expansion with the corresponding 
values obtained by the Hankel transform program on the 
IBM 7044.

Table XIV.
Comparison of apparent resistivities computed
' by asymptotic • expansion,' and by quadrature

Array Asymptotic 
. expansion 
a p . res.(fim)

Quadrature 
a p . res. (ftm)

Single' pole 599.147 599.15
Schlumberger 597.463 597.^7
Polar dipole 595.865 594.99

The agreement, between.the respective single-pole and 
Schlumberger apparent resistivities is essentially correct 
to five places,* The- polar-jdipole apparent resistivities 
show a difference which could be expected, because the se­
ries (76) did not converge for the specified error bound

_ 7(10 ), as in the former cases.
Figure 17 shows the three sounding curves for Hough 

no.l, (6-2) plotted one on top of the other. The minimum in
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the apparent resistivities produced by the conductive Pierre 
shale is more emphasized and has more character in the 
Schlumberger and polar-dipole arrays than in the single-pole 
array. The sounding curves are shifted, one with respect to 
the other, the single-pole curve approaching the. final asymp­
totic value fastes. Comparison with the Hough, no..1, 40-layer 
case plotted in figure 18 shows that the.biggest differences 
between corresponding sounding curves occur in their lower 
parts, for spacings. smaller than 300 m. This observation is 
in agreement with the observation made for the kernel func­
tions, that the upper layers have considerably more weight 
in fitting the correct model.

A quantitative comparison study of.single-pole apparent 
resistivity .'curves for several equivalent models of Hough 
no.. 1, Adena, showed that relative departures, between them are 
of.the same magnitude as the relative departures between the 
corresponding kernel curves. This behavior suggests that the 
quantitative effects of the layering parameters could be 
studied in the A-domain, which is of course, an advantage, 
because kernel functions are considerably easier, to generate 
than sounding curves.

The relative departures between Schlumberger and polar- 
dipole apparent resistivities for different equivalent mod­
els of the Adena field increase slightly. For instance,
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comparison of equivalent model (6-2) with equivalent model
(40) gives the following relative departures: single-pole 
13.7 percent, Schlumberger 18.8 percent, polar-dipole 21*4 
percent. These anomalies indicate that Schlumberger and po­
lar-dipole measurements have, at least theoretically, higher 
resolving power than the single-pole measurements, which is, 
however, lost when transformed into the kernel domain.

As stated before on page 64 in order to detect the re­
sistant target layers, representing the nD M and nJ n sands of 
the Adena. oil field an. accuracy in measurements much better 
than 1 percent.is required..This hypothetical anomaly in­
creases slightly for the Schlumberger and polar-dipole ar­
rays, at the same time requiring, greater spacings (approxi­
mately 2.5 and 4 miles, respectively).
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THE INTERPRETATION OF RESISTIVITY 
DATA VIA KERNEL FUNCTION

Two steps are involved in the transformation of a given 
resistivity variation along.the vertical axis of a semi infi­
nite medium to the corresponding distribution of the poten­
tial of the electric field on its surface. The first step, 
discussed in the first two chapters, consists of the non-lin­
ear process of evaluating the kernel function for the medium. 
The second step, presented in the chapter preceding this one, 
is a linear integral transformation (Hankel, or Fourier-Bes- 
sel transform) of the kernel function into an apparent-resis- 
tivity function. It is tempting to reverse these two steps, 
in order to obtain the vertical resistivity profile of the 
medium from observed resistivity sounding curves. This ap­
proach was first suggested by Slichter (1933), and later tak­
en on by Pekeris (1940), Vozoff (1958),. and Koefoed (1965a, 
and 1965b ).

112
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This interpretational procedure starts then by first ap­
plying an inverse Hankel ■. transformation to the field data.
The inversion formulas, developed in the next paragraphs, de­
pend on the particular type of array used for measuring ap­
parent resistivities.

Formulas for the Inversion of. Apparent Resistivities

1. Single-pole array.—  The apparent resistivity mea­
sured with the single-pole array p (r), in terms o f .the ker-sp
nel function K( a ) = <£> (A) + 1 is according to table XI

vf pO) = ' r  P(o) f K (a-) 30(a.r) d x  / ( 8-7)
“'o

applying Hankel's inversion theorem

r00
K(^) =  k ^ m ^ ) d r  . (88)

0

In order to improve the rate of convergence of the inte­
gral (88), it was suggested by Koefoed (1965b), an auxiliary 
function which approaches zero for large, spacings of r be
used. Since p (r) -> p(z ) when r + °°, where p(z ) is theKsp n 5  ̂ n
lowermost constant resistivity of the medium extending to in­
finite depth, the following auxiliary function might be used:

uu s A '-JspM - »-)r (rr) ̂  ;-----  >P(o)
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with .this change equation (88) can be rewritten as

A, U ' ( 0  J0(xr)cLr + P(Zn)
m

(89)

For numerical computations, it is convenient.to make the 
change of variable Ar = x, so that the inversion formula for 
apparent resistivities of the single-pole type becomes final­

ly

n * p o00c<.x
p (k )
P(o) (90)

2. Wenner array.—  The expression for the apparent re­
sistivity of the Wenner array p (r), can not be inverted di-w
rectly, as seen from the formula

olA. (91)

A change of variable A = 0.5A in the second Bessel func­
tion of the integrand was proposed by Van Nostrand and Cook 
(1966), so that equation (91) becomes

00

P »  - _P(0)r K  (a.) -  K  (0)j 30 ■>

which can.be inverted to
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2 K  - K( £ )  - j°w W J 0M a r
o

The kernel function K(A) might be obtained from 2K(x) - 
K(0.5 0  by a procedure analogous to the reduction of Wenner 
to single-pole apparent resistivities, which is discussed

Koefoed (1966) developed a curve-matching procedure for 
the inverse transformation of equation (91)- Another possi­
bility consists in reducing the Wenner curve to a single-pole 
curve.

Combining equations (87) and (91)5 the apparent resis­
tivity of the Wenner array can be expressed in terms of sin- 
gle-pole apparent resistivities:

p.  (r) = 2p (r) - p (2r) (92.)w Ksp Hsp
Applying (92) successively for r = ^r, ^r, |r, . . . ~ v i 

and multiplying each side by 1, 2, 4, .... 2n_1, respectively:

next.

3.
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adding equations i to n:

no.

I =  (

but,
p (r) -> p(0) when r ■> 0 ) s p '

hence,

u
~ 2>(o) - . 0 3 )

i- = I

Likewise, an expression of the single-pole apparent re­
sistivity in terms of the Wenner curve for increasing spac- 
ings of r is obtained by using formula (92) for r = 2r, 4r, 
8r, ... 2nr, multiplying both sides, respectively, by y
, . .. and adding the equations:

-  zPsP ^  - •

‘YU- ̂
a /sp( ^ r r ^ ) - 2
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In this case p (r) ■ + ■ p(..«>) when r «, which yields the SP .
following approximation to the single pole apparent resistiv­
ity derived from Wenner data:

(94)
I = 0

Two criteria can.be employed to find the proper number
n of terms in series (93), and (9*0- Let p (r) denote the5 n s p
apparent single-pole resistivity computed with n terms of 
these series; then the computations can be stopped, whenever

(T) 
P ^)

- 1

where e is a specified error bound depending on the accuracy 
of the data.

Another way to determine when to truncate the series 
consists in using the inequalities

P(0)

and

£

- 1 £

for equations (93) and (9*0^ respectively, with e as defined 
before.
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The Wenner curve must be specified for all spacings r 
in order to make the transformation to the single-pole curve* 
This condition imposes the same requirements on the data as 
the inversion formula (89) a and in particular the need for 
reasonably accurate values of p (0) and p(°°). For transforma­
tion of field data, a great amount of interpolation might be 
necessary.

3. Schlumberger array.—  If p , denotes the Schlumber-
S -L

g e r - apparent resistivity, then

f > w  -SL f(o)
z  r ° °

<r 1 A. cji) (j3) 3((xr) oix

can be solved for 0(x) by the inversion

$  M  =   777-------  J, (Xr) dr

.00

I M i l
00

, _ U l i b ,  ,I syv/ » /J ~

but,

3 |  ^  dr -  1  ;

0
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hence

(95)

As before, with the inversion of sing.le-pole apparent re­
sistivities, it-is. convenient to change the integrand of for-

the inversion for Schlumberger apparent, resistivities becomes

In many field cases the lowermost stratum has a very 
high resistivity compared with the-overlaying formations, for 
instance the igneous or metamorphic basement of a sedimentary 
basin. Because of the limitations of instrumentation and ter­
rain, the survey generally can not be expanded far enough to 
define the resistivity of the substratum. For instance, to

mula (95) to achieve stronger convergence of the integral. 
With

a

(96)

or, if the change of variable Xr = x is made

(97)
0
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record the basement resistivity with an accuracy of 2 percent 
from the synthetic Schlumberger sounding curve for the Adena 
field, the survey has to be carried out 4600 km! This is, of 
course, technically impossible, even if the required current 
intensity were available, and enough land mass were around, 
the lateral effects.would be overwhelming. Furthermore, the 
curvature of the earth would not allow applying- the horizon­
tal layer model. All one is able to detect is the first part 
of the branch of the sounding curve, raising with a slope of 
1. Because the lowermost constant resistivity .p (-z ) can .not 
be obtained.from surface measurements, equation (96) is not 
applicable, and another approach is necessary. It is shown 
in Keller and Frischkneeht (1966, p. 116) that in the case 
of a perfectly resistant substratum

In practice, a substratum with a sufficiently strong
resistivity contrast displays the rising branch beginning at
some finite spacing r . In the Hough no.l, (6-2) layer casec
with a basement resistivity of 600 ohm-m, and a longitudinal 
resistivity of H.2 ohm-m, (coefficient of anisotropy = 1 .23), 
for the 3000 m of sedimentary fill, the value of r i s  about 
five km, (see figure 17).

From (98) and (95) one can write

Ps l (r) = r/s (98)
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K ( tv') -  crco){ + J ^ i j

This last formula can be manipulated into a more conve­
nient form.as follows:

K 0 0  -  <T(o) eM h M L j [ w ),ir Ŝ,(Tc) J:(xrUr

+-
3 o ( ^ r c )

K M  -  f v w  +- T

Jo (Ati 
P(o) ̂ 5

where,

=  -PsS'r) - PslĈ c) ^
f(o)

and,
)Lt,

J, (*T) oL r = Jo M i x  - 3 ,  ( a . T o)
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Hence, the inversion of Schlumberger sounding data in 
the case of a resistant basement is

This form has the advantage that Hankel's infinite in­
tegral, rather than a definite integral, is required, so 
that for numerical computations, only three correction terms 
have to be evaluated in addition to the usual Hankel trans­
form .

4. Polar-dipole array.—  There are two approaches to 
the inversion of the observed polar-dipole resistivity func­
tion pp^(r), one leading to a double integral, the other 
making use,of equatorial-dipole or Schlumberger apparent re­
sistivities .

a). The kernel function as a double integral of the po­
lar-dipole resistivity.

By definition

T C
(99)

where
f

u w  -  £ inr- +
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hence ,

j V )PX> P(o) T

integrating with, respect to r,

$  far) oLtc f ?

-%^lcLx +- c P(o) + $ 0 0  J0(^t) cLa

P(o) T
$(*.) Aj, (A-t )cL?u( ;

with the change- of variable Xr. = x, the last equation becomes

^ ° o L x  + C (100)

Let r oo, then

= - C

which, can be rewritten as

c  = - c(.x - ( ^ pp^  dx
r

Hence, equation (100) becomes
z-00

otx —  -j- j9(o) i -̂-z -+- <|> (a.) ̂J,(?\,-r)a(.A.
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X
P(o)

dx 3, (Vr)olx,

which can be inverted to

-
X

P(o)

f00 f 00
^  3 ( \r ) d*olr -

0 V
Jl M dr

Finally, the-kernel function of the apparent polar-di­
pole resistivity is given by

joo - cO

K W  - z
-P(o) J. (Ar) ctxcLr (101)

b). Inversion of resistivity sounding, data by combining 
polar and equatorial-dipole curves.

From table XI:

~ P(o) 1 + 'T A. (|) ( A.) ( X t )  oL A. (102)

Z < § ( a . ) J 0 ( * .t ) c!x  |  ,  ( 1 0 3 )
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let

F(r) = Psl(r ) “ Ppd^1*) + p (°) (104)
then from (102) and (103)

Fto z
T P(o) 3q(kt) olx. ,

which can be inverted to

(105)

This inversion formula can be used, only if both p ^ a n d

if no lateral effects are present.

A Numerical Technique for the Inversion.of Resistivity 
Sounding Data

The integral transforms derived so far have to be eval­
uated ,by approximate quadrature methods. Slichter (1933) uti­
lized a mechanical integrator; Koefoed (1965a, and 1965b) 
developed a curve-matching procedure for the transformation.
A numerical method, based on the Hankel transform technique 
described earlier, was used by the author to compute kernel 
functions from apparent resistivities.

curves are available (crossed-dipole measurements), and
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Basically ,- the procedure used for computing synthetic 
sounding curves is applicable with minor modifications. The 
main difference is that apparent resistivities are empirical 
functions in contrast to the kernel function, which is eval­
uated analytically. Thus, interpolation between the measured 
resistivity values is required. Another aspect of field data 
is the problem of noise; perturbing factors, mainly of.geo­
logical origin, known generally as lateral, effects, are.prac­
tically always present to some degree. Also, resistivity 
soundings can seldom be carried out far enough to define the 
apparent-resistivity curve adequately, especially in the com­
mon case of a resistant basement. If in this situation the 
branch of the Schlumberger curve rising with a slope of 1 can 
be clearly determined,: formula (99) should be used to obtain 
that part of the kernel function corresponding to A ^ , l/(max- 
imum spacing). ,

Figure 19 shows the truncation effect of the synthetic 
Schlumberger curve for the electric log. of Hough- no.1, model 
(6-2) in-the Hankel transformation. The kernel inverted from
this apparent-resistivity curve evaluated for spacings up to 

810 m agrees within 1 percent with the original kernel curve*
and departures can not.be shown on a plot of this scale. A

6truncation of the Schlumberger . curve at a spacing r = 10 m 
produces a discrepancy of about 20 percent between original
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and inverted kernels for small values of A. Figure 20 shows 
the portion of the- kernel function obtained by inverting the 
Schlumberger sounding data with a maximum spacing of 10 km 
using formula (99)* Once more, the agreement between original 
and inverted kernel is such that on this graph one curve falls 
on top of the other.

The transforms of the simulated field data listed in ta­
ble XV are shown in figure 21. The kernel curve labeled "val­
ues picked from smooth curve" was obtained, by reading appar^ 
ent resistivities off the synthetic sounding graph at 20 
spacings ranging from 10 m to 5 km. The transform agrees 
with the original kernel to the degree that discrepancies 
can not be plotted to the adopted scale. The effect of noise 
was simulated by the data shown in table XV; its effect is 
prominent only for larger values of A (about 0.1) as seen in 
figure 21. It was further found in these examples that cubic 
interpolation gave better results than quintic interpolation. 
For even more "noisy" measurements, smoothing, either by 
low-pass filters, by drawing smooth curves through the data 
points, or by fitting polynomials in the least-square sense 
is probably necessary.



Table XV.
Simulated Schlumberger field data 

for Adena field

Spacing, 
in m

ps i (r) from 
smooth curve 
in ftm

pgl(r) with 
artifitial 
noise in ftm

10 10.0 9.9
15 10. 0 10.1
20 9.9 9.7
25 9.8 9.6
35 9.4 9.5
50 8.8 8.6
70 7*9 7.7

100 6.8 6.9
150 5-9 6.0
200 5.6 5.5
250 5.5 5.4
350 ' 5-3 5.3
500 5.0 4.9
700 4.8 4.7

1000 4.3 4.2
1500 4.0 3.9
2000 4.1 4.1
2500 4.4 4.4
3500. 5.6 5.5
5000 7.7 7.7
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The Interpretation of. the Kernel.Function.-

The interpretation methods of resistivity sounding data 
can be roughly divided into direct methods and indirect meth­
ods. The direct methods consist of evaluating- the. resistivity 
as a function of depth analytically from the kernel function, 
whereas indirect methods are based on cut-and-try procedures, 
such as curve matching.

Langer 01933) solved theoretically the problem of deter- 
minig. analytically the - continuous resistivity function of 
depth from the kernel function. However, his method has not 
been applied because of the algebraic difficulties involved 
and because the discontinuous resistivity function is much 
more important in practice. In 19^0, Pekeri.s presented a di­
rect method for interpreting a horizontally layered earth 
model,, if the bed. thicknesses increase-with depth. His pro­
cedure is based on two properties of. the layer-kernel func­
tion, first the fact that the kernel curve approaches asymp­
totically a two-layer ease for large values, of the argument, 
second, that the effect of the top layer of a section might 
be removed analytically.if its thickness and reflection co­
efficient with respect to the lower layer are known. A proof 
of these properties, based on Sunde’s recurrence relation (25) 
is very simple and compares favorably with the rather invol­
ved original presentation making use of determinants. It is, 
therefore, worthwhile to give an outline of Pekeris’ method.
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1. Asymptotic behavior o f ,the kernel function.—  In a 
section consisting of n layers, let V^(a ) be Sunde’s kernel 
function on top of<the_ith layer (figure 22).

Surface

Layer 1 p , d-1 l

Layer i+1 pi+i> di+i

V.(A)

Layer i p±3 d± V i+1(A)

Layer n Pn
(infinite substratum)

Figure 22. 
Horizontally layered earth model

From (25)

vca.) -  — " ; _ i - .QiCk ) (106)
1  -  1 +■ (3 -  ( A .) U  ;
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where G^(A) is defined by
G ^ X )  = k ^ X ^ e  2Xdl ; (107)

furthermore,

4. (a.) =-- --- io-v! VtV< 00 ( (108)
4, + Pin Viri (x)

Taking logarithms of the terms in equation (107)
log{G1 (A)} = -2 Ad j_ +.log{k± (A)} , (109)

when A:\increases V ^ ^ ( a ) 1 by (15) * hence, it can be ob­
served from (10 8) that,

m. w )  -  ^  ~ P '  -  X  • ; (110)A , - o o  ^ PL + Pi±\

kf.i+i denotes the reflection coefficient of the ith bed 
with respect to the layer.beneath it.

Thus, it is seen that equation (109) plotted as semi- 
logarithmic curve, log{G^(A)} versus A, approaches a straight 
line for large values of A. The intersection of this line 
with the G^(a ) axis furnishes the value of the reflection 
coefficient, its slope the thickness of layer i.

2. Stripping off the top layer.—  Solving (108) for
Vi+i(x):

x/ \ __ 7̂  l fc;q)
VP 1 *
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1 ~ kl(a)
1 -t- #^0) (HD

where k^(x) is found from (106)

2^cL(- (112)

By combining formulas (112) and (111) , one. can compute 
the kernel.function in terms of the kernel function
on top of the overlaying bed (see figure 22), if the reflec­
tion. coefficient between the two layers, and the. bed thickness 
of the upper,layer are-known. This process, differs from the 
partial curve-matching, procedure in the r-domain, in that the 
top layer is effectively removed and not. replaced by a fic­
titious layer.

Indirect interpretation is based mainly on graphical 
methods consisting, of comparing the observed kernel function 
with a set of theoretical master curves to pick out the most 
likely models. A catalog, of kernel master curves, is not.yet

with a digital computer and a plotter, a considerable number 
of kernels can be generated efficiently in a short time and 
compared with the transformed data curve. In this way,

available, at least not to the authors knowledge. However,



T - 1 1 0 3 136

a number of equivalent, models fitting the original data with 
approximately the same error might b.e obtained,, the choice 
of the most probable-layering has then to be based on addi­
tional geophysical and geological information.

An indirect numerical technique proposed by Vozoff 
(1958) consists of fitting the kernel function of an approx­
imate model to the transform of field data in the least- 
square sense..The layering parameters of the model are ad­
justed successively by some method, for example steepest des­
cent, until the sum of the squares of the differences bet- 
ween: observed,and model-kernel function is minimized.

In practice, a semidirect. technique, i.e. a combination 
of direct and indirect methods, will probably give good re­
sults. Pekeris’ or auxiliary point methods (Zhody, 1965) 
might be used to get a: preliminary., approximate model, which 
is then adjusted to the transformed sounding curve by modi­
fying the layering parameters.
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SUMMARY AND CONCLUSIONS

The kernel, function contains all the information on the 
resistivity variation of a horizontally.. uniform, medium, sep­
arated from the. effect of source and recording electrodes. 
This function can, therefore, be used for. computation of 
theoretical sounding curves, or for interpretation of resis­
tivity sounding data.

Apparent resistivities and kernel functions are mutually 
related by a Hankel transformation. The numerical evaluation 
of this linear-integral transform by Gaussian quadrature, 
combined with an Euler transformation, suggested by Longman 
(1957)a yields sufficiently accurate results for exploration. 
The advantage of this technique over the image method of com­
puting theoretical sounding curves is that more general re­
sistivity variations than horizontal layering might be con­
sidered. . This point is illustrated by the computation of syn­
thetic sounding curves from representative electrical well

137
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logs for guiding exploration and interpretation, of resistiv­
ity measurements in the vecinity of. the wells. In a specific 
example it is concluded, that "direct” location of oil-satu­
rated zones in the Adena oil field.(Morgan County, Colorado) 
by surface-based resistivity, surveys requires an accuracy of 
the measurements, exceeding 1 percent for spacings of three 
to five miles.

The quadrature method used in this thesis can be applied 
to evaluate the- kernel function by inverse Hankel transfor­
mation of apparent-resistivity curves obtained in electrical
surveys. Sufficient, numerical accuracy is .achieved for the:.
inversion of the synthetic-sounding curves for the Adena 
field., making it possible to use the kernel, function for . . .1: /  

their interpretation.
The kernel-domain approach in interpreting resistivity 

soundings offers several advantages:
1. Because of the uniqueness of the- Hankel transforma­

tion, the kernel function can be considered processed data, 
without addition of information like an apparent-resistivity 
curve, which is only determined by the, accuracy o f .the mea­
surements .

2. The indetermination in the interpretation arises in 
the step from the kernel function to the resistivity varia­
tion with depth. The interpretation, more an art<, than a 
science, should be limited to this step.
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3. Kernel, curves, can. be computed, much faster and easier 
than apparent-resistivity curves. Consequently,, any indirect, 
numerical cut-and-try method works, more, efficiently in the; 
A-domain than in the r-domain. Furthermore, necessary addi­
tional information on the layering parameters, obtained from, 
adjacent resistivity soundings, from electric logs, from 
other geophysical surveys, or from geological sources can be 
built easily into the.kernel function.

4. Because the kernel function is independent from the 
particular measuring array, used, only, one interpretation 
scheme is required-for all the different types of apparent- 
resistivity curves.

5. The symmetry property of the kernel, domain simplifies 
interpretation procedures based on curve matching.-with a i. 
catalog of master kernel curves.

6. The kernel-domain approach can be generalized to the 
interpretation of alternating-current resistivity soundings 
(VanTyan, 1961).

Before the kernel-domain approach is used in the inter­
pretation of a survey, it has to be decided whether the sound­
ing data are sufficiently accurate, and lateral effects are 
small enough to guaranty.good results-in the inverse Hankel 
transformation.
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Future work. In the area of kernel-domain interpretation 
has to consider the problem of the removal of lateral ef­
fects and other ’'noise,11 either by field techniques or by 
some processing scheme, in order to prepare.the data for in­
version.
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APPENDIX
LIST AND ,FLOW CHARTS OF COMPUTER 

PROGRAMS USED

The source deck, object code, program constants, and a 
complete listing of each program is kept on file in the Geo­
physics Department of the Colorado School of Mines.

List of Computer Programs-

No. Program name and description
1. Kernel function for a layered medium, version 1.—  This 

program computes the kernel function, for a ..layered me­
dium with a specified error at the lower and upper end 
of the argument. Its main purpose is to get. a complete, 
detailed tabulation of•single kernel functions..

2. Kernel function for a layered medium, version 2.—  This 
program evaluates the kernel function for a geoelectrie 
section consisting of a surface layer, a sequence of 
thin layers obtained from a digitized well log, and a 
lowest layer located between the last resistivity read­
ing on the electric log and the infinite basement.

1.41
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3. Kernel function for a layered medium, version 3.—  This: 
program computes the kernel function of a layered me­
dium with, specified initial and final values of its ar-

1 j ■ gument. Its main. purpose, is the, production, .of!! families
of kernel functions.

4. Equivalent layers in well-log. sections. -—  The geoelec­
tric parameters for a specified section of a digitized 
electric log, and the thickness and. resistivity of the 
equivalent isotropic section are evaluated by this pro­
gram .

5. Probability density and distribution for resistivities 
sampled from electric logs.—

6. Synthetic sounding curves package.—  This program com­
putes the integrals in the apparent resistivity formu­
las for the single-pole, Schlumberger, and/or polar-di- 
pole arrays for a horizontally layered medium. (For­
tran IV program).

7. Inversion of the Hankel transform.-- This program eval­
uates the kernel function from Schlumberger apparent 
resistivities (Fortran IV program).

8. Subroutine BESFJO.-- This subprogram computes J Q (x) for 
real x.

9. Subroutine BESFJ1.—  This subprogram computes J-^(x) for 
real x.
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10.

11.

12,

13.

14.

r x
Subroutine BESIJQ.— This program computes J (t )dt, 0 J o
for real x.
Subroutine BIN01.-—  This■subprogram computes the values

t 2tnJ (rt)d t , ■ and o
t 2Of

Jti w Jt!
tions.

t^J^(rt)dt by recurrence rela-

Evaluation of Bessel functions for large arguments.—  

(Fortran IV program in double precision).
Subroutine.INTPOL.r—  This subroutine, interpolates bet­
ween. a set o f •tabulated.entries using the method of di­
vided differences.
Subroutine APR0X1.—  This subroutine evaluates the poly­
nomial passing through a set of unequally spaced points 
by the method of divided differences.
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: ARGUMENT OF KERNEL FUNCTION 
: NUMBER OF LAYERS 
: THICKNESS OF LAYER i 
: RESISTIVITY OF LAYER 1 
: VALUE OF THE KERNEL FUNCTION

COMMUNICATE 
A,n3h >P

YESIS -9

NO IS

YES

RETURN

n-i
n-i

n+l-i
n+l-i -2 Ahn-i

FLOW CHART FOR SUBROUTINE KERNEL
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PRINT READ
DATA

YES

NOIS

YES IS

YES IS

YES IS

YESNO

COMPUTE

n+1

Ar • r

COMPUTE

10r

APPLY 48 POINT 
GAUSS QUADRATURE

COMPUTE EULER 
TRANSFORMS S 
OF TERMS G.J

GENERALIZED FLOW CHART 
FOR HANKEL TRANSFORM PROGRAM

PRINT 
WARNING MESSAGE 

FOR NONCONVERGENCE

APPLY 16 POINT 
GAUSS QUADRATURE 
TO TEN CYCLES OF

SUBPROGRAMS REQUIRED: 
Bessel functions JQ and J. 
Kernel function A(X).

INPUT:
Program constants, abscissas and 
weights for Gaussian quadrature. 
Data,■ thicknesses (h^), and re­
sistivities (p^ of ge-oelectric 
section; initial (r^), final (rn )» 
and multiplying increment (Ar) of 
transform variable r.

INSTRUCTIONAL CONTROL CARDS: 
For selection of transform to 
be computed and for peripheral 
operations.

AUXILIARY ARRAYS AND VARIABLES: 
G.̂  : Value of the basic integral 

evaluated over 1/2 cycle of 
J (1 = 1, 2, ... 20).v ’ ’

Sj : Euler transforms of G.̂  .

OUTPUT:
Hankel transforms Hk(r), 

H1(r) = r/°°A( A )JQ( Ar )dA
V-'

H 2(r) » r 2^"xA(X)J1(Xr)dx 

H 3(r) = r 3/®x2A(x)Jo (Xr)dX
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