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ABSTRACT

Three-dimensional seismic waveform inversion (WI) for arogropic media is highly chal-
lenging due to its computational cost, large number of modglarameters, and parameter
trade-o s. In this thesis, | explore 3D waveform inversiondr orthorhombic media in the
acoustic approximation. Two mixed-domain seismic wave dlsimulators are implemented,
one of them is based on low-rank decomposition and the other the generalized pseudospec-
tral method. Both methods can produce kinematically accuta pure-mode P-wave elds
with an acceptable computational cost. The low-rank-decopwsition-based method is used
to simulate both state and adjoint wave elds due to its highe accuracy and stability. The
wave equations from the pseudospectral method are employedobtain the gradients of the
WI objective functionals. To build the initial long-wavelergth model for waveform inver-
sion, | use an envelope-based mist functional, which alleates the reliance of WI on low-
frequency data. The WI gradients are derived for both the coentional data-di erence and
the envelope-based objective functions. Numerical examplélustrate the performance of
the developed wave eld-extrapolation and gradient-comgation algorithms for orthorhom-
bic media with realistic complexity. WI is conducted with thehelp of a limited-memory
version of the quasi-Newton optimization algorithm. A testdr a modi ed version of the
SEG/EAGE overthrust model validates the proposed approacho waveform inversion in

acoustic orthorhombic media.
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CHAPTER 1
INTRODUCTION

Seismic wave simulation and parameter estimation in anisopic media have become
common practice in both academic and industrial applicatizs. With the advances in seismic
acquisition, which make it possible to record long-o set wile-azimuth and multicomponent
data, exploration seismologists can no longer ignore therelctional dependence of elastic
properties. Last decades have witnessed extensive reskane simulating seismic wave prop-
agation in anisotropic media with high symmetries, espediatransverse isotropy (Duveneck
and Bakker, 2011; Fletcher et al., 2008, 2009; Fowler et alQ1D; Schleicher and Costa, 2015;
Xu and Zhou, 2014; Zhang et al., 2011; Zhou et al., 2006a,b). §ltorresponding inverse
problems for anisotropic parameter estimation utilizing hese wave eld simulators are also
being explored to some extent (Bakulin et al., 2010; Barnes &., 2008; Bozdag and Tram-
pert, 2008; Burridge et al., 1998; de Hoop et al., 1999; Debaydnd Kennett, 2000; Ferreira
et al., 2010; Marone et al., 2007; Prieux et al., 2011; UrsinQ@4; Warner et al., 2013b).

Transverse isotropy, however, cannot describe many subfge formations that exhibit
orthorhombic symmetry due to the in uence of aligned fractees and nonhydrostatic stresses.
Orthorhombic models have been successfully used in proaegsof wide-azimuth re ection
and VSP data and fracture characterization (Tsvankin, 1997fsvankin and Grechka, 2011).
In this thesis, | focus on acoustic orthorhombic models degwzed by a simpli ed wave equa-
tion that preserves the P-wave kinematics (Alkhalifah, 1998000). As shown by Tsvankin
(1997), P-wave kinematic signatures in orthorhombic medire controlled by six parameters
{ the P-wave vertical velocity Vo and anisotropy coe cients '@, "@ @) @ and © (as-
suming one of the symmetry planes to be horizontal). Other pameterizations for acoustic
orthorhombic media (e.g., Masmoudi and Alkhalifah, 2016)nclude certain combinations of

Veo, "(1;2), and @23),



Since the formal introduction by Lailly (1983) and Taranto& (1984), waveform inversion
(WI) has been an active area of research in both exploration dmglobal seismology (Brossier
et al., 2009; Fichtner, 2010; Fichtner et al., 2008; Liu and Trap, 2008; Plessix, 2009; Pratt
et al.,, 1996; Pratt, 1999; Pratt et al.,, 1998; Pratt and Shipp 1999; Sirgue et al., 2010,
2009, 2008; Sirgue and Pratt, 2004; Symes, 2010; Tromp et aD05; Vigh and Starr, 2008).
However, most existing waveform-inversion techniques aresigned to recover just P-wave
velocity due to the high computational cost and the intringt nonlinearity of the inverse
problem. Recently, WI has been extended to both acoustic anthstic transversely isotropic
models with a vertical symmetry axis (VTI). Kamath and Tsvankn (2013) apply elastic WI
to multicomponent re ection data for layer-cake VTl media toobtain the interval medium
parameters. Gholami et al. (2011) present a case study for [Wall eld using a 2D VTI
acoustic WI algorithm. Kamath and Tsvankin (2016) develop ektic WI for 2D VTI media
and apply it to transmission data for models with Gaussian amalies in the Thomsen
parameters. They also perform sensitivity analysis usinghé WI radiation patterns for
parameter perturbations. A natural extension of the previos research is to explore waveform
inversion in orthorhombic media.

Wave eld simulators are critically important for waveform inversion. Two categories of
methods have been proposed to model P-wave propagation inisoropic media: coupled
systems and mixed-domain wave eld extrapolators. The colgd systems have been orig-
inally introduced for Tl media (Duveneck and Bakker, 2011; Ftcher et al., 2008, 2009;
Fowler et al., 2010; Zhou et al., 2006a,b) and can be extendedorthorhombic symmetry.
However, the coupled systems produce shear-wave \artifatt&rechka et al., 2004) and
su er from the ambiguity in the physical interpretation of the auxiliary wave eld variables.
The mixed-domain wave eld extrapolators, on the other handcan simulate pure P-wave
propagation. In this thesis, | implement two e cient mixed-domain wave eld extrapolators:
those based on low-rank matrix decomposition (Fomel et al2013; Song and Alkhalifah,

2012) and generalized pseudospectral (Fowler and Lapii012) methods.



WI requires an accurate initial model for local optimizationmethods to converge to
the global minimum of the objective function (Virieux and Ope&to, 2009; Warner et al.,
2013a). Migration velocity-analysis methods (Biondi et al 2012; Wang and Tsvankin, 2013;
Yang and Sava, 2011) can produce long-wavelength parametds that accurately describe
the kinematics of recorded arrivals. To improve long-wawehgth models at early stages of
waveform inversion, it is common to use multiscale method8(nks et al., 1995). The data
are often divided into several frequency bands, and WI is perimed sequentially starting
with the lowest frequencies.

However, conventional seismic acquisition cannot providdtra-low-frequency (down to
1-2 Hz) data, which are critical for constraining long-wavehgth parameter elds. Design-
ing suitable WI mis t functionals can help address this issueln global seismology, Nolet
et al. (1986) describe an envelope-based formalism for wiaven tting with surface waves.
Snieder et al. (1989) show that mist functionals operatingwith envelopes are smoother
and more convex than the conventional,-norm objective function. More recently, Fichtner
et al. (2008), Fichtner (2010), and Bozda et al. (2011) exple time-frequency and envelope
information of waveform data to mitigate cycle-skipping isues. At the exploration scale, Wu
et al. (2014) and Luo and Wu (2015) show that so-called envele inversions can constrain
long-wavelength models without such low frequencies. | elop such envelope-based mis t
functionals to alleviate the reliance of WI on low-frequencyata.

This thesis is divided into three parts. Chapter 2 introduce P-wave simulators based on
the low-rank matrix decomposition and generalized pseuduectral mixed-domain operators.
The corresponding numerical adjoint systems are presenteghich are crucial to implemen-
tation of waveform inversion. To validate the numerical prpagators, | test both methods
using several orthorhombic models. Chapter 3 is devoted tcaweform inversion using the
aforementioned wave eld simulators. | employ the adjointéchnique (Chen, 2011; Fichtner
et al., 2006a,b; Liu and Tromp, 2008; Plessix, 2006; Tarar&y 1988; Tromp et al., 2005)

to derive and compute the gradients of the WI objective functin with respect to the six



orthorhombic parameters. Both the envelope-based and camtional objective functions are
considered. The gradients are tested on synthetic data froBD orthorhombic media. The
multiparameter waveform inversion is then carried out usigp a nonlinear optimization algo-
rithm (Benson and Mo, 2001; Kolda et al., 1998; Nocedal, 92; Nocedal and Wright, 2006;
Thebaut, 2002). The inversion results show that the P-wag velocities along the coordinate
axes are better constrained by surface data than the NMO velties. There are signi cant
parameter trade-o s among the NMO velocities during the WI praess.

In chapter 4, | summarize the thesis results and provide reemnendations for future

work.



CHAPTER 2
MIXED-DOMAIN WAVEFIELD SIMULATOR

The starting point for deriving pure-mode mixed-domain wa® eld extrapolators is the
dispersion relation of the corresponding wave mode. Theserapolators satisfy a general

equation of the form
Qu(k;t)+ (x;k)u(k;t)=0; (2.1)

whereu(k;t) denotes the scalar wave eld variable in the time-wavenungy domain,k is the
magnitude of the wave vector,@ is the second time-derivative operator, and (x; k) is a
linear operator de ned in the mixed (spatial and wavenumbgrdomain; the source term in

equation 2.1 is ignored. In isotropic media, the mixed-donraoperator reduces to
(x; k) = V2(x) jkj? ; (2.2)

where v(x) is the velocity. If the model is anisotropic, the mixed-dorain operator for a
certain mode can be obtained from the corresponding dispiens relation using the Christo el
equation. For VTI media, the P-wave mixed-domain operator ithe acoustic approximation

has the form (Alkhalifah, 1998):

S
. — 1 " 2 1,2 2 1,2 1 n 2 1,2 2 1,2 8(" )kl’zkg
(x;k) = > (1 +2")Veo ki + Vi k3 5 (1 +2")Vao ki + Vo k3 [(L+2)k2+ K2’
2.3)

where" and are Thomsen parametersypq is the P-wave vertical velocity, andk? is the
horizontal wavenumber k7 = kZ + k?). In the case of acoustic orthorhombic media, the

Christo el matrix can be written as

2 S 3
k2V2,(1+2/@) ek V2 1+ 2" T32® kkvgh 172 @
G = 4kiky Vip(1+2/@) 1+2°® ky Veo(h +2") kyk, V2, 1+2 @5 ;

(2.4)



where the six independent Thomsen-style parameters (Tsudn, 1997) represent the follow-

ing combinations of the sti ness coe cients:

Vg = 2. (2.5)

") - —C222033°33; (2.6)

"@ - —C112033°33; 2.7)

@ _ (Cost Caa)® (Caz  Caa)® 2.8)
2C33(C33  Caa) ’ '

@ — (Cia+ Cs5)®  (Caz  Cs5)® (2.9)
2C33(C33  Css5) ’ '

@ — (C2+ Cee)®  (Cix  Cee)’ : (2.10)

2C11(C11 Ces)

These parameters are de ned similarly to the Thomsen pararters in the corresponding

symmetry planes:
Vo { the vertical velocity of P-wave;
") { the VTI parameter " in the [X»; X3] plane normal to the x;-axis;
"() { the VTI parameter " in the [x1; x3] plane normal to thex,-axis;
@ { the VTI parameter in the [xy; X3] plane normal to thex,-axis;
@ { the VTI parameter in the [x1; Xs] plane normal to thex,-axis;
@) { the VTI parameter in the [x1; X»] plane normal to thexs-axis.

An important advantage of Tsvankin's (1997; 2011) notationsi that it reduces the number
of independent parameters responsible for P-wave velocitsom nine to six. The P-wave
dispersion relation is then obtained by solving the charaetistic equation of the eigenvalue-

eigenvector problem:

det G !?] =0; (2.11)



which results in a cubic equation in 2:

18+ a4+ a1 2+ a,=0; (2.12)
where
= (1+ OkG+(I+ DK+ kK Vi
a= 2(@  OyAkZ+2(®  W)kZk2
+1+2 @) (1+2 @) 1+2 @)1+2 ) K2kZ Vi (2.13)
h p p p
2= (1+2 @)?21+2®) 21+2@) 1+2@ 1+2 @O 1+2 O
[
+(1+2 )a+2®) @+2®)2® 2 W) KKKV :
Introducing another set of parameters,
Vp, = VPOF;) (2.14)
Vpx = Vpp 1+2"@; (2.15)
p
Vpy = Vpop 1+2"M; (2.16)
(VAORE vPOIO 1+2 @; (2.17)
v = vPOIO 1+2 @; (2.18)
VE = Ve, 1+2 @ (2.19)
yields the coe cients of the cubic equation 2.12:
Q= Vsz k)% + VPZy k§ + VPZZ k§ ;
a = V5V (VRZIKKZ + VEIVE, (Vi) ZIKGKZ + VEIVE (Vo) ZIkikS ; (2.20)
Q = VPZZ VP2x (Vn(r:::w)o)2 + (Vn(rln)o)2 2VI322VPX Vn(r%)o Vn(rzn)o Vn(r?;\)o

FVEVE ()2 VRVEVE, KEKEKZ:
Notice that the P-wave dispersion relation corresponds to éhlargest real root of the cubic

equation 2.12, which can be solved analytically (Appendix A). Once thdispersion relation



is solved, the mixed-domain operator is simply
(x;k)=12: (2.21)

The next step is to solve the generic-form mixed-domain waedd extrapolator 2.1 nu-
merically. Note that for a spatially invariant operator ( x;k) = ( k), equation 2.1 reduces
to a system of ordinary di erential equations with the time \ariable t, which has the formal

solution
pP—
uk;t  t)=e’  ® tyk;t): (2.22)

Adding the outgoing and incoming solutions of equation 2.22ne arrives at the time-stepping

formula:
uk;t+ t)+uk;t t)=2cos pm t u(k;t): (2.23)

Applying the Fourier transforms to both sides of equation 22 we obtain the space-domain
wave elds:
h p_ [

u(x;t+ t)+u(x;t  t)=F *2cos t Flu(x;t)] ; (2.24)
whereF[]andF [ ] denote the forward and inverse Fourier transforms, respaely. When
the mixed-domain operator (x;k) varies in space, the time-stepping formula 2.24 provides
only an approximate solution to equation 2.1. Solving equan 2.24 is time-consuming
because the number of inverse FFT's is equal to the number of tlspatial grid points. |
use two techniques described below to speed up this compudat low-rank decomposition

(Fomel et al., 2013) and the generalized pseudospectral metl (Fowler et al., 2015; Fowler
and Lapilli, 2012).



2.1 Wave eld Simulator based on Low-rank Decomposition

The low-rank decomposition approach rst discretizes theasine term of equation 2.24

into a matrix:
cos (X1;ky) t cos (X1 ky)

cos” Tt :E z : (2.25)

cos  (Xxwm:;ki) t cos  (xm:kn) t

This matrix is called a \propagator" and is iteratively applied to the wave eld during wave
propagation. The matrix 2.25 has a low-rank feature providkthat t is su ciently small. In
other words, the discretized matrix and its Hermitian have adrge null space. This sparsity
feature makes it possible to represent its column and row s using a relatively small
number of column and row vectors. Although singular value demposition (SVD) is the
standard choice to select those vectors, it is impracticadlgause the dimension of the matrix
for 3D problems is extremely large (typically with the numbe of rows and columns on the
order of 10). A cheaper way to obtain those vectors is based on a randomii algorithm,
which performs sparse matrix decomposition by selectingrtan columns and rows of the

original matrix. Symbolically, the decomposition takes tk form of

cos t W=UV ; (2.26)

whereW istheM N propagator matrix, U isthe M m matrix of selected columnsy
isthen N matrix of selected rows, isam n full matrix of relatively small size, where
m and n are called the approximate numerical row and column rank ohe matrix W . Here
m M andn N. The obvious di erences between this decomposition and SVDeathat
the columns ofU are a subset of the columns oV rather than the eigenvectors ofVW 7Y,
the rows ofV are a subset of the rows o¥V rather than the eigenvectors oV YW , and

is a small full matrix rather than a diagonal matrix consisthg of the eigenvalues obtained

by SVD.



In a typical implementation, one often multiplies the matrcesU and
L U ; (2.27)

which yields the low-rank decomposition:

p_
cos t W =LR; (2.28)

where R coincides withV (2.26). With the decomposition of the propagator matrix, one

can iteratively propagate the wave eld along the time axis:
h [
u(x;t+ t)+u(x;t  t)= LF 'RF[u(x;t)] : (2.29)

whereR is applied in the wavenumber domain and. is applied in the spatial domain.
2.2 Generalized Pseudospectral Wave eld Simulator

Low-rank decomposition methods can accurately simulate wapropagation since they do
not involve any approximations of the corresponding dispsion relations. However, the ma-
trix decomposition is numerical and the decomposed matrieeannot be explicitly expressed
in terms of the medium parameters. This causes a problem fodjaint-state techniques,
where the wave equation needs to be di erentiated with respeto the medium parameters.

The pseudospectral method (Koslo and Baysal, 1982) proves an e cient way to sim-
ulate wave elds accurately while maintaining the explicitform of the wave equation. Its
extension to orthorhombic media has been explored by Fowland Lapilli (2012), who pro-
posed the generalized pseudospectral method. That methodpaoximates the derivatives
using global basis functions, rather than local nite-di eences. First, the cosine term in

equation 2.24 is expanded in a linear Taylor series:

p_
Ccos t 1 %( t)? (2.30)
The time-stepping formula then becomes:
h [
u(x;t+ )+ ux;t  t)=2ux;t) ( t))F ' F u(x;t) : (2.31)

10



Because the mixed-domain operator (x; k) involves a certain form of spatial derivatives,
equation 2.31 implements the generalized pseudospectra¢thod with Fourier basis func-
tions. However, application of equation 2.31 is still hamped by the fact that the operator

(x; k) varies spatially and appears inside the inverse Fourieransform. To use fast Fourier

transforms, the mixed-domain operator must be represented separable form:

X
k)= fix)g(k); (2.32)

i
wheref;(x) and g (k) are the pure spatial- and wavenumber-domain operators,gectively.
If we consider an acoustic orthorhombic medium with the symetry planes that coincide
with the Cartesian coordinate planes, the separable mixetbmain operator takes the form

(see Appendix B):

(x:K)  VEKE+ VE KT + V&K
VAV, (Vimo)?) k2k2
V2 k2
V2 (V& (Vino)?) k2k2 (2.33)
V2 k2

VE(VE  (Vio)?) k2K2
VZ

: k2
whereV, is a reference velocityVex, Vpy, and Vp, are the P-wave velocities in the coordinate
directions, and Vi (i = 1;2;3) are the P-wave NMO velocities. The velocitie¥\n, and
Vrf%)o are measured in thex;- and X,- directions, respectively, above a horizontal orthorhonb
layer. The Vi), is de ned by Fowler and Lapilli (2012) in a similar fashion (quations 2.14-
2.19). Once the mixed-domain operator is separated into thmure spatial- and wavenumber-
domain operators (equation 2.32), the corresponding tinstepping formula can be expressed

as:

X h i
u(x;t+ )+ ux;t  t)=2ux:;t) ( )2 fi(x)F P g(k)F u(x;t) : (2.34)

11



2.3 Absorbing Boundary Condition

An important component of the numerical simulation is boundey conditions. For low-
rank-based and generalized pseudospectral simulatorse thbsorbing boundary condition can
be implemented by adding an exponentially decaying term tahe wave eld after applying

the propagators:
P—
uk;t ty=e ®el K tyk;t); (2.35)

where (x) is the damping pro le with nonzero values on the boundary. Ading the outgoing

and incoming solutions yields the two-step time extrapolain formula in the spatial domain:
h p_ [

ux;t+ t+e?®ux;t  t)= e WF !2cos t Flu(x;t)] : (2.36)

Following the approach discussed in the last two sectionsn® can arrive at the two-step

time-stepping formula for low-rank decomposition extrapators:
h i
ux;t+ t+e?®yux;t t)=e WLF 'RF[ux;t)] : (2.37)

For generalized pseudospectral extrapolators, the corpgsding equation is:

( X h i)
ux;t+ t)+e 2 ®ux;t )= e @ 2ux;t) ( )2 fi(X)F ! g(K)F u(x;t)

(2.38)
2.4 Numerical Examples

Software veri cation and validation is an important aspectof computation-related re-
search. In order to verify the two wave eld simulators, | usea constant-parameter model.
These results should be calibrated through comparisons wianalytic solutions. However, it
is di cult to derive analytic wave eld solutions in acousti ¢ orthorhombic media. | verify the
developed software by showing that the wave eld solutionsadnot contain shear modes, and
that the two simulators produce similar wave elds withing arelatively small error. Further-

more, the traveltimes of the modeled P-waves are comparedtwfast-marching solutions of

12



the P-wave eikonal equations.

| test the two wave eld simulators with and without absorbing boundaries on a homo-
geneous model. The model is described by the parametek4, = 2:25 km/s, Vpy = 2:99
km/s, Vp, = 2:76 km/s, Vn%)o = 2:59 km/s, Vrfr%)o = 2:66 km/s, and Vn(fq)o = 3:22 km/s. The
corresponding Tsvankin's anisotropy parameters aré? = 0:256,"? =0:384, M =0:16,

@ =0:20, and @ = 0:08. For generalized pseudospectral simulators, the refece ve-

locity is set to V, = em = 2:65 km/s. The model has a grid dimension of
nz nx ny=200 200 200, with a grid spacing ofiz = dx = dy = 0:01 km. | use a source
function with peak frequency of 20 Hz and time sampling of 1 m3he source is located at
the center of the model. Figure 2.1(a) and Figure 2.1(b) show ¢hwave eld snapshots simu-
lated using the generalized pseudospectral method and loark decomposition, respectively.
Those wave elds only contain pure P waves, with no shear wawgtifacts (Grechka et al.,
2004). Both wave eld simulators generate kinematically aurate P-wave elds, as con rmed
by comparison with the traveltimes computed from the eikodaequation (Figure 2.1).

Figure 2.2(a) and Figure 2.2(b) show shot gathers recorded abe surface. Since the
absorbing boundary conditions are not applied, the recordedata after the rst arrivals
represent re ections from the boundaries. Figure 2.3(a) anBligure 2.3(b) show the same
shot gathers, but obtained with absorbing boundary conditins. The wave eld snapshots
and traces generated by generalized pseudospectral mettzod low-rank decomposition are

close to one another within a small numerical error.

13
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Figure 2.1: Wave eld snapshots for a homogeneous orthorhomblmodel computed with: (a)

the generalized pseudospectral method, and (b) low-rank @emposition. Red dotted lines
correspond to the P-wave traveltimes obtair112d from the eikal equation.
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Figure 2.2: Shot gathers computed at the surface of the modeitlnout absorbing boundary

conditions. (a) The generalized pseudospectral method, &b) low-rank decomposition.
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Figure 2.3: Shot gathers computed at the surface of the modelthwabsorbing boundary

conditions. (a) The generalized pseudospectral method, cgui) low-rank decomposition.
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CHAPTER 3
WAVEFORM INVERSION

Successful seismic waveform inversion requires accuratel & cient seismic wave eld
simulators, proper medium parameterizations, well-desigd mis t functionals, and e cient
large-scale nonlinear optimization algorithms. In this capter, | address these ingredients
of waveform inversion in acoustic orthorhombic media withhe exception of the wave eld

simulators discussed in the previous chapter.
3.1 Mist Functionals

Waveform inversion is performed by minimizing a certain mis functional (objective
function). The most commonly used choice is the,-norm data di erence. However, due
to the high nonlinearity, the ",-norm data-di erence mis t functionals are often minimized
gradually with increasing frequency bandwidth. Such casded inversions assume the exis-
tence of ultra low-frequency data, which are often missing iseismic acquisition. Building
background models for waveform inversion without ultra lovirequency data is challenging.
Wu et al. (2014) and Luo and Wu (2015) present inversion withrerelope-based mis t func-
tionals, which successfully produce background velocgienodels without ultra low-frequency
data.

In this thesis, | consider two types of mis t functionals: the classical ,-norm data dif-
ference and the ,-norm squared envelope di erence. Th&-norm data di erence is de ned

as
X
Jdat:% kd;  dogk? ; (3.1)

i2 x
where the subscript denotes the data coordinate,  is an index set for the data coordinates,

and d; and do; are the modeled and observed discrete-time data (respeetiy) for a given

source-receiver pair that belongs t&RN:. The data are obtained by applying a binning
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operator W to the wave eld:
di = Wij uj . (32)

The envelope-based functional is given by:

1 X
Jew=5 € e " (3.3)
|2 X
wheree; and eo; are the envelopes of the modeled and observed discrete da&spectively.

The envelope of a continuous-time signal(t) is de ned as:

ot) =~ )+ AR ; (3.4)

where H[d](t) is the Hilbert transform of the signal. Dierent mist funct ionals produce
di erent adjoint-source functions used for modeling the gdint variables. For the ",-norm

data di erence, the adjoint source function is
f@=d do: (3.5)

The adjoint source function for the envelope-based mis t fuctional is derived in Appendix
C:

fa=2 e? d H e ? Hd ; (3.6)
where
eo’ (3.7)
is the squared envelope di erence. The symbol \ denotes the Hadamard (Schur) product
(Davis, 1962) andH is the Hilbert-transform matrix.

To demonstrate how the envelope-based mis t functional cahelp build macromodels
for waveform inversion, | generate a shot gather for a singé®urce using a modi ed version
of the 3D SEG/EAGE overthrust model. Figure 3.1(a) displays aandom selection of 16
traces from the predicted (red) and observed (green) datatse Because the initial model

signi cantly deviates from the actual one, the predicted sythetic data are cycle-skipped

compared to the observed data, which implies that the objee function is highly nonlinear.
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Direct use of this data di erence as the residual would guidiée optimization search toward

a local minimum.
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Figure 3.1: Comparison of the predicted (red) and observedrégn) traces: (a) raw data,
(b) data envelopes, and (c) squared envelopes.

For comparison, | compute the envelopes and squared envedspof the predicted and
observed data (Figure 3.1(b) and Figure 3.1(c)). Although therselope functions seem to

be cycle-skipped as well, they look much simpler than the gimal data, and the inversion
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operating with the envelope functions should be better podeFigure 3.2 shows the frequency
content of the predicted and observed data, with the spectraveraged over the traces for
all receivers. The lack of low frequencies in these spectis one of the reasons for the
wavenumber gaps in the inversion results. In contrast, theneelope functions shift the
spectra toward low frequencies (yellow and green lines in kg 3.2), which indicates that
the “,-norm envelope mist functional could be used to either gemate an accurate long-

wavelength initial model for WI as well as to update the model wing initial iterations.
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Figure 3.2: Spectra of the predicted (blue) and observed (rechw data. The spectra of the
predicted (green) and observed (yellow) envelope data areifsed toward lower frequencies.

3.2 Adjoint Wave eld Propagation

Seismic waveform inversion is often performed using the adjt methods because the
cost of computing the Fechet derivatives of the mist fundionals is prohibitively high.
Such adjoint methods operate adjoint wave eld variables, ich satisfy the so-called adjoint
wave equations. If the wave equations used in the forward sitations are self-adjoint, the
adjoint wave equations retain the same form. On the other hah if the wave equations for
forward simulation are not self-adjoint, such as the ones Ise in this thesis (based on low-

rank decomposition and generalized pseudospectral metlspdthe adjoint wave equations
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have to be solved di erently from the forward-modeling equé#ns.

A common way to verify the correctness of forward and adjoinsimulators is the dot-
product test (Claerbout and Black, 2008). One approach to a the dot-product test is
by automatic di erentiation (Griewank and Walther, 2008; Rall, 1981) that programs the
adjoint simulator. The automatic di erentiation is a powerful algorithm because it can deal
with arbitrarily complicated forward simulators and thereis no need to manually code up
additional programs. However, state-of-art implementatios of the automatic di erentiation
do not necessarily produce optimized codes and the resufficodes can sometimes be user-
unfriendly. For the simple wave eld simulators | use in the hesis, the adjoint wave equation
can be derived analytically and coded up in a straightforwarway.

Since the forward wave eld simulators are basically succage matrix-vector multipli-
cations applied to wave eld vectors, the numerical adjointwave eld simulators represent
the transposed matrices successively operating with wawdd vectors. The mixed-domain

adjoint wave equations can be written in the following genéer form:
Qu(k;t) + ~(x;k)u(k;t) =0; (3.8)

where ~(x; k) is the numerical adjoint mixed-domain operator. In the cas of the low-rank

decomposition simulator, the adjoint mixed-domain opera is:
~(x:k)= RIL!; (3.9)

where! indicates the matrix transpose, and. and R are de ned in equations 2.27 and 2.28.

The corresponding time-stepping formula then becomes:
h [
ux;t+ t+ux;t  t)=F *RIFLTux;t)] ; (3.10)
which is di erent from the forward time-stepping formula 229.

3.3 Medium Parameterization

The goal of seismic waveform inversion is to estimate the math parameters by matching

modeled and observed seismic data. Tsvankin (1997, 2012pwh that all kinematic signa-
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tures of P-waves in orthorhombic media are fully controlletdy six independent parameters,
which were introduced in the previous chapter. However, on@rm use certain combinations
of these parameters to facilitate the inversion. The optimachoice of parameterization is
crucial in obtaining accurate inversion results (Kamath aa Tsvankin, 2016; Masmoudi and

Alkhalifah, 2016). Here, | perform the WI using the parameters
VPZz; VPZX; VPZy; Vnzmol; Vn2m02; Vn2m03 (3-11)

de ned in equations 2.14-2.19. This choice is based primigrion the convenience in com-
puting the gradients. Analysis of the radiation patterns carhelp in choosing optimal pa-
rameterizations for speci ¢ acquisition geometries and wersion scenarios. The numerical
example below illustrates how this parameterization addsses parameter trade-o0 s.

| employ relatively simple orthorhombic models with a Gausan anomaly in each pa-
rameter (Figure 3.3). As illustrated in Figure 3.4(a), the anoralies for di erent parameter
elds do not overlap. The wave eld is excited by an areal soue array located at the sur-
face (Figure 3.4(b)). To remove the in uence of illuminationon the inversion results, | put
receivers at each grid point on all six faces of the model cube

The WI gradients for the background (initial) model are compted using the adjoint-state
method, as discussed above and in section 3.4. Because thedgnts govern the spatial
positions and relative magnitudes of model updates, they Ipeevaluate the performance of
the chosen parameterization. Ideally, the gradient for eagarameter should be nonzero only
in the area of its Gaussian anomaly, which would imply the absce of parameter trade-o s.

The gradients for the parameterization (equation 3.11) coputed with the classical ,-
norm data di erence are shown in Figure 3.5. Although the graénts generally concentrate
near the Gaussian anomalies, they are somewhat smeared iacy especially for the pa-
rametersVz2. ., V2 ,, and V2 .. Therefore, it is di cult to identify the precise locations of
the anomalies for the three NMO velocities, which would creattrade-o s in the inversion.
This is an indication of coupling or trade-o s between the mgium parameters. Fortunately,

the gradients for the P-wave velocitie¥p,, Vpy, and Vp, show clear Gaussian-shape patterns
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Figure 3.3: Models for the six parameters of an acoustic ortfiombic medium. Gaussian
anomalies are embedded in a background medium with lineaiilycreasing velocities.
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at the locations of the anomalies, which indicates that thegre better constrained than the

NMO velocities.
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Figure 3.5: WI gradients for the model from Figure 3.3 computedith the ",-norm data
di erence. The gradients correspond to the background mobie Figure 3.3 with the linearly
increasing velocities.

3.4 Waveform Inversion Gradients

To compute the gradients of the objective function using thadjoint-state method (Plessix,

2006; Tromp et al., 2005), one augments the mis t functionads:
=J h ;Fi; (3.12)

where the symbolh; i denotes the inner product in theL ,-space (to which the state and

adjoint variables belong), andF is the discretized state equation:
F=@ulk;t)+ (x;k)u(k;t) f*=0; (3.13)
wheref ® is the source term. The adjoint variable satis es the discretized adjoint equation:

Fl=@ (kt)+ ~(x;k) (kit) f2=0: (3.14)
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The gradients of the original mis t functional are then derved by setting the derivatives of

the augmented mis t functional (equation 3.12) to zero:

@_.@ . eF
@m @m ' @m

Since the low-rank decomposition simulator for acoustic tmorhombic media does not pro-

=0: (3.15)

duce a closed-form wave equation, | propose to use the waveiagpn obtained with the
generalized pseudospectral method to compute the ter@F=@ i equation 3.15, which is

required to obtain the gradients. With the separable mixed-amain operator (equation 2.33)

derived from generalized pseudospectral method, substing the parametersVg,, V&, Vg,
vz ., V2 ,, and V2 . for m yields
@ — . kZ Vsz Vn2m03 kfki V_PZZ k)%kzz u (3 16)
@VPZX) B , X Vr2 k? Vr2 k? ’ .
@ Vsz ! y Vr2 k2 Vr2 k2 ! '
a — - K2 VPZx Vn2m02 k)% kg VPZY Vn2m01 k§k§ T (3.18)
@(VPZZ) , ‘ Vr2 k2 VI'2 k2 ’ .
@ Vi, kyke
@(Vnzmol) Vr2 k2 ( )
@ Ve, kiks
@\(Vnzmoz) Vr2 k2 ( )
V2 k2k2
R L T (3.21)
@VanB) Vr2 k2

whereu is the wave eld variable found from the state equation 3.13nd is the wave eld
variable from the adjoint equation 3.14.

To verify the derived gradient formulae, | apply both the daa-di erence and envelop-
based mis t functionals for the model in Figure 3.6. The data® generated for 16 shots (red
dots) in Figure 3.7 at every grid point on the horizontal surfee. Figure 3.8 shows the initial
models used for computing the gradients. Figure 3.9 and Figu810 display the gradients
obtained using the classical data-di erence and squared\eiope mist functionals. Both

gradients have substantial values only in the shallow partfdhe model because the initial
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Figure 3.6: Orthorhombic medium obtained from the SEG/EAGE werthrust model. The
velocities are scaled from the original P-wave isotropic keeity eld.

Figure 3.7: Horizontal projection of the source locations (dedots), which are on the surface
of the model from Figure 3.6.
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velocity elds are quite smooth and most of the modeled energepresents diving waves. The
gradients computed with the data-di erence functional cotain higher-wavenumber informa-
tion, which may cause problems during the early stages of Win Icontrast, the gradients
produced by the squared envelope mist functional are moren®oth and have a lower-
wavenumber content, which should help in updating long-walength macro models for later

iterations of WI.

1.5 2 2.5 3 3.5 4 4.5 S 5.5

Figure 3.8: Initial parameter elds used to compute the WI gragnts for the model in
Figure 3.6. The initial velocities are smoothed and deviateighi cantly from the actual
values.

3.5 Synthetic Example of Waveform Inversion

Here, WI is applied to synthetic data using an iterative gradiet-based algorithm. |
employ the limited memory variable metric method with box bands (Benson and Moe,
2001; Thebaut, 2002), which represents a version of the B¥S methods (Liu and Nocedal,
1989).
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Figure 3.11: Orthorhombic medium modi ed from the SEG/EAGE werthrust model. The
velocities are scaled from the original P-wave isotropic leeity eld.

Figure 3.12: Horizontal projection of the source locations€d dots), which are on the surface
of Figure 3.11.
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For this test, | use a modi ed portion of the SEG/EAGE overthrust model (Figure 3.11).
The observed data consist of 25 shot gathers, which are geated with the generalized
pseudospectral method. To avoid the \inverse crime," the Wo-rank decomposition simulator
is used in the inversion process. Figure 3.12 shows the shatdtions on the surface; the
receivers are also located on the surface. | assume that tleeisce function is known, which
has peak frequency around 20 Hz and a frequency bandwidth ofpapximately 50 Hz.

The initial models for WI are obtained by smoothing the actualvelocity elds (Fig-
ure 3.13). The WI is performed using the multifrequency-bandpproach with ve ranges:
0 8Hz,0 16 Hz, 0 32 Hz,and 0 64 Hz. | stop the iterations for each frequency band
when the mis t functionals no longer decrease signi cantlyThe total number of iterations
reached 102 with over 600 gradient evaluations. The invedanodels (Figure 3.14) show
signi cant improvement compared to the initial ones, with mportant geological structures
such as faults, synclines, anticlines and low-velocity zes being better resolved.

The velocitiesVp,, Vpy, and Vp, are better constrained than the NMO velocities for this
particular con guration of surface data, which con rms theresults of the gradient computa-
tion for the model with Gaussian-shape anomalies (Figure 3.9 put masks around source
positions to avoid large spurious updates in those areas, il is a typical practice in WI.
The spurious updates are more obvious in the NMO velocitiessgecially aroundz = 0:2 km
in the inverted V,mo» model.

To examine the inversion results, | plot verticaMp,-pro les from the actual, initial, and
inverted models (Figure 3.15) at the locations marked red dein Figure 3.15. Although not
perfectly recovered, the inverted velocities are much clersto the actual values compared to
the initial models. In eld-data applications, one does nohave access to the actual models,
so it is important the verify the inversion results using otler metrics. Since WI is a data-
tting problem, the inversion results can be evaluated by cmparing data residuals before and
after the inversion. Figure 3.17(a) and Figure 3.17(b) show édata residuals for a typical

shot gather computed with the initial and inverted models. Tie most signi cant decrease
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Figure 3.13: Initial parameter elds used to perform WI for themodel in Figure 3.11. The
initial velocities are smoothed and deviate signi cantly fom the actual values.
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Figure 3.14: Inverted parameter elds after 102 iterationsfahe inversion algorithm.
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of the data residual appear in the far-o set traces (arounc = 7 km). However, the data
residuals at near-o set traces do not improve too much. Thiss because conventional WI
mostly ts the diving wave energy. Quantitatively, the ",-norm of data residuals decreases
from 27:3 to 154 after the inversion.

Overall, the synthetic example demonstrates the potentiabf obtaining high-resolution
anisotropy parameters from WI. The data t is not perfect becase of parameter trade-o s
that produce a complicated, multimodal objective function Nevertheless, there is a signif-
icant decrease in the data mist after performing WI, and the mverted model parameters

are much closer to the actual values compared to those frometlinitial model.
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Figure 3.15: Vertical pro les of the true (black), initial (red), and inverted (blue) velocity
Vp, at locations shown in Figure 3.16.
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Figure 3.16: Locations of velocity pro les in Figure 3.16.

0.09 0.09

0.08 0.08

0.07 0.07

10.06 10.06

10.05 10.05

10.04 10.04

o 10.03 o 10.03
0.2 +0.02 0.2 0.02
: +0.01 . +0.01

0.4 Lo 0.4- Lo
0.6+ +—0.01 0.6+ +—0.01
0.8 -0.02 0.8 +-0.02
1- L-0.03 @ 14 +-0.03

A ~ A
R oo
1.4 - 1.4 e
) | -0.06 o & -0.06
1.6 o & - ~0.07 1.64 o ¥ L —-0.07
1.8+ | -0.08 1.8+ - -0.08
2 T T T T T - -0.09 2+ T T T T T £--0.09
6 6.2 6.4 6.6 6.8 7 © 6 6.2 6.4 6.6 6.8 7 ©
X (km) X (km)
(@) (b)

Figure 3.17: Data residuals using (a) the initial, and (b) thenverted models.
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CHAPTER 4
CONCLUSIONS AND RECOMMENDATIONS

In this chapter | summarize the thesis work and provides somecommendations for

future work.
4.1 Conclusions

| developed algorithms for modeling and inversion in acoustorthorhombic media, and
employed them to study the feasibility of 3D waveform inveisn of wide-azimuth surface
data. Wave eld simulations are carried out with the mixed-@main extrapolator using low-
rank decomposition. The gradient computation, however, ibased on the wave equation
obtained by the generalized pseudospectral method. The ot® of wave eld extrapolator is
determined by the superior accuracy and stability of the mébd based on low-rank decompo-
sition. | performed multiparameter inversion for acoustiorthorhombic models described by
the P-wave velocitiesVis,, V&, and Vg, in the coordinate directions and the NMO velocities
Viinots Vitmoz: @and Vidnos.

Synthetic examples reveal signi cant trade-o s among the grameters. For surface seis-
mic data, Ve, Vpy, andVpy are generally better constrained by WI than the NMO velocities|
demonstrate that envelope-based inversion can potentialelp reconstruct low-wavenumber
model parameters when the initial model is highly inaccurat The quasi-Newton gradient
descent optimization methods perform reasonably well in éhsynthetic testing in terms of
their convergence rate and computational cost.

A synthetic example for a realistic geological structure shws that WI generates high-
resolution Vp,, Vpyx, and Vp, models in acoustic orthorhombic media, provided that the
initial velocity elds are su ciently accurate. Although th e low-wavelength NMO velocities

are well-constrained by re ection traveltimes, their higler-frequency components are not
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accurately resolved by WI. Overall, this work proves that thee is great potential in improving

velocity models by performing WI for orthorhombic media.
4.2 Recommendations

Depending on the type of data used in the inversion, the acdicsapproximation may
break down. Incorporating the shear-wave information froomulticomponent data can help
constrain the anisotropy parameters which do not in uence Rvave kinematics. However,
moving beyond the acoustic approximation for orthorhombianedia requires solving the
solving 3D elastic wave equation. Aside from the need for mocemputational power, the
large model space may cause additional parameter trade-casid numerical challenges even
for state-of-the-art optimization algorithms.

As my synthetic WI examples showed, there are signi cant trade s among the pa-
rameters of acoustic orthorhombic media. To choose the opial parameter set for a given
acquisition geometry, one can analyze the sensitivity keets (Liu and Tromp, 2008) and
radiation (scattering) patterns (Alkhalifah and Plessix, 214; Gholami et al., 2013) based on
the Born approximation.

Comparison of the observed and synthetic seismograms rengg topic of ongoing re-
search. The conventional ,-norm data-di erence mist functionals are highly noncon-
vex, which causes cycle-skipping issues. Standard sigpedcessing techniques (e.g., time-
frequency and wavelet analysis), and more advanced staicstl approaches might help miti-
gate the cycle-skipping and obtain better inversion resudt

The e ciency and stability of large-scale anisotropic WI degnd on the performance
of nonlinear optimization solvers. Current research showhat the limited-memory quasi-
Newton methods generally outperform other gradient-basegtmization algorithms in large-
scale waveform inversion. It would be bene cial to incorpate e cient optimization algo-
rithms with nonlinear constraints into seismic WI methods.

As a general inverse problem, WI should bene t from precondidning and regularization.

In particular, good preconditioners improve the convergee of numerical optimization. Di-
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agonal scaling is often used to account for amplitude fac®mcluding geometrical spreading,
source illumination, etc. Most preconditioners involve soe information about the Hessian
of the mist functional. However, preconditioners are prol@m- and model-dependent, and
need to be updated during WI iterations. Regularization exgditly adds a priori information
into the mis t functionals, which improves the convexity ard makes the inverse problem less
nonunique. Standard techniques like Tikhonov and total-v&ation regularizations can be
helpful in making WI results more robust.

Another important issue is how to quality-control the inverson results. Conventional WI
techniqus only generate one nal model as the output, which akes it essentially a data-
tting problem. Data assimilation and uncertainty quanti cation are important in under-
standing and assessing the inversion results and, therefphelp lower the risk in exploration
applications.

Finally, applying anisotropic WI to eld data faces a number ofchallenges. Noise sup-
pression and including available information about anisobpy parameters are especially im-

portant in obtaining reliable inversion results.
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APPENDIX A - ANALYTIC SOLUTION FOR P-WAVE DISPERSION RELATION

Here, | use an analytic solution for the roots of a cubic polymaial equation:
x3+ ax®+ bx+ ¢c=0: (A.1)

A convenient method of solving equation A.1 was originally falished by Gerolamo Cardano

in the 16" century. It operates with the coe cients

p=b = (A.2)

2a> 9ab+27c
27 '

and q= (A.3)

The discriminant of the cubic equation is:

3 2
- g +g : (A4)

If > 0, the cubic equation has one real and two imaginary roots:

a
Xr=m+n —,

3 Ps (A.5)
Xp3= 05(m+n) (m n)7i §;
where
9 ——p—
m= " q2+ : (A.6)
9 —p—
n= 3 q:2 _: (A?)

If the discriminant goes to zero, the cubic equation has theereal roots, two of which are

identical:
X1 = 2Fg E2 g;
R— a (A.8)
Xo3= ° (=2 3
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If the discriminant is negative, the equation has three reabots:

P —— a
=2 =3 = =
X1 p=3 cos 3 3
P —— +2 a
Xp=2 p=3 cos 3 3 (A.9)
p—— +4 a
=2 =3 —:
X3 p=3 cos 3 3
where
!
q
=cos ! Pp—_— A.10
2 ( p3) (A-10)

The P-wave dispersion relation is obtained by nding the lagest real root, which produces

the highest velocity.
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APPENDIX B - SEPARABLE MIXED-DOMAIN OPERATOR IN ACOUSTIC
ORTHORHOMBIC MEDIA

| consider an orthorhombic model for which the Cartesian codinate planes coincide with
the planes of symmetry. The P-wave dispersion relation in throrhombic media represents

a cubic equation in! 2:
18+ al%+bl2+¢c=0; (B.1)

wherea, b, and c depend on the elements of the Christo el matrix. The analyt solutions for

phase velocity given, for example, by Tsvankin (1997), yekhe following dispersion relation

for P-waves:
2 p 1
12= =2 1 3b=a+ 5 (B.2)
where
( " p__ #)
= coSs }cosl 21 ( d) 2 (B.3)
3 2 4 ! '
and
2
d= 5 +b;
, a 5 a_b i (B.4)
=< 3 3

To derive a separable form of the dispersion relation, | rsexpand and P 1 3b=&ina
series with respect to the coe cienta in equation B.2. Fowler and Lapilli (2012) and Fowler
et al. (2015) present several approximations for such an exgsion. Here, | use the following
approximate dispersion relation:

2 b ¢ P 3bc 20+ @) 10%c
T AT 2t @ T @ ad
L SP+30) 7B+ @) 1455 +6C)
a’ a8 a’®
42030 + 2¢%) N 6(7° + 700°c® + 5¢%)

alo all

(B.5)
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The term a ! has to be modied further for equation B.5 to be separable. Iloflow the
procedure of Fowler and Lapilli (2012), who represera * as:

al= VvV %21 2r)?

B.6
= V. 2% 2 1+2E +4E2+8E%+ (B.6)
where
a
E —(1 vl (B.7)

Vi = (Ve1Ve,Ve3)'™ is a reference velocity and/p; (i = 1;2;3) are the P-wave velocities in
the coordinate directions. Combining equations B.5 - B.7ubstituting the expressions for
a, b, and c in terms of the elements of the Christo el matrix, and truncding the expansions
after the linear terms, | arrive at the following separabledrm of the approximate P-wave
dispersion relation for acoustic orthorhombic media:

VPZ3(VPZZ Vnzmol) k% k%
V2 k2
VPZ3(VI321 nmoz) kz k2 VPZl(VPZZ nm03) k2 k2
V2 k? V2 k2 '
where Vimo1, Vamo2, and Vomez are de ned in the main text (equations 2.17 - 2.19). A more

2 2 12 4 V2 K2 4+ V2 K3
o = VeiKI + Veoks + Visks

(B.8)

symmetric form of equation B.8 can be obtained by introduco new variables,

szal = Vamo1Vp3;
VpZaZ = Vamo2Vp3; (B.9)
szag = VamozVp1:

Substitution of the parameters from equation B.9 into equabn B.8 leads to

VPZZVPZ3 pal k2 k2

I S = szlk% + szzkg + sz3k§ V2 k2
r B.10
VA VE, Vo kZkZ  VEVE Vs k2k3 519
Vrz k2 VI'Z k2 .

The parameterization of acoustic orthorhombic media in tens of Vp1, Ve2, Ve3, Vpai, Va2,
Vpa3 can be found in Chapman (2004) and Fowler et al. (2015). Thesaxciated mixed-domain

operator (X;k) can also be expressed in a separable form (see equation)2.32

VE el '

x3
(k)= VEK?

i=1
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APPENDIX C - ADJOINT SOURCE FOR ENVELOPE-BASED MISFIT
FUNCTIONALS

Here, | derive the adjoint source for the squared-envelopéatence mis t functional. An

analytic signal a(t) is de ned as:
a(t) = d(t) + i H[d](1); (C.1)

whereH][ ] is the Hilbert transform, and d(t) is the original signal. The Hilbert transform of
a time series with compact support can be written as the conkdion of that series with the

function h(t) =1=(t):
H[d](t) = h(t) ? d(t) : (C.2)

Because convolution is a linear operation, equation C.1 cée discretized in time:

X
all]=di]+i  H[:mldm]; (C.3)

m

whereH [I; m] is the |-th row, m-th column element of the convolution matrix obtained from

h[l m]. In vector notation,
a=d+iHd: (C.4)

The envelope of the original signal is given by:

o) =~ )+ AR ; (C5)

and the discrete envelope function has the form:

S X X
ell=dll]dl]+ H[l;m]dm]  HIl;n]d[n] ; (C.6)

m n

where there is no summation ovdr. The mis t functional based on " ,-norm squared envelope

di erence is:

c (C.7)
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wherei is the index of spatial position and  is the corresponding index sete and eo are
the envelopes of the synthetic and observed (recorded) dataspectively. To compute the
adjoint sources used for adjoint modeling, the mis t funcnal is di erentiated with respect

to the wave eld variable u:

@
@y

wheref 2[n] is the discrete-time adjoint source at the location of theeceivers, andu[n] is

fén] = (C.8)

the discrete-time wave eld. Here, because | do not distingsh the wave eld u[n] from the

recorded datad[n], the adjoint source can also be written as:

fam= 9@ .
T )
Substituting the mis t functional C.7 into equation C.9 yields:
fam= 9
F= @
_* @ ey
. @] @]
X @¥]]
= el
- Uom |
X X ' (C.10)
= el 2d[] n +2H[;q] g»  H[; pldlp]
A P I#
X X
=2 &[nldn]+ H[;n] €]  H;pldp]
" ! P I#

X X
=2 &[ndn]+ HI[mI] €]  Hpldp
| p
where €Il = €[] edl] is the the squared envelope dierence, and, and 4, are

Kronecker's symbolic deltas. The adjoint source can be wign in vector notation:

fa=2 e 2 d+H! e ? Hd (C.11)
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where \ " denotes the Hadamard (Schur) product (Davis, 1962). The Hilert transform is

an anti-self-adjoint operator:
HI[n;11= Hn;lI];
and the adjoint source function becomes:

f2=2 e? d H e ? Hd

The corresponding continuous-time adjoint source functiocan be written as:

f(ty=2 €(t)d(t) H ) H [d(t)] ;

which is derived in a di erent way in Wu et al. (2014).
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