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ABSTRACT

Three-dimensional seismic waveform inversion (WI) for anisotropic media is highly chal-

lenging due to its computational cost, large number of modelparameters, and parameter

trade-o�s. In this thesis, I explore 3D waveform inversion for orthorhombic media in the

acoustic approximation. Two mixed-domain seismic wave�eld simulators are implemented;

one of them is based on low-rank decomposition and the other on the generalized pseudospec-

tral method. Both methods can produce kinematically accurate pure-mode P-wave�elds

with an acceptable computational cost. The low-rank-decomposition-based method is used

to simulate both state and adjoint wave�elds due to its higher accuracy and stability. The

wave equations from the pseudospectral method are employedto obtain the gradients of the

WI objective functionals. To build the initial long-wavelength model for waveform inver-

sion, I use an envelope-based mis�t functional, which alleviates the reliance of WI on low-

frequency data. The WI gradients are derived for both the conventional data-di�erence and

the envelope-based objective functions. Numerical examples illustrate the performance of

the developed wave�eld-extrapolation and gradient-computation algorithms for orthorhom-

bic media with realistic complexity. WI is conducted with thehelp of a limited-memory

version of the quasi-Newton optimization algorithm. A test for a modi�ed version of the

SEG/EAGE overthrust model validates the proposed approachto waveform inversion in

acoustic orthorhombic media.
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CHAPTER 1

INTRODUCTION

Seismic wave simulation and parameter estimation in anisotropic media have become

common practice in both academic and industrial applications. With the advances in seismic

acquisition, which make it possible to record long-o�set wide-azimuth and multicomponent

data, exploration seismologists can no longer ignore the directional dependence of elastic

properties. Last decades have witnessed extensive research on simulating seismic wave prop-

agation in anisotropic media with high symmetries, especially transverse isotropy (Duveneck

and Bakker, 2011; Fletcher et al., 2008, 2009; Fowler et al., 2010; Schleicher and Costa, 2015;

Xu and Zhou, 2014; Zhang et al., 2011; Zhou et al., 2006a,b). The corresponding inverse

problems for anisotropic parameter estimation utilizing these wave�eld simulators are also

being explored to some extent (Bakulin et al., 2010; Barnes et al., 2008; Bozda�g and Tram-

pert, 2008; Burridge et al., 1998; de Hoop et al., 1999; Debayle and Kennett, 2000; Ferreira

et al., 2010; Marone et al., 2007; Prieux et al., 2011; Ursin, 2004; Warner et al., 2013b).

Transverse isotropy, however, cannot describe many subsurface formations that exhibit

orthorhombic symmetry due to the in
uence of aligned fractures and nonhydrostatic stresses.

Orthorhombic models have been successfully used in processing of wide-azimuth re
ection

and VSP data and fracture characterization (Tsvankin, 1997;Tsvankin and Grechka, 2011).

In this thesis, I focus on acoustic orthorhombic models described by a simpli�ed wave equa-

tion that preserves the P-wave kinematics (Alkhalifah, 1998, 2000). As shown by Tsvankin

(1997), P-wave kinematic signatures in orthorhombic mediaare controlled by six parameters

{ the P-wave vertical velocity VP0 and anisotropy coe�cients " (1) , " (2) , � (1) , � (2) , and � (3) (as-

suming one of the symmetry planes to be horizontal). Other parameterizations for acoustic

orthorhombic media (e.g., Masmoudi and Alkhalifah, 2016), include certain combinations of

VP0, " (1;2), and � (1;2;3).
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Since the formal introduction by Lailly (1983) and Tarantola (1984), waveform inversion

(WI) has been an active area of research in both exploration and global seismology (Brossier

et al., 2009; Fichtner, 2010; Fichtner et al., 2008; Liu and Tromp, 2008; Plessix, 2009; Pratt

et al., 1996; Pratt, 1999; Pratt et al., 1998; Pratt and Shipp, 1999; Sirgue et al., 2010,

2009, 2008; Sirgue and Pratt, 2004; Symes, 2010; Tromp et al., 2005; Vigh and Starr, 2008).

However, most existing waveform-inversion techniques are designed to recover just P-wave

velocity due to the high computational cost and the intrinsic nonlinearity of the inverse

problem. Recently, WI has been extended to both acoustic and elastic transversely isotropic

models with a vertical symmetry axis (VTI). Kamath and Tsvankin (2013) apply elastic WI

to multicomponent re
ection data for layer-cake VTI media toobtain the interval medium

parameters. Gholami et al. (2011) present a case study for Valhall �eld using a 2D VTI

acoustic WI algorithm. Kamath and Tsvankin (2016) develop elastic WI for 2D VTI media

and apply it to transmission data for models with Gaussian anomalies in the Thomsen

parameters. They also perform sensitivity analysis using the WI radiation patterns for

parameter perturbations. A natural extension of the previous research is to explore waveform

inversion in orthorhombic media.

Wave�eld simulators are critically important for waveform inversion. Two categories of

methods have been proposed to model P-wave propagation in anisotropic media: coupled

systems and mixed-domain wave�eld extrapolators. The coupled systems have been orig-

inally introduced for TI media (Duveneck and Bakker, 2011; Fletcher et al., 2008, 2009;

Fowler et al., 2010; Zhou et al., 2006a,b) and can be extendedto orthorhombic symmetry.

However, the coupled systems produce shear-wave \artifacts" (Grechka et al., 2004) and

su�er from the ambiguity in the physical interpretation of the auxiliary wave�eld variables.

The mixed-domain wave�eld extrapolators, on the other hand, can simulate pure P-wave

propagation. In this thesis, I implement two e�cient mixed-domain wave�eld extrapolators:

those based on low-rank matrix decomposition (Fomel et al.,2013; Song and Alkhalifah,

2012) and generalized pseudospectral (Fowler and Lapilli,2012) methods.
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WI requires an accurate initial model for local optimizationmethods to converge to

the global minimum of the objective function (Virieux and Operto, 2009; Warner et al.,

2013a). Migration velocity-analysis methods (Biondi et al., 2012; Wang and Tsvankin, 2013;

Yang and Sava, 2011) can produce long-wavelength parameter�elds that accurately describe

the kinematics of recorded arrivals. To improve long-wavelength models at early stages of

waveform inversion, it is common to use multiscale methods (Bunks et al., 1995). The data

are often divided into several frequency bands, and WI is performed sequentially starting

with the lowest frequencies.

However, conventional seismic acquisition cannot provide ultra-low-frequency (down to

1-2 Hz) data, which are critical for constraining long-wavelength parameter �elds. Design-

ing suitable WI mis�t functionals can help address this issue. In global seismology, Nolet

et al. (1986) describe an envelope-based formalism for waveform �tting with surface waves.

Snieder et al. (1989) show that mis�t functionals operatingwith envelopes are smoother

and more convex than the conventional̀2-norm objective function. More recently, Fichtner

et al. (2008), Fichtner (2010), and Bozda�g et al. (2011) explore time-frequency and envelope

information of waveform data to mitigate cycle-skipping issues. At the exploration scale, Wu

et al. (2014) and Luo and Wu (2015) show that so-called envelope inversions can constrain

long-wavelength models without such low frequencies. I employ such envelope-based mis�t

functionals to alleviate the reliance of WI on low-frequencydata.

This thesis is divided into three parts. Chapter 2 introduces P-wave simulators based on

the low-rank matrix decomposition and generalized pseudospectral mixed-domain operators.

The corresponding numerical adjoint systems are presented, which are crucial to implemen-

tation of waveform inversion. To validate the numerical propagators, I test both methods

using several orthorhombic models. Chapter 3 is devoted to waveform inversion using the

aforementioned wave�eld simulators. I employ the adjoint technique (Chen, 2011; Fichtner

et al., 2006a,b; Liu and Tromp, 2008; Plessix, 2006; Tarantola, 1988; Tromp et al., 2005)

to derive and compute the gradients of the WI objective function with respect to the six
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orthorhombic parameters. Both the envelope-based and conventional objective functions are

considered. The gradients are tested on synthetic data from3D orthorhombic media. The

multiparameter waveform inversion is then carried out using a nonlinear optimization algo-

rithm (Benson and Mor�e, 2001; Kolda et al., 1998; Nocedal, 1992; Nocedal and Wright, 2006;

Thi�ebaut, 2002). The inversion results show that the P-wave velocities along the coordinate

axes are better constrained by surface data than the NMO velocities. There are signi�cant

parameter trade-o�s among the NMO velocities during the WI process.

In chapter 4, I summarize the thesis results and provide recommendations for future

work.
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CHAPTER 2

MIXED-DOMAIN WAVEFIELD SIMULATOR

The starting point for deriving pure-mode mixed-domain wave�eld extrapolators is the

dispersion relation of the corresponding wave mode. These extrapolators satisfy a general

equation of the form

@tt u(k; t) + � (x; k) u(k; t) = 0 ; (2.1)

whereu(k; t) denotes the scalar wave�eld variable in the time-wavenumber domain,k is the

magnitude of the wave vector,@tt is the second time-derivative operator, and� (x; k) is a

linear operator de�ned in the mixed (spatial and wavenumber) domain; the source term in

equation 2.1 is ignored. In isotropic media, the mixed-domain operator � reduces to

� (x; k) = v2(x) jk j2 ; (2.2)

where v(x) is the velocity. If the model is anisotropic, the mixed-domain operator for a

certain mode can be obtained from the corresponding dispersion relation using the Christo�el

equation. For VTI media, the P-wave mixed-domain operator inthe acoustic approximation

has the form (Alkhalifah, 1998):

� (x; k) =
1
2

�
(1 + 2")V 2

P0 k2
r + V 2

P0 k2
z

�
+

1
2

�
(1 + 2")V 2

P0 k2
r + V 2

P0 k2
z

�
s

1 �
8 (" � � ) k2

r k2
z

[(1 + 2")k2
r + k2

z ]2
;

(2.3)

where " and � are Thomsen parameters,VP0 is the P-wave vertical velocity, andk2
r is the

horizontal wavenumber (k2
r = k2

x + k2
y). In the case of acoustic orthorhombic media, the

Christo�el matrix can be written as

G =

2

4
k2

x V 2
P0(1 + 2" (2) ) kxkyV 2

P0(1 + 2" (2) )
p

1 + 2� (3) kxkzV 2
P0

p
1 + 2� (2)

kxkyV 2
P0(1 + 2" (2) )

p
1 + 2� (3) k2

y V 2
P0(1 + 2" (1) ) kykzV 2

P0

p
1 + 2� (1)

kxkzV 2
P0

p
1 + 2� (2) kykzV 2

P0

p
1 + 2� (1) k2

z V 2
P0

3

5 ;

(2.4)
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where the six independent Thomsen-style parameters (Tsvankin, 1997) represent the follow-

ing combinations of the sti�ness coe�cients:

VP0 =
r

c33

�
; (2.5)

" (1) =
c22 � c33

2c33
; (2.6)

" (2) =
c11 � c33

2c33
; (2.7)

� (1) =
(c23 + c44)2 � (c33 � c44)2

2c33(c33 � c44)
; (2.8)

� (2) =
(c13 + c55)2 � (c33 � c55)2

2c33(c33 � c55)
; (2.9)

� (3) =
(c12 + c66)2 � (c11 � c66)2

2c11(c11 � c66)
: (2.10)

These parameters are de�ned similarly to the Thomsen parameters in the corresponding

symmetry planes:

VP0 { the vertical velocity of P-wave;

" (1) { the VTI parameter " in the [x2; x3] plane normal to thex1-axis;

" (2) { the VTI parameter " in the [x1; x3] plane normal to thex2-axis;

� (1) { the VTI parameter � in the [x2; x3] plane normal to thex1-axis;

� (2) { the VTI parameter � in the [x1; x3] plane normal to thex2-axis;

� (3) { the VTI parameter � in the [x1; x2] plane normal to thex3-axis.

An important advantage of Tsvankin's (1997; 2011) notation is that it reduces the number

of independent parameters responsible for P-wave velocityfrom nine to six. The P-wave

dispersion relation is then obtained by solving the characteristic equation of the eigenvalue-

eigenvector problem:

det
�
G � ! 2 I

�
= 0 ; (2.11)
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which results in a cubic equation in! 2:

! 6 + a2 ! 4 + a1 ! 2 + a0 = 0 ; (2.12)

where

a2 = �
�

(1 + � (2) )k2
x + (1 + � (1) )k2

y + k2
z

�
V 2

P0 ;

a1 =
�

2(� (2) � � (2) )k2
xk2

z + 2( � (1) � � (1) )k2
yk2

z

+(1 + 2 � (2) )
�
(1 + 2� (1) ) � (1 + 2� (2) )(1 + 2 � (3) )

�
k2

xk2
y

	
V 4

P0 ;

a0 =
h

(1 + 2� (2) )2(1 + 2� (3) ) � 2(1 + 2� (2) )
p

1 + 2� (2)
p

1 + 2� (1)
p

1 + 2� (3)

+ (1 + 2 � (2) )(1 + 2 � (1) ) � (1 + 2� (2) )(2� (1) � 2� (1) )
i
k2

xk2
yk2

z V 6
P0 :

(2.13)

Introducing another set of parameters,

VPz = VP0 ; (2.14)

VPx = VP0

p
1 + 2" (2) ; (2.15)

VPy = VP0

p
1 + 2" (1) ; (2.16)

V (1)
nmo = VP0

p
1 + 2� (1) ; (2.17)

V (2)
nmo = VP0

p
1 + 2� (2) ; (2.18)

V (3)
nmo = VPx

p
1 + 2� (3) ; (2.19)

yields the coe�cients of the cubic equation 2.12:

a2 = �
�

V 2
Px k2

x + V 2
Py k2

y + V 2
Pzk

2
z

�
;

a1 = V 2
Pz[V

2
Px � (V (2)

nmo)2]k2
xk2

z + V 2
Pz[V 2

Py � (V (1)
nmo)2]k2

yk2
z + V 2

Px [V 2
Py � (V (3)

nmo)2]k2
xk2

y ;

a0 =
�

V 2
PzV

2
Px

�
(V (3)

nmo)2 + ( V (1)
nmo)2

�
� 2V 2

PzVPx V (1)
nmoV (2)

nmoV (3)
nmo

+ V 2
PzV

2
Py (V (2)

nmo)2 � V 2
PzV 2

Px V 2
Py

	
k2

xk2
yk2

z :

(2.20)

Notice that the P-wave dispersion relation corresponds to the largest real root of the cubic

equation 2.12, which can be solved analytically (Appendix A). Once thedispersion relation
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is solved, the mixed-domain operator is simply

� (x; k) = ! 2 : (2.21)

The next step is to solve the generic-form mixed-domain wave�eld extrapolator 2.1 nu-

merically. Note that for a spatially invariant operator �( x; k) = �( k), equation 2.1 reduces

to a system of ordinary di�erential equations with the time variable t, which has the formal

solution

u(k; t � � t) = e� i
p

� (k )� t u(k; t) : (2.22)

Adding the outgoing and incoming solutions of equation 2.22,one arrives at the time-stepping

formula:

u(k; t + � t) + u(k; t � � t) = 2 cos
� p

� (k)� t
�

u(k; t) : (2.23)

Applying the Fourier transforms to both sides of equation 2.23, we obtain the space-domain

wave�elds:

u(x; t + � t) + u(x; t � � t) = F � 1
h
2 cos

� p
� � t

�
F [u(x; t)]

i
; (2.24)

whereF [�] and F � 1[�] denote the forward and inverse Fourier transforms, respectively. When

the mixed-domain operator� (x; k) varies in space, the time-stepping formula 2.24 provides

only an approximate solution to equation 2.1. Solving equation 2.24 is time-consuming

because the number of inverse FFT's is equal to the number of thespatial grid points. I

use two techniques described below to speed up this computation: low-rank decomposition

(Fomel et al., 2013) and the generalized pseudospectral method (Fowler et al., 2015; Fowler

and Lapilli, 2012).
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2.1 Wave�eld Simulator based on Low-rank Decomposition

The low-rank decomposition approach �rst discretizes the cosine term of equation 2.24

into a matrix:

cos
� p

� � t
�

=

2

6
6
6
4

cos
� p

� (x1; k1)� t
�

� � � cos
� p

� (x1; kN )� t
�

...
. . .

...

cos
� p

� (xM ; k1)� t
�

� � � cos
� p

� (xM ; kN )� t
�

3

7
7
7
5

: (2.25)

This matrix is called a \propagator" and is iteratively applied to the wave�eld during wave

propagation. The matrix 2.25 has a low-rank feature provided that � t is su�ciently small. In

other words, the discretized matrix and its Hermitian have a large null space. This sparsity

feature makes it possible to represent its column and row spaces using a relatively small

number of column and row vectors. Although singular value decomposition (SVD) is the

standard choice to select those vectors, it is impractical because the dimension of the matrix

for 3D problems is extremely large (typically with the number of rows and columns on the

order of 109). A cheaper way to obtain those vectors is based on a randomized algorithm,

which performs sparse matrix decomposition by selecting certain columns and rows of the

original matrix. Symbolically, the decomposition takes the form of

cos
� p

� � t
�

� W = U � V ; (2.26)

whereW is the M � N propagator matrix, U is the M � m matrix of selected columns,V

is the n � N matrix of selected rows,� is a m � n full matrix of relatively small size, where

m and n are called the approximate numerical row and column rank of the matrix W . Here

m � M and n � N . The obvious di�erences between this decomposition and SVD are that

the columns ofU are a subset of the columns ofW rather than the eigenvectors ofWW y,

the rows ofV are a subset of the rows ofW rather than the eigenvectors ofW yW , and �

is a small full matrix rather than a diagonal matrix consisting of the eigenvalues obtained

by SVD.
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In a typical implementation, one often multiplies the matricesU and � :

L � U � ; (2.27)

which yields the low-rank decomposition:

cos
� p

� � t
�

� W = L R ; (2.28)

where R coincides with V (2.26). With the decomposition of the propagator matrix, one

can iteratively propagate the wave�eld along the time axis:

u(x; t + � t) + u(x; t � � t) = L F � 1
h
R F [u(x; t)]

i
; (2.29)

whereR is applied in the wavenumber domain andL is applied in the spatial domain.

2.2 Generalized Pseudospectral Wave�eld Simulator

Low-rank decomposition methods can accurately simulate wave propagation since they do

not involve any approximations of the corresponding dispersion relations. However, the ma-

trix decomposition is numerical and the decomposed matrices cannot be explicitly expressed

in terms of the medium parameters. This causes a problem for adjoint-state techniques,

where the wave equation needs to be di�erentiated with respect to the medium parameters.

The pseudospectral method (Koslo� and Baysal, 1982) provides an e�cient way to sim-

ulate wave�elds accurately while maintaining the explicitform of the wave equation. Its

extension to orthorhombic media has been explored by Fowlerand Lapilli (2012), who pro-

posed the generalized pseudospectral method. That method approximates the derivatives

using global basis functions, rather than local �nite-di�erences. First, the cosine term in

equation 2.24 is expanded in a linear Taylor series:

cos
� p

� � t
�

� 1 �
1
2

(� t)2 � : (2.30)

The time-stepping formula then becomes:

u(x; t + � t) + u(x; t � � t) = 2 u(x; t) � (� t)2F � 1
h
� F

�
u(x; t)

� i
: (2.31)
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Because the mixed-domain operator� (x; k) involves a certain form of spatial derivatives,

equation 2.31 implements the generalized pseudospectral method with Fourier basis func-

tions. However, application of equation 2.31 is still hampered by the fact that the operator

� (x; k) varies spatially and appears inside the inverse Fourier transform. To use fast Fourier

transforms, the mixed-domain operator must be representedin separable form:

� (x; k) =
X

i

f i (x) gi (k) ; (2.32)

wheref i (x) and gi (k) are the pure spatial- and wavenumber-domain operators, respectively.

If we consider an acoustic orthorhombic medium with the symmetry planes that coincide

with the Cartesian coordinate planes, the separable mixed-domain operator takes the form

(see Appendix B):

� (x; k) � V 2
Px k2

x + V 2
Py k2

y + V 2
Pzk2

z

�
V 2

Px (V 2
Py � (V (3)

nmo)2)

V 2
r

k2
xk2

y

k2

�
V 2

Pz(V
2

Px � (V (2)
nmo)2)

V 2
r

k2
xk2

z

k2

�
V 2

Pz(V
2

Py � (V (1)
nmo)2)

V 2
r

k2
yk2

z

k2
;

(2.33)

whereVr is a reference velocity,VPx , VPy , and VPz are the P-wave velocities in the coordinate

directions, and V (i )
nmo (i = 1; 2; 3) are the P-wave NMO velocities. The velocitiesV (1)

nmo and

V (2)
nmo are measured in thex1- andx2- directions, respectively, above a horizontal orthorhombic

layer. The V (3)
nmo is de�ned by Fowler and Lapilli (2012) in a similar fashion (equations 2.14-

2.19). Once the mixed-domain operator is separated into thepure spatial- and wavenumber-

domain operators (equation 2.32), the corresponding time-stepping formula can be expressed

as:

u(x; t + � t) + u(x; t � � t) = 2 u(x; t) � (� t)2
X

i

f i (x)F � 1
h
gi (k)F

�
u(x; t)

� i
: (2.34)
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2.3 Absorbing Boundary Condition

An important component of the numerical simulation is boundary conditions. For low-

rank-based and generalized pseudospectral simulators, the absorbing boundary condition can

be implemented by adding an exponentially decaying term to the wave�eld after applying

the propagators:

u(k; t � � t) = e� � (x )e� i
p

� (k )� t u(k; t) ; (2.35)

where� (x) is the damping pro�le with nonzero values on the boundary. Adding the outgoing

and incoming solutions yields the two-step time extrapolation formula in the spatial domain:

u(x; t + � t) + e� 2� (x )u(x; t � � t) = e� � (x )F � 1
h
2 cos

� p
� � t

�
F [u(x; t)]

i
: (2.36)

Following the approach discussed in the last two sections, one can arrive at the two-step

time-stepping formula for low-rank decomposition extrapolators:

u(x; t + � t) + e� 2� (x )u(x; t � � t) = e� � (x )L F � 1
h
R F [u(x; t)]

i
: (2.37)

For generalized pseudospectral extrapolators, the corresponding equation is:

u(x; t+� t)+ e� 2� (x )u(x; t � � t) = e� � (x )

(

2u(x; t) � (� t)2
X

i

f i (x)F � 1
h
gi (k)F

�
u(x; t)

� i
)

:

(2.38)

2.4 Numerical Examples

Software veri�cation and validation is an important aspectof computation-related re-

search. In order to verify the two wave�eld simulators, I usea constant-parameter model.

These results should be calibrated through comparisons with analytic solutions. However, it

is di�cult to derive analytic wave�eld solutions in acousti c orthorhombic media. I verify the

developed software by showing that the wave�eld solutions do not contain shear modes, and

that the two simulators produce similar wave�elds withing arelatively small error. Further-

more, the traveltimes of the modeled P-waves are compared with fast-marching solutions of

12



the P-wave eikonal equations.

I test the two wave�eld simulators with and without absorbing boundaries on a homo-

geneous model. The model is described by the parameters:VPz = 2:25 km/s, VPx = 2:99

km/s, VPy = 2:76 km/s, V (1)
nmo = 2:59 km/s, V (2)

nmo = 2:66 km/s, and V (3)
nmo = 3:22 km/s. The

corresponding Tsvankin's anisotropy parameters are" (1) = 0:256, " (2) = 0:384, � (1) = 0:16,

� (2) = 0:20, and � (3) = 0:08. For generalized pseudospectral simulators, the reference ve-

locity is set to Vr = 3
p

VPzVPx VPy = 2:65 km/s. The model has a grid dimension of

nz� nx � ny = 200� 200� 200, with a grid spacing ofdz = dx = dy = 0:01 km. I use a source

function with peak frequency of 20 Hz and time sampling of 1 ms.The source is located at

the center of the model. Figure 2.1(a) and Figure 2.1(b) show the wave�eld snapshots simu-

lated using the generalized pseudospectral method and low-rank decomposition, respectively.

Those wave�elds only contain pure P waves, with no shear waveartifacts (Grechka et al.,

2004). Both wave�eld simulators generate kinematically accurate P-wave�elds, as con�rmed

by comparison with the traveltimes computed from the eikonal equation (Figure 2.1).

Figure 2.2(a) and Figure 2.2(b) show shot gathers recorded at the surface. Since the

absorbing boundary conditions are not applied, the recorded data after the �rst arrivals

represent re
ections from the boundaries. Figure 2.3(a) andFigure 2.3(b) show the same

shot gathers, but obtained with absorbing boundary conditions. The wave�eld snapshots

and traces generated by generalized pseudospectral methodand low-rank decomposition are

close to one another within a small numerical error.
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(a)

(b)

Figure 2.1: Wave�eld snapshots for a homogeneous orthorhombic model computed with: (a)
the generalized pseudospectral method, and (b) low-rank decomposition. Red dotted lines
correspond to the P-wave traveltimes obtained from the eikonal equation.
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(a) (b)

Figure 2.2: Shot gathers computed at the surface of the model without absorbing boundary
conditions. (a) The generalized pseudospectral method, and (b) low-rank decomposition.

(a) (b)

Figure 2.3: Shot gathers computed at the surface of the model with absorbing boundary
conditions. (a) The generalized pseudospectral method, and (b) low-rank decomposition.
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CHAPTER 3

WAVEFORM INVERSION

Successful seismic waveform inversion requires accurate and e�cient seismic wave�eld

simulators, proper medium parameterizations, well-designed mis�t functionals, and e�cient

large-scale nonlinear optimization algorithms. In this chapter, I address these ingredients

of waveform inversion in acoustic orthorhombic media with the exception of the wave�eld

simulators discussed in the previous chapter.

3.1 Mis�t Functionals

Waveform inversion is performed by minimizing a certain mis�t functional (objective

function). The most commonly used choice is thè2-norm data di�erence. However, due

to the high nonlinearity, the `2-norm data-di�erence mis�t functionals are often minimized

gradually with increasing frequency bandwidth. Such cascaded inversions assume the exis-

tence of ultra low-frequency data, which are often missing in seismic acquisition. Building

background models for waveform inversion without ultra low-frequency data is challenging.

Wu et al. (2014) and Luo and Wu (2015) present inversion with envelope-based mis�t func-

tionals, which successfully produce background velocities models without ultra low-frequency

data.

In this thesis, I consider two types of mis�t functionals: the classical̀ 2-norm data dif-

ference and thè 2-norm squared envelope di�erence. Thè2-norm data di�erence is de�ned

as

J dat =
1
2

X

i 2 � x

kd i � do i k
2 ; (3.1)

where the subscripti denotes the data coordinate, �x is an index set for the data coordinates,

and d i and do i are the modeled and observed discrete-time data (respectively) for a given

source-receiver pair that belongs toRN t . The data are obtained by applying a binning
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operator W to the wave�eld:

d i =
X

j

Wij u j : (3.2)

The envelope-based functional is given by:

J env =
1
2

X

i 2 � x




 e2

i � eo2
i




 2

; (3.3)

whereei and eoi are the envelopes of the modeled and observed discrete data,respectively.

The envelope of a continuous-time signald(t) is de�ned as:

e(t) =
p

d2(t) + H [d]2(t) ; (3.4)

where H[d](t) is the Hilbert transform of the signal. Di�erent mis�t funct ionals produce

di�erent adjoint-source functions used for modeling the adjoint variables. For the `2-norm

data di�erence, the adjoint source function is

f a = d � do : (3.5)

The adjoint source function for the envelope-based mis�t functional is derived in Appendix

C:

f a = 2
�

�e 2 � d � H
�
�e 2 � Hd

� 	
; (3.6)

where

� e2 = e2 � eo2 (3.7)

is the squared envelope di�erence. The symbol \� " denotes the Hadamard (Schur) product

(Davis, 1962) andH is the Hilbert-transform matrix.

To demonstrate how the envelope-based mis�t functional canhelp build macromodels

for waveform inversion, I generate a shot gather for a singlesource using a modi�ed version

of the 3D SEG/EAGE overthrust model. Figure 3.1(a) displays arandom selection of 16

traces from the predicted (red) and observed (green) data sets. Because the initial model

signi�cantly deviates from the actual one, the predicted synthetic data are cycle-skipped

compared to the observed data, which implies that the objective function is highly nonlinear.
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Direct use of this data di�erence as the residual would guidethe optimization search toward

a local minimum.

(a)

(b)

(c)

Figure 3.1: Comparison of the predicted (red) and observed (green) traces: (a) raw data,
(b) data envelopes, and (c) squared envelopes.

For comparison, I compute the envelopes and squared envelopes of the predicted and

observed data (Figure 3.1(b) and Figure 3.1(c)). Although the envelope functions seem to

be cycle-skipped as well, they look much simpler than the original data, and the inversion
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operating with the envelope functions should be better posed. Figure 3.2 shows the frequency

content of the predicted and observed data, with the spectraaveraged over the traces for

all receivers. The lack of low frequencies in these spectra is one of the reasons for the

wavenumber gaps in the inversion results. In contrast, the envelope functions shift the

spectra toward low frequencies (yellow and green lines in Figure 3.2), which indicates that

the `2-norm envelope mis�t functional could be used to either generate an accurate long-

wavelength initial model for WI as well as to update the model during initial iterations.

Figure 3.2: Spectra of the predicted (blue) and observed (red) raw data. The spectra of the
predicted (green) and observed (yellow) envelope data are shifted toward lower frequencies.

3.2 Adjoint Wave�eld Propagation

Seismic waveform inversion is often performed using the adjoint methods because the

cost of computing the Fr�echet derivatives of the mis�t functionals is prohibitively high.

Such adjoint methods operate adjoint wave�eld variables, which satisfy the so-called adjoint

wave equations. If the wave equations used in the forward simulations are self-adjoint, the

adjoint wave equations retain the same form. On the other hand, if the wave equations for

forward simulation are not self-adjoint, such as the ones I use in this thesis (based on low-

rank decomposition and generalized pseudospectral methods), the adjoint wave equations
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have to be solved di�erently from the forward-modeling equations.

A common way to verify the correctness of forward and adjointsimulators is the dot-

product test (Claerbout and Black, 2008). One approach to pass the dot-product test is

by automatic di�erentiation (Griewank and Walther, 2008; Rall, 1981) that programs the

adjoint simulator. The automatic di�erentiation is a powerful algorithm because it can deal

with arbitrarily complicated forward simulators and there is no need to manually code up

additional programs. However, state-of-art implementations of the automatic di�erentiation

do not necessarily produce optimized codes and the resulting codes can sometimes be user-

unfriendly. For the simple wave�eld simulators I use in the thesis, the adjoint wave equation

can be derived analytically and coded up in a straightforward way.

Since the forward wave�eld simulators are basically successive matrix-vector multipli-

cations applied to wave�eld vectors, the numerical adjointwave�eld simulators represent

the transposed matrices successively operating with wave�eld vectors. The mixed-domain

adjoint wave equations can be written in the following generic form:

@tt u(k; t) + ~� (x; k)u(k; t) = 0 ; (3.8)

where ~� (x; k) is the numerical adjoint mixed-domain operator. In the case of the low-rank

decomposition simulator, the adjoint mixed-domain operator is:

~� (x; k) = R | L | ; (3.9)

where | indicates the matrix transpose, andL and R are de�ned in equations 2.27 and 2.28.

The corresponding time-stepping formula then becomes:

u(x; t + � t) + u(x; t � � t) = F � 1
h
R | F [L | u(x; t)]

i
; (3.10)

which is di�erent from the forward time-stepping formula 2.29.

3.3 Medium Parameterization

The goal of seismic waveform inversion is to estimate the medium parameters by matching

modeled and observed seismic data. Tsvankin (1997, 2012) shows that all kinematic signa-
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tures of P-waves in orthorhombic media are fully controlledby six independent parameters,

which were introduced in the previous chapter. However, one can use certain combinations

of these parameters to facilitate the inversion. The optimal choice of parameterization is

crucial in obtaining accurate inversion results (Kamath and Tsvankin, 2016; Masmoudi and

Alkhalifah, 2016). Here, I perform the WI using the parameters

V 2
Pz; V 2

Px ; V 2
Py ; V 2

nmo1; V 2
nmo2; V 2

nmo3 (3.11)

de�ned in equations 2.14-2.19. This choice is based primarily on the convenience in com-

puting the gradients. Analysis of the radiation patterns canhelp in choosing optimal pa-

rameterizations for speci�c acquisition geometries and inversion scenarios. The numerical

example below illustrates how this parameterization addresses parameter trade-o�s.

I employ relatively simple orthorhombic models with a Gaussian anomaly in each pa-

rameter (Figure 3.3). As illustrated in Figure 3.4(a), the anomalies for di�erent parameter

�elds do not overlap. The wave�eld is excited by an areal source array located at the sur-

face (Figure 3.4(b)). To remove the in
uence of illuminationon the inversion results, I put

receivers at each grid point on all six faces of the model cube.

The WI gradients for the background (initial) model are computed using the adjoint-state

method, as discussed above and in section 3.4. Because the gradients govern the spatial

positions and relative magnitudes of model updates, they help evaluate the performance of

the chosen parameterization. Ideally, the gradient for each parameter should be nonzero only

in the area of its Gaussian anomaly, which would imply the absence of parameter trade-o�s.

The gradients for the parameterization (equation 3.11) computed with the classical`2-

norm data di�erence are shown in Figure 3.5. Although the gradients generally concentrate

near the Gaussian anomalies, they are somewhat smeared in space, especially for the pa-

rametersV 2
nmo1, V 2

nmo2, and V 2
nmo3. Therefore, it is di�cult to identify the precise locations of

the anomalies for the three NMO velocities, which would create trade-o�s in the inversion.

This is an indication of coupling or trade-o�s between the medium parameters. Fortunately,

the gradients for the P-wave velocitiesVPz, VPx , and VPy show clear Gaussian-shape patterns
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Figure 3.3: Models for the six parameters of an acoustic orthorhombic medium. Gaussian
anomalies are embedded in a background medium with linearlyincreasing velocities.

(a) (b)

Figure 3.4: (a) Six Gaussian anomalies from Figure 3.3 plottedtogether. (b) Projections of
the anomalies from Figure 3.4(a) and the array of sources (reddots) at the surface.

at the locations of the anomalies, which indicates that theyare better constrained than the

NMO velocities.
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Figure 3.5: WI gradients for the model from Figure 3.3 computed with the `2-norm data
di�erence. The gradients correspond to the background model in Figure 3.3 with the linearly
increasing velocities.

3.4 Waveform Inversion Gradients

To compute the gradients of the objective function using theadjoint-state method (Plessix,

2006; Tromp et al., 2005), one augments the mis�t functionalas:

� = J � h �; F i ; (3.12)

where the symbolh�; �i denotes the inner product in theL2-space (to which the state and

adjoint variables belong), andF is the discretized state equation:

F = @tt u(k; t) + � (x; k) u(k; t) � f s = 0 ; (3.13)

wheref s is the source term. The adjoint variable� satis�es the discretized adjoint equation:

F | = @tt � (k; t) + ~� (x; k)� (k; t) � f a = 0 : (3.14)
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The gradients of the original mis�t functional are then derived by setting the derivatives of

the augmented mis�t functional (equation 3.12) to zero:

@�
@m

=
@J
@m

�
�

�;
@F
@m

�
= 0 : (3.15)

Since the low-rank decomposition simulator for acoustic orthorhombic media does not pro-

duce a closed-form wave equation, I propose to use the wave equation obtained with the

generalized pseudospectral method to compute the term@F=@min equation 3.15, which is

required to obtain the gradients. With the separable mixed-domain operator (equation 2.33)

derived from generalized pseudospectral method, substituting the parametersV 2
Px , V 2

Py , V 2
Pz,

V 2
nmo1, V 2

nmo2, and V 2
nmo3 for m yields

@J
@(V 2

Px )
=

�
�;

�
k2

x �
V 2

Py � V 2
nmo3

V 2
r

k2
xk2

y

k2
�

V 2
Pz

V 2
r

k2
xk2

z

k2

�
u

�
; (3.16)

@J
@

�
V 2

Py

� =
�

�;
�

k2
y �

V 2
Px

V 2
r

k2
xk2

y

k2
�

V 2
Pz

V 2
r

k2
yk2

z

k2

�
u

�
; (3.17)

@J
@(V 2

Pz)
=

�
�;

�
k2

z �
V 2

Px � V 2
nmo2

V 2
r

k2
xk2

z

k2
�

V 2
Py � V 2

nmo1

V 2
r

k2
yk2

z

k2

�
u

�
; (3.18)

@J
@(V 2

nmo1)
=

�
�;

�
V 2

Pz

V 2
r

k2
yk2

z

k2

�
u

�
; (3.19)

@J
@(V 2

nmo2)
=

�
�;

�
V 2

Pz

V 2
r

k2
xk2

z

k2

�
u

�
; (3.20)

@J
@(V 2

nmo3)
=

�
�;

�
V 2

Px

V 2
r

k2
xk2

y

k2

�
u

�
; (3.21)

whereu is the wave�eld variable found from the state equation 3.13,and � is the wave�eld

variable from the adjoint equation 3.14.

To verify the derived gradient formulae, I apply both the data-di�erence and envelop-

based mis�t functionals for the model in Figure 3.6. The data are generated for 16 shots (red

dots) in Figure 3.7 at every grid point on the horizontal surface. Figure 3.8 shows the initial

models used for computing the gradients. Figure 3.9 and Figure3.10 display the gradients

obtained using the classical data-di�erence and squared envelope mis�t functionals. Both

gradients have substantial values only in the shallow part of the model because the initial
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Figure 3.6: Orthorhombic medium obtained from the SEG/EAGE overthrust model. The
velocities are scaled from the original P-wave isotropic velocity �eld.

Figure 3.7: Horizontal projection of the source locations (red dots), which are on the surface
of the model from Figure 3.6.
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velocity �elds are quite smooth and most of the modeled energy represents diving waves. The

gradients computed with the data-di�erence functional contain higher-wavenumber informa-

tion, which may cause problems during the early stages of WI. In contrast, the gradients

produced by the squared envelope mis�t functional are more smooth and have a lower-

wavenumber content, which should help in updating long-wavelength macro models for later

iterations of WI.

Figure 3.8: Initial parameter �elds used to compute the WI gradients for the model in
Figure 3.6. The initial velocities are smoothed and deviate signi�cantly from the actual
values.

3.5 Synthetic Example of Waveform Inversion

Here, WI is applied to synthetic data using an iterative gradient-based algorithm. I

employ the limited memory variable metric method with box bounds (Benson and Mor�e,

2001; Thi�ebaut, 2002), which represents a version of the BFGS methods (Liu and Nocedal,

1989).
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Figure 3.9: Gradients for the model from Figure 3.6 computed with the `2-norm data di�er-
ence functional. The gradients correspond to the initial model Figure 3.8.

Figure 3.10: Gradients for the model from Figure 3.6 computed with the `2-norm squared
envelope functional. The gradients correspond to the initial model Figure 3.8.
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Figure 3.11: Orthorhombic medium modi�ed from the SEG/EAGE overthrust model. The
velocities are scaled from the original P-wave isotropic velocity �eld.

Figure 3.12: Horizontal projection of the source locations (red dots), which are on the surface
of Figure 3.11.
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For this test, I use a modi�ed portion of the SEG/EAGE overthrust model (Figure 3.11).

The observed data consist of 25 shot gathers, which are generated with the generalized

pseudospectral method. To avoid the \inverse crime," the low-rank decomposition simulator

is used in the inversion process. Figure 3.12 shows the shot locations on the surface; the

receivers are also located on the surface. I assume that the source function is known, which

has peak frequency around 20 Hz and a frequency bandwidth of approximately 50 Hz.

The initial models for WI are obtained by smoothing the actualvelocity �elds (Fig-

ure 3.13). The WI is performed using the multifrequency-bandapproach with �ve ranges:

0 � 8 Hz, 0� 16 Hz, 0� 32 Hz, and 0� 64 Hz. I stop the iterations for each frequency band

when the mis�t functionals no longer decrease signi�cantly. The total number of iterations

reached 102 with over 600 gradient evaluations. The inverted models (Figure 3.14) show

signi�cant improvement compared to the initial ones, with important geological structures

such as faults, synclines, anticlines and low-velocity zones being better resolved.

The velocitiesVPz, VPy , and VPy are better constrained than the NMO velocities for this

particular con�guration of surface data, which con�rms theresults of the gradient computa-

tion for the model with Gaussian-shape anomalies (Figure 3.5). I put masks around source

positions to avoid large spurious updates in those areas, which is a typical practice in WI.

The spurious updates are more obvious in the NMO velocities, especially aroundz = 0:2 km

in the inverted Vnmo2 model.

To examine the inversion results, I plot verticalVPz-pro�les from the actual, initial, and

inverted models (Figure 3.15) at the locations marked red dots in Figure 3.15. Although not

perfectly recovered, the inverted velocities are much closer to the actual values compared to

the initial models. In �eld-data applications, one does nothave access to the actual models,

so it is important the verify the inversion results using other metrics. Since WI is a data-

�tting problem, the inversion results can be evaluated by comparing data residuals before and

after the inversion. Figure 3.17(a) and Figure 3.17(b) show the data residuals for a typical

shot gather computed with the initial and inverted models. The most signi�cant decrease
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Figure 3.13: Initial parameter �elds used to perform WI for themodel in Figure 3.11. The
initial velocities are smoothed and deviate signi�cantly from the actual values.

Figure 3.14: Inverted parameter �elds after 102 iterations of the inversion algorithm.
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of the data residual appear in the far-o�set traces (aroundx = 7 km). However, the data

residuals at near-o�set traces do not improve too much. Thisis because conventional WI

mostly �ts the diving wave energy. Quantitatively, the `2-norm of data residuals decreases

from 27:3 to 15:4 after the inversion.

Overall, the synthetic example demonstrates the potentialof obtaining high-resolution

anisotropy parameters from WI. The data �t is not perfect because of parameter trade-o�s

that produce a complicated, multimodal objective function. Nevertheless, there is a signif-

icant decrease in the data mis�t after performing WI, and the inverted model parameters

are much closer to the actual values compared to those from the initial model.

Figure 3.15: Vertical pro�les of the true (black), initial (red), and inverted (blue) velocity
VPz at locations shown in Figure 3.16.
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Figure 3.16: Locations of velocity pro�les in Figure 3.16.

(a) (b)

Figure 3.17: Data residuals using (a) the initial, and (b) theinverted models.
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CHAPTER 4

CONCLUSIONS AND RECOMMENDATIONS

In this chapter I summarize the thesis work and provides somerecommendations for

future work.

4.1 Conclusions

I developed algorithms for modeling and inversion in acoustic orthorhombic media, and

employed them to study the feasibility of 3D waveform inversion of wide-azimuth surface

data. Wave�eld simulations are carried out with the mixed-domain extrapolator using low-

rank decomposition. The gradient computation, however, isbased on the wave equation

obtained by the generalized pseudospectral method. The choice of wave�eld extrapolator is

determined by the superior accuracy and stability of the method based on low-rank decompo-

sition. I performed multiparameter inversion for acousticorthorhombic models described by

the P-wave velocitiesV 2
Pz, V 2

Px , and V 2
Py in the coordinate directions and the NMO velocities

V 2
nmo1, V 2

nmo2, and V 2
nmo3.

Synthetic examples reveal signi�cant trade-o�s among the parameters. For surface seis-

mic data, VPz, VPx , andVPy are generally better constrained by WI than the NMO velocities. I

demonstrate that envelope-based inversion can potentially help reconstruct low-wavenumber

model parameters when the initial model is highly inaccurate. The quasi-Newton gradient

descent optimization methods perform reasonably well in the synthetic testing in terms of

their convergence rate and computational cost.

A synthetic example for a realistic geological structure shows that WI generates high-

resolution VPz, VPx , and VPy models in acoustic orthorhombic media, provided that the

initial velocity �elds are su�ciently accurate. Although th e low-wavelength NMO velocities

are well-constrained by re
ection traveltimes, their higher-frequency components are not
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accurately resolved by WI. Overall, this work proves that there is great potential in improving

velocity models by performing WI for orthorhombic media.

4.2 Recommendations

Depending on the type of data used in the inversion, the acoustic approximation may

break down. Incorporating the shear-wave information frommulticomponent data can help

constrain the anisotropy parameters which do not in
uence P-wave kinematics. However,

moving beyond the acoustic approximation for orthorhombicmedia requires solving the

solving 3D elastic wave equation. Aside from the need for morecomputational power, the

large model space may cause additional parameter trade-o�sand numerical challenges even

for state-of-the-art optimization algorithms.

As my synthetic WI examples showed, there are signi�cant trade-o�s among the pa-

rameters of acoustic orthorhombic media. To choose the optimal parameter set for a given

acquisition geometry, one can analyze the sensitivity kernels (Liu and Tromp, 2008) and

radiation (scattering) patterns (Alkhalifah and Plessix, 2014; Gholami et al., 2013) based on

the Born approximation.

Comparison of the observed and synthetic seismograms remains a topic of ongoing re-

search. The conventional̀ 2-norm data-di�erence mis�t functionals are highly noncon-

vex, which causes cycle-skipping issues. Standard signal-processing techniques (e.g., time-

frequency and wavelet analysis), and more advanced statistical approaches might help miti-

gate the cycle-skipping and obtain better inversion results.

The e�ciency and stability of large-scale anisotropic WI depend on the performance

of nonlinear optimization solvers. Current research showsthat the limited-memory quasi-

Newton methods generally outperform other gradient-based optimization algorithms in large-

scale waveform inversion. It would be bene�cial to incorporate e�cient optimization algo-

rithms with nonlinear constraints into seismic WI methods.

As a general inverse problem, WI should bene�t from preconditioning and regularization.

In particular, good preconditioners improve the convergence of numerical optimization. Di-
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agonal scaling is often used to account for amplitude factors including geometrical spreading,

source illumination, etc. Most preconditioners involve some information about the Hessian

of the mis�t functional. However, preconditioners are problem- and model-dependent, and

need to be updated during WI iterations. Regularization explicitly adds a priori information

into the mis�t functionals, which improves the convexity and makes the inverse problem less

nonunique. Standard techniques like Tikhonov and total-variation regularizations can be

helpful in making WI results more robust.

Another important issue is how to quality-control the inversion results. Conventional WI

techniqus only generate one �nal model as the output, which makes it essentially a data-

�tting problem. Data assimilation and uncertainty quanti� cation are important in under-

standing and assessing the inversion results and, therefore, help lower the risk in exploration

applications.

Finally, applying anisotropic WI to �eld data faces a number ofchallenges. Noise sup-

pression and including available information about anisotropy parameters are especially im-

portant in obtaining reliable inversion results.
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APPENDIX A - ANALYTIC SOLUTION FOR P-WAVE DISPERSION RELATION

Here, I use an analytic solution for the roots of a cubic polynomial equation:

x3 + ax2 + bx+ c = 0 : (A.1)

A convenient method of solving equation A.1 was originally published by Gerolamo Cardano

in the 16th century. It operates with the coe�cients

p = b�
a2

3
; (A.2)

and q =
2a3 � 9ab+ 27c

27
: (A.3)

The discriminant of the cubic equation is:

� =
� p

3

� 3
+

� q
2

� 2
: (A.4)

If � > 0, the cubic equation has one real and two imaginary roots:

x1 = m + n �
a
3

;

x2;3 = � 0:5(m + n) � (m � n)

p
3

2
i �

a
3

;
(A.5)

where

m = 3

q
� q=2 +

p
� ; (A.6)

n = 3

q
� q=2 �

p
� : (A.7)

If the discriminant goes to zero, the cubic equation has three real roots, two of which are

identical:

x1 = 2 3
p

� q=2 �
a
3

;

x2;3 = 3
p

q=2 �
a
3

:
(A.8)
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If the discriminant is negative, the equation has three realroots:

x1 = 2
p

� p=3 cos
�

�
3

�
�

a
3

;

x2 = 2
p

� p=3 cos
�

� + 2�
3

�
�

a
3

;

x3 = 2
p

� p=3 cos
�

� + 4�
3

�
�

a
3

;

(A.9)

where

� = cos� 1

 

�
q

2
p

(� p=3)3

!

: (A.10)

The P-wave dispersion relation is obtained by �nding the largest real root, which produces

the highest velocity.
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APPENDIX B - SEPARABLE MIXED-DOMAIN OPERATOR IN ACOUSTIC

ORTHORHOMBIC MEDIA

I consider an orthorhombic model for which the Cartesian coordinate planes coincide with

the planes of symmetry. The P-wave dispersion relation in orthorhombic media represents

a cubic equation in! 2 :

! 6 + a ! 4 + b ! 2 + c = 0 ; (B.1)

wherea, b, and c depend on the elements of the Christo�el matrix. The analytic solutions for

phase velocity given, for example, by Tsvankin (1997), yield the following dispersion relation

for P-waves:

! 2
P = �

2
3

�
�

p
1 � 3b=a2 +

1
2

�
; (B.2)

where

� = cos

(
1
3

cos� 1

"

�

p
27
2

q(� d)� 3=2

#)

; (B.3)

and

d = �
a2

3
+ b ;

q = 2
� a

3

� 3
�

ab
3

+ c :
(B.4)

To derive a separable form of the dispersion relation, I �rstexpand � and
p

1 � 3b=a2 in a

series with respect to the coe�cienta in equation B.2. Fowler and Lapilli (2012) and Fowler

et al. (2015) present several approximations for such an expansion. Here, I use the following

approximate dispersion relation:

! 2
p = � a +

b
a

�
c
a2

+
b2

a3
�

3bc
a4

+
2(b3 + c2)

a5
�

10b2c
a6

+
5b(b3 + 3c2)

a7
�

7c(5b3 + c2)
a8

+
14b2(b3 + 6c2)

a9

�
42bc(3b3 + 2c2)

a10
+

6(7b6 + 70b3c2 + 5c4)
a11

� � � � :

(B.5)

45



The term a� 1 has to be modi�ed further for equation B.5 to be separable. I follow the

procedure of Fowler and Lapilli (2012), who representa� 1 as:

a� 1 = � V � 2
r k� 2(1 � 2E)� 1

= � V � 2
r k� 2

�
1 + 2E + 4E 2 + 8E 3 + � � �

�
;

(B.6)

where

E �
1
2

(1 +
a

V 2
r k2

) ; (B.7)

Vr = ( VP 1VP 2VP 3)1=3 is a reference velocity andVP i (i = 1; 2; 3) are the P-wave velocities in

the coordinate directions. Combining equations B.5 - B.7, substituting the expressions for

a, b, and c in terms of the elements of the Christo�el matrix, and truncating the expansions

after the linear terms, I arrive at the following separable form of the approximate P-wave

dispersion relation for acoustic orthorhombic media:

! 2
p = V 2

P 1k2
1 + V 2

P 2k2
2 + V 2

P 3k3
3 �

V 2
P 3(V 2
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V 2
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3
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3
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P 1(V 2
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V 2
r
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1 k2

2

k2
;

(B.8)

whereVnmo1, Vnmo2, and Vnmo3 are de�ned in the main text (equations 2.17 - 2.19). A more

symmetric form of equation B.8 can be obtained by introducing new variables,

V 2
pa1 = Vnmo1VP 3 ;

V 2
pa2 = Vnmo2VP 3 ;

V 2
pa3 = Vnmo3VP 1 :

(B.9)

Substitution of the parameters from equation B.9 into equation B.8 leads to

! 2
p = V 2
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P 2V 2

P 3 � V 4
pa1

V 2
r

k2
2 k2

3

k2

�
V 2

P 1V 2
P 3 � V 4

pa2

V 2
r

k2
1 k2

3

k2
�

V 2
P 1V 2

P 2 � V 4
pa3

V 2
r

k2
1 k2

2

k2
:

(B.10)

The parameterization of acoustic orthorhombic media in terms of VP 1, VP 2, VP 3, Vpa1, Vpa2,

Vpa3 can be found in Chapman (2004) and Fowler et al. (2015). The associated mixed-domain

operator � (x; k) can also be expressed in a separable form (see equation 2.32):

� (x; k) =
3X

i =1

�
V 2

P i k
2
i �

V 2
P 1V 2

P 2V 2
P 3=V2

P i � V 4
pai
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2 k2
3

k2
i k2

�
: (B.11)
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APPENDIX C - ADJOINT SOURCE FOR ENVELOPE-BASED MISFIT

FUNCTIONALS

Here, I derive the adjoint source for the squared-envelope-di�erence mis�t functional. An

analytic signal a(t) is de�ned as:

a(t) = d(t) + i H [d](t) ; (C.1)

whereH[�] is the Hilbert transform, and d(t) is the original signal. The Hilbert transform of

a time series with compact support can be written as the convolution of that series with the

function h(t) = 1 =(�t ):

H [d](t) = h(t) ? d(t) : (C.2)

Because convolution is a linear operation, equation C.1 canbe discretized in time:

a[l ] = d[l ] + i
X

m

H [l; m]d[m] ; (C.3)

whereH [l; m] is the l-th row, m-th column element of the convolution matrix obtained from

h[l � m]. In vector notation,

a = d + i Hd : (C.4)

The envelope of the original signal is given by:

e(t) =
p

d2(t) + H [d]2(t) ; (C.5)

and the discrete envelope function has the form:

e[l ] =

s

d[l ]d[l ] +
X

m

H [l; m]d[m]
X

n

H [l; n]d[n] ; (C.6)

where there is no summation overl . The mis�t functional based on`2-norm squared envelope

di�erence is:

J =
1
2

X

i 2 � x




 e2

i � eo2
i




 2

; (C.7)
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where i is the index of spatial position and �x is the corresponding index set;e and eo are

the envelopes of the synthetic and observed (recorded) data, respectively. To compute the

adjoint sources used for adjoint modeling, the mis�t functional is di�erentiated with respect

to the wave�eld variable u:

f a[n] =
@J

@u[n]
; (C.8)

where f a[n] is the discrete-time adjoint source at the location of the receivers, andu[n] is

the discrete-time wave�eld. Here, because I do not distinguish the wave�eld u[n] from the

recorded datad[n], the adjoint source can also be written as:

f a[n] =
@J

@d[n]
: (C.9)

Substituting the mis�t functional C.7 into equation C.9 yields:

f a[n] =
@J

@d[n]

=
X

l

@J
@e2[l ]

@e2[l ]
@d[n]

=
X

l

� e2[l ]
@e2[l ]
@d[n]

=
X

l

� e2[l ]

 

2d[l ]� ln + 2H [l; q]� qn

X

p

H [l; p]d[p]

!

=2

"

� e2[n]d[n] +
X

l

H [l; n]

 

� e2[l ]
X

p

H [l; p]d[p]

!#

=2

"

� e2[n]d[n] +
X

l

H | [n; l ]

 

� e2[l ]
X

p

H [l; p]d[p]

!#

;

(C.10)

where � e2[l ] = e2[l ] � eo2[l ] is the the squared envelope di�erence, and� ln and � qn are

Kronecker's symbolic deltas. The adjoint source can be written in vector notation:

f a = 2
�

�e 2 � d + H |
�
�e 2 � Hd

�	
; (C.11)
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where \� " denotes the Hadamard (Schur) product (Davis, 1962). The Hilbert transform is

an anti-self-adjoint operator:

H | [n; l ] = � H [n; l ]; (C.12)

and the adjoint source function becomes:

f a = 2
�

�e 2 � d � H
�
�e 2 � Hd

�	
: (C.13)

The corresponding continuous-time adjoint source function can be written as:

f (t) = 2
�

� e2(t)d(t) � H
�
� e2(t) H [d(t)]

�	
; (C.14)

which is derived in a di�erent way in Wu et al. (2014).
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