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ABSTRACT

By exploiting and leveraging the intrinsic properties of the obsened signal, many signal processing and
machine learning problems can be e ectively solved by transforminghem into optimization problems,
which constitutes the rst part of the thesis. The theoretical sample complexity for exact signal recovery
and the recovery error bound with noisy observation can be derived forhe optimization methods.
However, it is not e cient for optimization methods to deal with high- dimensional signals and observation
with the complex noise and non-stationary sensing process. Thus, ithe second part of the thesis, we focus
on applying data-driven methods using deep learning techniquesat high-dimensional problems in order to
verify and examine their e ciency and capability of handling the comp lex noise and complicated sensing
process in real data. Finally, in the third part, we develop optimization-inspired data-driven methods for
several inverse problems in signal processing and machine learninBxperiments show that the proposed
optimization-inspired data-driven methods can achieve a comparable @rformance of the optimization
methods, are extremely e cient in handling high-dimensional signals, and are very robust against the noise
and complicated sensing process. This reveals the potential to digm data-driven methods, following
traditional optimization approaches, to robustly address challenging poblems in signal processing and
machine learning.

Part 1. Optimization Methods. In this part, we apply optimization methods to several inverse prodems
in signal processing and machine learning, including the signal and g@port recovery problems for the
sparse signal with non-stationary modulation and parameter estimation of danped exponentials. For the
inverse problems of sparse signal with non-stationary modulation, we dére the theoretical su cient
sample complexity for exact recovery and bound the signal recovery eor in the noisy case.

Part 2: Data-driven Methods. In this part, we apply data-driven methods to several machine learing
problems, which include recognizing the 3-dimensional (3D) chessigres and classifying and clustering
inlier correspondences of multiple objects in computer vision. Tl experiment results demonstrate the
e ciency and robustness of data-driven methods against complex noiseni the high-dimensional real data.

Part 3: Optimization-inspired Data-driven Methods. In this part, we develop data-driven methods
based on the optimization techniques. By unfolding the optimization methods and making the parameters
trainable, we obtain deep architectures that can achieve a fast approxnation of the original optimization
approaches and deal with signal models with the complicated sensing pcess that can not be modeled
properly by optimization methods. We also design deep networks follwing the atomic norm optimization

process for multiband signal identi cation and parameter estimation of contaminated damped exponentials.
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CHAPTER 1
INTRODUCTION

In this chapter, we brie y introduce the background of the optimizat ion and data-driven methods
studied in this thesis. Based on that, we outline the central themeof this thesis and present our

contributions.
1.1 Optimization for Sparse Signal Recovery

The exponentially increasing amount of data results in a growing inteest in exploiting the signal
intrinsic properties to extract the desired information. And for a | ot of applications in machine learning,
computer vision, and image processing, the signal that gives rise to thebservation can be modeled by an
approximately sparse signal. For example, the image can be well approxiated in the wavelet transform
domain [1] with a sparse coe cient vector. Thus, there is an immenseinterest in the problem of sparse
signal recovery from limited linear observations, which has been eensively studied in the compressed
sensing (CS) [2{4].

A vector is called sparse when it contains only a small number of non-zerentries compared to its
dimension. In the typical sparse signal recovery problem in compred sensing, we aim to recover such a
sparse vector from its linear observations. Mathematically, given the obervation vectory 2 RN and the
sensing matrix A =[ag;ar; ;aw]2 RN M, we want to recover a sparse vectox 2 RM which contains

only J (J <M ) non-zero entries.

y = Ax = Xiai: (1.1)

In a growing list of applications, the system is under-determinedand N is signi cant smaller than M. In
this case, there may exist in nity number of solutions, X, satisfyingy = AX. To enforce the sparsity, we

can minimize the number of non-zero entries in the candidate® while constrainingy = A
min jjxjjo subjectto y = Ax (1.2)
X
However, this problem is intractable which requires combinatorial ®arch ofJ non-zero indices amongM
entries. To make the problem tractable, the most well-known approachis replacing the “o norm with a

convex 1 norm, which calculates the sum of the absolute value of all entries. Thi process is known as the

convex relaxation [5, 6], which leads to a convex optimization method [7]dr sparse signal recovery

min jjx jj1 subjectto y = Ax: (1.3)



In presence of noise, wherg = Ax + n andn 2 RN is the additive noise vector, we can apply the'; norm

regularized minimization (also known as the lasso problem [8])

min Jily  AXiig+ jixiis (1)
with a regularization parameter to exploit the sparsity. If the amount of noise is boundedjjnijj, , we
can apply

minjixjii ~ subjectto jyy Axjz (1.5)

1.1.1 Extension to Incorporate Signal Modulation

In order to accommodate more complicated applications like self-caliation [9] and blind
deconvolution [10], several model extensions [9{12] are proposed to incorgae the signal modulation into
the sparse signal recovery problem. Mathematically, the system obsees

b

y=DAX+n= xiDaj+ n (1.6)

i=1
whereD 2 RN N js an unknown diagonal matrix and performs the element-wise multiplcation (also
known as modulation in signal processing). Speci cally, in self-cabration problem for multiple sensors [9],
D contains the unknown gain for each sensor that needs to be calibrated. Ithe super-resolution
imaging [11], D represents the unknown point spread function that needs to be detrmined. Moreover, in
many applications [9,11{13],D lives in a known K (K < N ) dimensional subspace. Namelyp = diag(Bh)
whereB 2 RN K consists of the subspace bases arfd2 R is the unknown coe cient vector. In this
case, we aim to recover both the sparse signal and the modulation matrix D. Note that recovering D is

equivalent to recoveringh. Following (1.4), one may easily formulate the optimization problem
min Zjjy  diagBh)Axjiz + jixjis 1.7)

to recover x and h. However, (1.7) is non-convex and we might get trapped in a local minimum To make
the problem well-posed, we can apply the lifting technique [10, 11, 14]a construct a column-wise sparse
matrix X = hxT 2 RK M that contains all unknown parameters. Then if the noise is boundedjjnjj,
we can formulate a convex optimization problem [9]

minjjXjj.  subjectto jiL (X) ] (1.8)
to recover X and bound the recovery error. Here,L denotes the linear sensing process described in (1.6),
L(X)= DA x.

In Chapter 2 and 3, we further generalize (1.6) to



X
y = XxiDiaj+ n; (1.9

i=1
where each dictionary atoma; undergoes a distinct modulation process withD; = diag(Bh;), to which we
referred as non-stationary modulation. And we propose the correspondingonvex optimization methods for

recoveringx and D; with bounded and unbounded Gaussian noise in Chapter 2 and 3 respec#ly.
1.1.2 Overview of Recovery Performance Analysis

After formulating a convex optimization method for the sparse signal reovery problem, a question
arises naturally: how to analyze the recovery performance of the propesl optimization method? And the
answer to the above question is twofold. In the noiseless case, we watat determine under what conditions,
e.g. the su cient number of observations, the proposed optimization mehod can recover the ground-truth
sparse signalx ¢ exactly. In the noisy case, we want to bound the recovery errorjjR  Xojj2, between the
estimated solution ® and ground-truth Xg.

For analyzing the exact recovery performance in the noiseless caseewnainly study the null space

property [15] of the sensing matrix A .

Theorem 1.1. [16, Theorem 4.30 ] The vectorxg 2 RM with support T (indices of non-zero entries and

TC denotes the complementary set) is the unique solution to the optimation problem (1.3) if and only if

X
sign(xj)z + jjzrcjji> 0 (1.10)
j2T
for all z 6 0 in the null space ofA.

Based on Theorem 1.1, we can derive Theorem 1.2 which constructs a dualoter u 2 RM living in the

range space ofA . The existence ofu guarantees the uniqueness of o to problem (1.3).

Theorem 1.2. [16, Theorem 4.32 ] The vectorxg 2 RM with support T is the unique solution to the
optimization problem (1.3) if there exist , , 0, + < 1, andavectoru 2 RM in the range

space ofA such that

jlur sign(xo;7)iiz and jjurclis (1.11)

and the sensing matrixA satis es ( jj jj denotes the spectral norm)

i(ArAT) and maxjjArai; (1.12)



We can construct such a dual vectoru via the gol ng scheme [9,17,18], in which a series of vectors in
the range space ofA are constructed iteratively. In each iteration step, only some of the neasurements
are utilized and the constructed vectors will converge to sign{o.t) on support T while keeping entries on
TC small. During the construction of the dual vector u, we would obtain the su cient number of
observations for exact sparse recovery. Speci cally, with the i.id (independent and identically distributed)
random entry assumption [19] on the sensing matrixA , literature [2, 3,19{21] has shown that the su cient
number of observations for exact recovery is proportional to the signal sarsity J and the log of the sparse
signal dimension logM ). In Chapter 2, the equivalent theorems to Theorem 1.1 and 1.2 for noiselss
sparse signal with non-stationary modulation are derived. By construcing the dual certi cate, we show
that for exact recovery of the sparse signal and modulating signals, theuscient number of observations N
is proportional to the sparsity J, subspace dimension of the modulating signak , and the log of the sparse
signal dimension logM ).

Moreover, in presence of bounded noisgjnjj» , by solving (1.5), [16, Theorem 4.33 ] bounds the
recovery error in terms of ", norm, which scales linearly with respect to . In Chapter 2, we study the
bounded noise for sparse signal with non-stationary modulation and derivehe corresponding recovery
error in terms of the Frobenius norm. In addition, in presence of unbomded Gaussian noise, the sparse
signal cannot be recovered exactly. Instead, people aim to recover ¢hsupport of the sparse signal
via (1.4). And its exact support recovery conditions on the regularizaton parameter and number of
observationsN are derived in [22] via the primal-dual withess method [23]. The supprt recovery extension

to sparse signal with non-stationary modulation is studied in Chapter 3.
1.1.3 More Structured Signals

Besides the sparsity, there exist other structured signals that an be e ectively modeled and exploited
via di erent convex norms.

Block sparsity [24{26] is a generalized sparsity structure where the an-zero entries appear in block.
For multiple measurement vector (MMV) problem [27] that appears in magnetencephalography [28] and
through-the-wall imaging [29], the signal for recovery is a row-wise s@rse matrix, which contains only a
few non-zero rows. In the sparse recovery with common modulation [90] introduced in Section 1.1.1 and
with non-stationary modulation that will be presented in Chapter 2 and 3, the lifted matrix
X =[x1;%X2;  ;Xm]2 RK M that contains all unknown parameters is a column-wise sparse matrix.The
row-wise sparsity and column-wise sparsity are interchangeably by &anspose operation. And”,.; norm

can be applied to exploit this block sparsity structure



e .. X/l e e
iXjiza = nXila2: (1.13)
i=1
We can observe that™; norm is a special case of thé,.; norm when the dimension ofx; is one for alli.
Low-rank [30{32] is another important signal property that can be e ectively exploited by the nuclear
norm [33,34]. We denote thei-th largest singular value of a matrix X 2 R% 9 as ;(X). Then the
nuclear norm of X is given as
min @1 ;d2g
iXii = i(X): (1.14)
i=1
Since the singular value is non-negative, the nuclear norm can be vieweas imposing the™; norm on the
matrix's singular value vector which enforces the number of non-zersingular values ofX to be small. And
the number of non-zero singular values is equivalent to the rank of thematrix. The low rank matrix

appears in applications like imaging recovery [35] and data compression [36loreover, in Chapter 4, we

apply the nuclear norm to extract a low-rank Hankel matrix [37,38] for damped exponentials recovery.
1.2 Supervised Data-driven Deep Learning Method

Data-driven deep learning methods have attracted much attention de to their breakthrough
performance in image recognition [39], object detection [40,41], speech mgmition [42], etc. Compared to
traditional algorithms [43, 44] in computer vision and image processing, wher the object recognition and
detection heavily rely on hand crafted features like ORB [45] and SIFT[46] to match the area of interest
with an object template, the deep learning approach requires very tile engineering by hand in terms of
feature design and extraction. The input of the deep network is usuall the raw images and the network
would output a score vector, one entry for each category in object recognitin [39]. For object detection,
the network may output a vector consisting of the object location information [40], e.g. the coordinate
information and size of the bounding box. Thus, deep learning methosl can be easily applied to di erent
applications due to their automatic features learning and extraction.

In order to learn di erent levels of abstract features in the data, a deep learning network normally
consists of multiple computational layers. Each layer contains a conglerable amount of trainable weights
that would be updated via the back-propagation algorithm to minimize a desgnated training loss
measured on the training dataset. However, in order to learn the usefufeatures and reconstruct the
intricate mapping between the input and output, a large amount of training dataset is required to calibrate

the weights of a network. This leads to an overhead cost and a burden on apyng deep learning methods



to applications without a su cient number of training data. But after t raining, a xed-weight network can
handle high-dimensional data in real time in a feed-forward manner. Geerally, the supervised data-driven
deep learning method [39,47] consists of three steps to run; data acgition, network training, and
inference. In Chapter 5 and 6, we apply the deep learning methods t8D chess pieces recognition problem

and the 3D to 2D matching points classi cation and clustering problems n computer vision.
1.2.1 Deep Layers

A deep network is usually a multilayer stack of di erent simple layers or architectures with weights
subject to learning. The intermediate layers between the inputand output layers are known as the hidden
layers and we call each computational unit a neuron [48,49]. As the higheselel building block in a deep
network, there exist multiple representative deep layers for onstructing a deep architecture.

The fully connected layer [50] is one of the most commonly used layerdiat appears in many deep
networks. As stated by its name, the fully connected layer connectall neurons from the last layer to every
neuron in the current layer. And each connection between two neuros is associated with a learnable
weight followed by an activation function. There are di erent kinds of activation functions, like the
recti ed linear unit (ReLU) f (x) = max(0;x) and the sigmoid function f (x) = 1=(1+ e *). Nevertheless,
the ReLU function is preferable in avoiding the gradient vanishing poblem [51] and accelerating the
training process [52,53]. Each fully connected layer can be represed in the form of matrix multiplication
followed by the non-linear activation function. An example of the deep retwork with three fully connected
layers is shown in Figure 1.1. Usually, a fully connected layer is agjed after the input layer and before the

output layer to transform the signal dimension and implement the nal prediction respectively.

O
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Figure 1.1: A neural network consists of three fully connected layersThe network, denoted asg(y; W),
takes the observationy as input and predicts the signal of interestx. Each arrow line is associated with a
weight in W subject to learning.
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The convolutional layer [39,54,55] has been widely applied in the network esign for di erent
image-related applications including face detection [56] and image supeesolution [57]. The convolutional
layer is designed to deal with data in the form of arrays with multiple channels, e.g. the RGB image is a
2D array with 3 channels. Similar to the convolution operation in signal processing, the convolutional layer
performs the spatial convolution between a trainable kernel and the iput array across all channels. And
an one channel feature map is produced for each kernel. The ideas beHithis convolutional structure are
twofold [47]. First, local values are often correlated. Second, some loc&atures of an image are invariant
to the location. Namely, a feature, like the edge, appears in one place ithe image could appear in other
places in the same image. Note that a convolutional layer can also be convexd to the form of matrix
multiplication and then be represented using a fully connected dyer [58].

The batch normalization layer [59, 60] aims to accelerate the training proess of the network. One
challenge in network training is that when we update the weights of a spci c layer, we assume that the
data distribution of the previous layer does not change. However, dung training, all layers are updated

simultaneously which complicates the training process. Therefa, the batch normalization layer

x E(x)
(x)

standard deviation of x for a batch during training. The batch normalization layer would keep running

standardizes the input to a layer viay = where E(x) and (x) are the expected value and the
estimates of the mean and standard deviation during training, which wil be used for inference. After
standardization the batch normalization layer could also learn a linear tansformation,y = y +

ResNet and the skip connection [61,62] are initially proposed to address aedradation problem [61]
observed in network training: as the number of layers increases, thaetwork performance saturates and
degrades afterward. Therefore, the skip connection explicitly adds connection (or an identity mapping)
from the shallower layer to a deeper layer to mitigate this degradatbn problem caused by the increasing
number of layers. Moreover, the skip connection is also found useffin passing abstract features extracted
from shallower layers to deeper layers for image reconstruction [63] a@nsuper-resolution [64].

The recurrent network [65,66] is a special case of the deep network thabasists of repeatedly recurrent
blocks which share the same weights. The recurrent network has aakwved great success in sequence-related
applications like machine translation [67] and rumors detection [68]. The ecurrent network processes the
elements from the input sequence one at a time. And every time afteit takes an input from the sequence,
the network updates its internal state vector consisting of the information from all previous elements from
the sequence and outputs the current prediction. In applications ike the spammer classi cation, only the
output after the whole sequence is processed would be used. To eite the long-term temporal
dependencies between elements in the sequence, the long shi@tm memory (LSTM) [69] is proposed and

becomes a commonly applied recurrent structure.



1.2.2 Network Training

Similar to the optimization method, in network training, we need to f ormulate a loss function which
imposes our prior knowledge regarding the network output. By minimiang the average loss function value
measured on the training data, we can apply back-propagation to calculate theyradient with respect to
each weight and update the weight accordingly. For object classi cation poblem, the network predicts the

score vector, one entry for each category or class and we can apply the cros#repy loss [70,71]

X
loss(®;1) = I[i] log (R[i]) (1.15)
i=1

where® 2 RC is the predicted score vector forC classes) 2 RC is the true label vector, and [i] denotes
the predicted probability that input y belongs to thei-th class. For signal recovery problems, we can use
the squared errorjj®  Xojj3 between the predicted output® and ground-truth x, as the loss function to
ask the network output to be close to the ground-truth signal. Moreover, people may design the loss
functions tailored to their applications [72,73]. We can also achieve netark pruning [74,75] by adding

di erent types of regularization on the learnable weights to the loss function and removing neurons with
small weights during training. Due to the large amount of training data, stochastic gradient descent (SGD)
and Adam optimization algorithm [76] with a small batch size are commonly applie for training. The
learning rate controls the step size we update the weights and a large dening rate may lead to an unstable
training process. Thus, we would usually start with a small learnirg rate for a stable training process and
set a large number of epochs to ensure that we have the su cient nurher of iterations for network

calibration. And we should reduce the learning rate on plateau.
1.3 Optimization-inspired Data-driven Method

Advances in deep learning have led to a growing understanding of hoto design networks by
incorporating the techniques from the optimization method. One direction designs the output of a deep
network following the optimization method. For example, [77] and [78] degn networks for the line spectral
estimation which nd the frequency component nonparametrically via predicting a pseudo spectrum and
locating the frequency components from the predicted spectrumTo enforce the fact that a close estimate
is more valuable than estimates far from the ground-truth, in the pseua spectrum, each frequency spike is
convolved with a Gaussian kernel. In this case, when using the squed error loss function, the loss
function value for a close estimate is smaller than an estimate far from te ground-truth. This pseudo
spectrum is inspired by the traditional atomic norm optimization meth ods [4, 79, 80], where a dual solution

is constructed and a frequency spectrum can be plotted to locate th ground truth frequencies by



correlating the dual solution against exponential atoms of di erent frequencies. In Chapter 8 and 9, we
apply this approach to design deep architectures for multiband identcation and parameter estimation for
damped exponentials respectively.

Another popular direction is called algorithm approximation or unfolding [ 81, 82], where the deep
network is designed by unfolding the iterative optimization algorithm [83{85]. For example, the proximal

gradient descent [83] for solving%jjy Axjj3 + r(x), where r(x) is the regularization, has the form
xkK*t=p xk  AT(AXK y) =P (1 ATA)X*+ ATy (1.16)
where | is the identity matrix, is the step size, andP[] is the proximal operator
P[z] = argmin %jjx zZjj5 + r(x): (1.17)

By unfolding the proximal gradient descent and replacing the proximal operator with a proximal network,
we obtain the proximal gradient descent inspired deep architectue shown in Figure 1.2. In Chapter 7
and 10, we propose novel deep architectures by unfolding the projeetl gradient descent and proximal
gradient descent for solving the non-negative sparse recovery probteand support recovery problem for

sparse signal with non-stationary modulation, respectively.

Recurrent Block Recurrent Block

nATy nATy

I—n ATA %C.bﬁ ProximalNet [—>-.-—> [ — n ATA e@% ProximalNet — X

Figure 1.2: The deep architecture inspired by proximal gradient desent. All recurrent blocks share the
same weights.

V
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This unfolding approach is initially proposed to achieve a fast approximation of the original
optimization method. But it can also be applied to deal with the more conmplicated sensing process where
the original optimization method fails. By unfolding the optimization al gorithm widely applied in signal
processing and machine learning, the inspired deep architectureas a systematic relation with the unfolded
algorithm which results in a more interpretable network structure. And compared to the generic deep
network, the optimization-inspired deep architecture can sometines achieve better performance with even
a smaller number of weights by leveraging the knowledge of the sengjrprocess as in the optimization
algorithm. Besides the interpretability, the optimization-inspi red data-driven methods could achieve a

comparable performance of the optimization methods, are extremely e dent in handling high-dimensional



signal, and are very robust against the complex system noise and complicatesensing process. This reveals
the potential to design a data-driven method, following the traditi onal optimization methods, to robustly

address more challenging problems in signal processing and machinairing.
1.4 Overview and Contributions

This work aims to solve the problems of signal processing and machinedeing using optimization and
data-driven methods. As shown in the rst part of this work, by using the accumulated optimization
analysis tools from decades of research, we are able to propose e ectivetiopization methods and analyze
the statistical performance of the proposed optimization methods. In he second part of this work, we
focus on applying data-driven methods using deep learning techgues to deal with high-dimensional
signals under complex system noise in real data. Speci cally, we examé the e ciency of the data-driven
approaches and verify their robustness against the complicated sengjrprocess. Then in the third part of
this work, by following the optimization approaches, we design optimiation-inspired data-driven methods,
which own both the e ciency of data-driven methods and the e ectiv eness of optimization methods.
Namely, the optimization-inspired data-driven methods are capable of andling observed signal with the
complicated sensing process and are extremely e cient. This shes the possibility of designing a
data-driven approach, following the optimization process, to own theadvantages of both optimization and
data-driven methods and reveals the potential to apply optimization-inspired data-driven methods to more
complicated problems in signal processing and machine learning.

Next, we outline the contributions of the thesis chapter by chapter.

Part 1: Optimization Methods

Chapter 2. In this chapter, we study the sparse recovery and non-stavnary blind demodulation problem
and an optimization method is proposed for solving this problem. Specically, the task of nding a
sparse signal decomposition in an overcomplete dictionary is made more cqiicated when the signal
undergoes an unknown modulation (or convolution in the complementary Burier domain). In this
chapter, we consider a more general sparse recovery and blind demddtion problem in which each
atom comprising the signal undergoes a distinct modulation processUnder the assumption that the
modulating waveforms live in a known common subspace, we employ #hlifting technique and recast
this problem as the recovery of a column-wise sparse matrix from stretured linear measurements. In
this framework, we accomplish sparse recovery and blind demodulaih simultaneously by minimizing
the induced atomic norm, which in this problem corresponds to ,.; norm minimization. For perfect
recovery in the noiseless case, we derive near optimal sample comytg bounds for Gaussian and

random Fourier overcomplete dictionaries. We also provide bounds onetovering the column-wise
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sparse matrix in the noisy case. Numerical simulations illustrate and spport our theoretical results.

Chapter 3. In this chapter, we extend the signal model in Chapter 2 toallow unbounded Gaussian noise.
By applying the lifting technique, under the assumption that the modulating signals live in a
common subspace, we recast this sparse recovery and non-stationary i demodulation problem as
the recovery of a column-wise sparse matrix from structured linealobservations, and propose to solve
it via block “; norm regularized quadratic minimization. Due to the observation noise,the sparse
signal and modulation process cannot be recovered exactly. Instead,enaim to recover the sparse
support of the ground truth signal and bound the recovery errors of the gjnal’'s non-zero components
and the modulation process. In particular, we derive su cient conditions on the sample complexity
and regularization parameter for exact support recovery and bound the reavery error on the
support. Numerical simulations verify and support our theoretical nd ings, and we demonstrate the
e ectiveness of our model in the application of single molecule imaging.

Chapter 4. In this chapter, we study the parameter estimation of dampedexponentials via the
optimization approach. Parameter estimation of damped exponential signals as wide applications
including fault detection and system parameter identi cation, etc. However, existing methods for
estimating parameters of damped exponentials are either sensitiveotnoise or restricted to dealing
with a certain type of noise such as Gaussian noise. In this chapter we rai to estimate parameters of
damped exponentials from contaminated signal, i.e., a mixture of dampeaxponentials, random
Gaussian noise, and spike interference. We propose two robust approas) a convex one solved by
the alternating direction method of multipliers (ADMM) and a non-con vex one solved by coordinate
descent, to recovering a low-rank Hankel matrix of damped exponentils from noisy measurements for
further parameter estimation using the matrix pencil technique. Numerical experiments show that
our proposed methods outperform classical ones in detecting small dareg fault signatures from
noisy measurements. While the convex approach is amenable to theoretl analysis and global
convergence guarantees, the non-convex one exhibits more robustnessiasomputational e ciency.

Part 2: Data-driven Methods

Chapter 5. In this chapter, we implement several representative dep architectures and apply them to the
3D chess pieces classi cation problem. Moreover, an e cient 3D piecg recognition approach based
on the oriented chamfer matching is proposed and compared to those deepdhuitectures. During a
real chess game, the pieces might be occluded by other pieces and @asarying rotation and scales
with respect to the camera. Furthermore, di erent pieces share bts of similar texture features which
makes them more di cult to identify. The experiments show that t he oriented chamfer matching

approach outperforms the convolutional neural networks under severe @tusion and low resolution
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conditions and despite the training process, both approaches have cgrarative processing time.

Chapter 6. In this chapter, we propose a deep architecture for the 3D t®D matching points classi cation
and clustering problems in computer vision. Given a set of 3D to 2D puative matches, labeling the
correspondences as inliers or outliers plays a critical role in a wilrange of computer vision
applications including the Perspective-n-Point (PnP) and object recognition. In this chapter, we
study a more generalized problem which allows the matches to belongtmultiple objects with
distinct poses. We propose a deep architecture to simultaneoushabel the correspondences as inliers
or outliers and classify the inliers into multiple objects. An e ci ent RANSAC-based post-processing
algorithm is also proposed to further process the prediction result and detect the objects.
Experiments demonstrate that our method is very e cient compared to existing methods and is
capable of simultaneously labeling and classifying the inliers of mtiple objects with high precision.

Part 3: Optimization-inspired Data-driven Methods

Chapter 7. In this chapter, we design projected gradient descent ispired deep architectures for the
non-negative sparse recovery problem. Non-negative sparse recovemfers to recovering non-negative
sparse source signals from linear observations. This model arises na#lily in many image processing
applications such as super-resolution and image inpainting. In this chager, we propose two e cient
neural networks for fast approximation of non-negative sparse recoveryWe also derive upper bounds
on network sizes measured by the numbers of layers and neurons to aelie a speci ed approximation
error. Numerical experiments demonstrate the e ectiveness and robstness of the proposed networks
and show their potential in solving more complicated signal recovery pblems with the
non-stationary transformation process and noisy observation.

Chapter 8. In this chapter, we study the multiband signal identi cat ion problem via the
optimization-inspired data-driven method. Given limited and vary ing-length time-domain samples of
a contaminated multiband signal, we propose novel deep networks to eishate the number of bands
and locate the bands' centers. A multiband signal representation modl, which combines the long
short-term memory (LSTM) and convolutional neural network, is trained t 0 map varying-length
observed samples to a frequency spectrum representation. A coung model then counts the number
of bands based on the estimated spectrum. Combining the spectrum peesentation and estimated
number of bands, the bands' centers can be recovered e ciently anchutomatically. Numerical
experiments demonstrate that the proposed method is very e ectie and can leverage extended
samples for better performance. Moreover, it outperforms other deejrchitectures for line spectral

estimation at di erent noise levels and is much faster than an atomic normbased method.
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Chapter 9. In this chapter, we study the damped exponentials recows problem which appears naturally
in a wide range of applications including structural health monitoring and electric machine fault
detection. Given nite time-domain samples of composite, contaminat&l damped exponentials, we
propose novel deep architectures to estimate the number of expongals and recover the frequency
and damping coe cient of each exponential. In our architecture, a damped exponential
representation model maps time-domain samples to a frequency-danmy spectrum representation,
while a counting model then counts the number of exponentials. Comiming the spectrum
representation and the estimated number of exponentials, the fregencies and damping coe cients of
the exponentials can be recovered automatically. Altogether, this yilds an e cient feed-forward
method for parameter estimation of contaminated damped exponentials. Ouexperiments indicate
that the proposed method is very e ective and can robustly handle exmnentials with close or even
overlapping frequencies as long as the damping coe cients are su @ently separated.

Chapter 10. In this chapter, we study the support recovery problem ér the sparse signal with
non-stationary modulation and propose to solve it via the proximal gradiert descent inspired deep
learning method. Speci cally, by assuming the modulating signalslive in a known common subspace
and applying the lifting technique, we can formulate the support recovery problem as recovering a
column-wise sparse matrix from linear observations, which can be modied via a block "; nhorm
regularized quadratic minimization. By unfolding the proximal gradient descent for that regularized
quadratic minimization and replacing the proximal operator with a proximal network, we construct a
novel recurrent neural network (RNN) to e ciently solve the suppor t recovery problem. The
simulations indicate that the proposed network is very e cient in sol ving the support recovery
problem, can be adaptive to di erent sensing process without retaining the network, and is
applicable when the matrix of interest is contaminated with system mise and thus not strictly

column-wise sparse.

13



15

10.

11.

12.

Related Publications

. Youye Xie, Michael B Wakin, and Gongguo Tang. \Simultaneous sparse recovg and blind

demodulation”. IEEE Transactions on Signal Processing 2019. [11]

. Youye Xie, Michael B Wakin, and Gongguo Tang. \Sparse recovery and non-statinary blind

demodulation". In 2019 IEEE International Conference on Acoustics, Speech and Sighdrocessing
(ICASSP). IEEE, 2019. [86]

. Youye Xie, Michael B Wakin, and Gongguo Tang. \Support recovery for sparse iginals with unknown

non-stationary modulation”. IEEE Transactions on Signal Processing 2020. [87]

. Youye Xie, Michael B Wakin, and Gongguo Tang. \Support recovery for sparse ecovery and

non-stationary blind demodulation”. In 2019 53rd Asilomar Conference on Signals, Systems, and
Computers (ACSSC) IEEE, 2019. [88]

. Youye Xie, Shuang Li, Gongguo Tang, and Michael B Wakin. \Radar signal demixingvia convex

optimization". In 2017 22nd International Conference on Digital Signal Processing (DB). IEEE,
2017. [80]

. Youye Xie, Dehong Liu, Hassan Mansour, and Petros T Boufounos. \Robust parameteestimation of

contaminated damped exponentials”. In2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP) IEEE, 2020. [89]

. Youye Xie, Gongguo Tang, and William Ho . \Geometry-based populated chessboad recognition”.

In Tenth International Conference on Machine Vision (ICMV 2017) . International Society for Optics
and Photonics, 2018. [90]

. Youye Xie, Gongguo Tang, and William Ho . \Chess piece recognition using orented chamfer

matching with a comparison to cnn". In 2018 IEEE Winter Conference on Applications of Computer
Vision (WACV) . IEEE, 2018. [91]

. Youye Xie, Yingheng Tang, Gongguo Tang, and William Ho . \Learning to nd good

correspondences of multiple objects”. In2020 25th International Conference on Pattern Recognition
(ICPR) . IEEE, 2021. [92]

Youye Xie, Zifan Wang, Weiping Pei, and Gongguo Tang. \Fast approximation of norrnegative
sparse recovery via deep learning". Ir2019 IEEE International Conference on Image Processing
(ICIP) . IEEE, 2019. [93]

Youye Xie, Michael B Wakin, and Gongguo Tang. \Contaminated multiband signal identi cation via
deep learning”. In 2021 |IEEE Statistical Signal Processing Workshop (SSR)IEEE, 2021. [94]

Youye Xie, Michael B Wakin, and Gongguo Tang. \Data-driven parameter estimation of
contaminated damped exponentials". In2021 55th Asilomar Conference on Signals, Systems, and
Computers (ACSSC) |IEEE, 2021. [95]

14



CHAPTER 2
SIMULTANEOUS SPARSE RECOVERY AND BLIND DEMODULATION

The task of nding a sparse signal decomposition in an overcomplete diégdnary is made more
complicated when the signal undergoes an unknown modulation (or convotion in the complementary
Fourier domain). Such simultaneous sparse recovery and blind demadhtion problems appear in many
applications including medical imaging, super resolution, self-caliration, etc. In this chapter, we consider a
more general sparse recovery and blind demodulation problem in whickach atom comprising the signal
undergoes a distinct modulation process. Under the assumption thathe modulating waveforms live in a
known common subspace, we employ the lifting technique and recashis problem as the recovery of a
column-wise sparse matrix from structured linear measurements. n this framework, we accomplish sparse
recovery and blind demodulation simultaneously by minimizing the induced atomic norm, which in this
problem corresponds to ,.; norm minimization. For perfect recovery in the noiseless case, weedive near
optimal sample complexity bounds for Gaussian and random Fourier overcomipte dictionaries. We also
provide bounds on recovering the column-wise sparse matrix in th@oisy case. Numerical simulations

illustrate and support our theoretical results.*

2.1 Introduction

2.1.1 Overview

In classical sparse recovery and compressive sensing problemsyatem observesy = DA ¢ 2 CN where
D, A, and c are the sensing matrix, dictionary matrix, and sparse signal coe ciert vector, respectively.
The goal is to recover the sparse vectoc from the observationsy. Usually D and A are known, but the
whole system is under-determined. This model arises naturallyn a wide range of applications such as
medical imaging [96], seismic imaging [97], video coding [98], and netwotka ¢ monitoring [99].

In the special case wheré® is diagonal and contains a carrier signal or the Fourier coe cients of a
known source signal along in its diagonal entriesy can be viewed as a modulated version of the signal
A c [100] or the Fourier transform of the convolution between two source signal§l8]. Recoveringc can
thus be viewed as a demodulation (or deconvolution) problem. Unfortunagly, in problems like super
resolution [12] and self-calibration [9], the modulation matrix D is unknown a priori, as it incorporates the
unknown point spread functions or calibration parameters. Recoverig D and c jointly is a simultaneous

sparse recovery and blind demodulation problem.

1This is a joint work with Michael B. Wakin and Gongguo Tang [11  ,86].
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In this chapter, we consider a more general sparse recovery and blimemodulation problem in which
each atom comprising the signal undergoes a distinct modulation proas. Under the assumption that the
modulating waveforms live in a known common subspace, we employ #lifting technique and recast this
problem as the recovery of a column-wise sparse matrix from structigd linear measurements. In this
framework, we recover the sparse coe cient vectorc and all of the modulating waveforms simultaneously
by minimizing the induced atomic norm [80, 101], which in this problem @rresponds to the block™; norm

minimization and we also refer to it as the “,.; norm minimization.
2.1.2 Setup and Notation

To better illustrate our main contributions and compare to related work, we rst de ne our signal
model and the corresponding atomic norm minimization problem.

Throughout this chapter, we use bold uppercaseX, bold lowercase x, and non-bold letters, x, to
represent matrices, vectors, and scalars. We use " and T to denote respectively complex conjugate,
matrix Hermitian, and matrix transpose. The symbol C denotes a constant. X+ (X1, resp.) is a matrix
(vector, resp.) that zeros out the columns (entries, resp.) not inT. We call T the support of the matrix X
(and vector x), and we useX to denote the sub-matrix after removing the zero rows or columns inX.
sign(x) = x5jjxjj2 when jjxjj. 6 0 and 0 otherwise. sign() = [sign(x1);  ;sign(xw)]. We usejj jj to
indicate the spectral norm, which returns the maximum singular value of a matrix. The “,.; norm of a
matrix X =[x1 Xwm ], denoted by jjXjj2.1, is de ned to be P jM:1 JiXjji2. The inner product between

vectors and matrices are de ned agx;yi = yHx andhX;Yi =Tr YHX respectively.
2.1.3 Problem Formulation

In this chapter, we study a generalized sparse recovery and blindemodulation problem in which the
coe cient vector is unknown and each atom (column) of the dictionary undergoes an unknown modulation
process. Speci cally, we assume the system receives a compossignal

X
y= ¢Dja 2CN (2.1)
j=1
whereg 2 C is an unknown scalar,D; 2 CN N is an unknown diagonal modulation matrix, and a; 2 CN
is the j -th atom from a known dictionary A = a, a, ay 2 CN M with N <M . Our goal is to
recover both ¢ and D; for all j from the observationy.

To make this problem well-posed, among theM over-complete atoms, we assume only <M of them

contribute to the observed signal; that is, at mostJ coe cients ¢ are nonzero. We furthermore assume

that each modulation matrix obeys a subspace constraint:
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D; =diag(Bh;); (2.2)

whereB 2 CN K (N >K ) is a known basis for theK -dimensional subspace of possible modulating
waveforms, andh; 2 CX is an unknown coe cient vector. Similar subspace assumptions havébeen made
in deconvolution and demixing papers [10, 13]. With this assumption, reovering ¢; and D; equals to
recoveringc¢ and hj. SincecD;ja; = ¢ diag(Bhj)a; = (kg )diag(B +£h; )a; for any k 6 0, without loss
of generality, we assumeh; has unit norm and ¢; 0 with its complex phase and sign absorbed by .
Dene BH =[b} bJ b% 12 CX N and note that the n-th entry of the observed signal can be

expressed as

0 1
X

X
gaenbihy =Tr @b}y  ghjal'A
j=1 j=1
X
h  ghja';byeyi = hG;bheli;
j=1

y(n)
(2.3)

whereG = P jM:1 G h; a]-H , and e, is the n-th column of the N N identity matrix. From (2.3), we see that
the measurement vectory depends linearly on the matrix G which encodes all of the unknown parameters
of interest. We denote this linear sensing process ag = LYG) and recast the recovery problem as that of
recovering G (and its components) from the linear measurements.

The unknown matrix G can be viewed as a linear combination o rank-1 matrices from the atomic set
A :=fhat :a2fay;::;;am g jjhji2 = 1g and thus we propose to recoveiG using the corresponding
atomic norm minimization:

rglznérplzNeijuA subjectto y = LY(G): (2.4)

P P
The atomic norm appearing in (2.4) is de ned asjjGjja ==inff |, je&j:G = | &0k; 9k 2 Ag. Moreover,

the following result establishes its equivalence with the .4 norm.

Proposition 1. The atomic norm optimization problem (2.4) can be equivalently expressed as the following

“2.1 horm optimization problem

ryincimiﬁeijjjz;l subject to y = L(X) (2.5)
whereX =[c;h; ¢hy cwhm]2 CK M andL represents the following linear sensing process
y(n) = hX;blell Ai = b¥ Xa?: (2.6)

in which b3 and a2 are the n-th column of BH and AT.
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Proof. We rst note that the atomic norm can be equivalently expressed as
P P
jiGjia =inff L jgj:G =" L ghjafijihjji» = 1g. To see this, consider any decomposition o6 of
P Py P
the form G = |, &gk with gc 2A. Dene Nj = fk:gx = ﬁkngg and write G = Jle( Ko | e)a .
kan o Gk Mk

P P
This is equivalent to writing G = j'v':1 ghjal' whereh; = A and ¢ = jj oy SAkjj2.
KaN kll2 j

P
Finally, note that jg; ] kN, J&]-

Next, to establish the equivalence with the ».; norm, for any ¢; and h; with jjh;jj. =1, de ne

Xj = ¢ghjand X =[X1 X> Xm ]. Then
jiGjia =inf jgi:G = ghjaijhjjiz2=1
(= i )
. - o 2.7)
=inf iXjliz : G = Xj @,
j=1 j=1
=inf jjXjjz1:G = XAH
Finally, to establish the equivalence of the linear sensing proas, (2.3) indicates that forG = X A",
y(n)= hG;bleli = hx;blel! Ai = b¥ xa?: (2.8)
O

The above optimization focuses on recovering the structured matst X from linear measurements. Once

the optimization is solved, the unknown parameters can be easily exaicted from the solution X as follows:

G = ji®jjiz; hj = - % ; and D; = diag(Bh;) (2.9)
IRSYIE:
forg; 60andl j M.

P
The adjoint of the linear operator L isL (y) = ,N:l yib’a . The linear operator L also has a

matrix-vector multiplication form. Note that L(X) = vec(X), where 2 CN KM jg
=[ 11 K; 1 1M KM ] (2.10)
in which i =diag(bi)a; 2 CN ! and b; is the i-th column of B. Furthermore,
=012 nj2 cit n (211)

where 9=a bp’2 CcKM 1
Finally, we note that the observed signal could be contaminated with noig. In this case, our

observation model becomes
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b
y = ¢gDjaj +n (2.12)

i=1
for some unknown noise vectom 2 CN ! which we suppose satis egjnijj . In this case, we can write
y = L(Xg) + n, where Xy is the ground truth solution. As an alternative to equality-constrained “,.; norm

minimization (2.5), we then consider the following relaxation:

minimizejXjjz1  subjectto jjy L (X)j2 - (2.13)
2.1.4 Applications of The Proposed Signal Model

The proposed signal model encompasses a wide range of applications. Weebyiintroduce some of
them as follows.

Direction of arrival estimation for antenna array . We rst consider the direction of arrival (DOA)
estimation problem in antenna array. Assume we have a linear array antena consisting ofN elements, and
we want to estimate the DOAs of several sources from a snapshot of the rdged signal. In addition, we
consider the narrowband scenario and con ne the array and the far- eldsources to a common plane as
described in [102]. In this case, the DOA is determined by the azimiln angle, , of the source, which
ranges from 0 to 180 degrees. Mathematically, after discretizing the amiuth angle into M grids, the

observervation of the array can be represented as [103]

y=DA()c+n2cN ? (2.14)

whereD 2 CN N is the diagonal matrix capturing the unknown calibration of the array elements [9].
Particularly, the calibration issue may arise from gain discrepanciecaused by the change of temperatures
and humidity of the environment [9]. Namely, the channel is not ideal. Ghe can simulate di erent scenarios
and collect many possible calibration vectors. By applying the singularvalue decomposition (SVD) on the
matrix formed by those calibration vectors, we can then extract the sutspace matrix, B, with desired
dimensions to approximate the calibration usingD = diag(Bh) where h is the unknown coe cient vector.
A()2CN M s the known array manifold matrix whose columnsa( j)forj 21,2 ;Mg are the
steering vectors. For uniformly spaced linear array antenna (ULA),

a(j)=[1;é*cos(i); . @(N D=-cos( )] whered is the distance between array elements and is the
radar operating wavelength [104]. Moreover, the entries ot indicate the strength of the impinging signals
and if there exist J(< M ) sources, onlyJ entries of ¢c are nonzero.n consists of the discretization error,

approximation error, and additive noise.
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Furthermore, let us consider a more severe while realistic situén, where the calibration is sensitive to
the direction of arrival which implies that the channel responses fom di erent angles are slightly di erent.
So that the calibration matrix, D, are dierent for dierent ;. In this case, we can write

X
y= ¢gDja(;)+n2CN (2.15)
j=1

Super-resolution for single molecule imaging Another application is the single molecule imaging [105]
via stochastic optical reconstruction microscopy (STORM) [106]. In this application, the cellular structure
of the object of interest is dyed with uorophores, and STORM divides the imaging process into thousands
of cycles. Within each cycle or observation, only a portion of the uorophores are activated and imaged.
Therefore, a typical observation is a low-resolution frame with its adivated uorophores convolved with the

non-stationary point spread functions of the microscope, which can be mresented as

2 3

b
y = Sample4 ¢ (B%hj)~e +n® 2RV ! (2.16)
j=1

wherey 2 RN 1is a vectorized, imaged frame downsampled from its super-resolutioimage with M (> N )
pixels, ¢ represents the intensity of the activated uorophores, andB?is the subspace that the point
spread functions live in. e 2 RM, which indicates the location of the activated urophores, is the j -th
column of the identity matrix and n©denotes the noise. Moreovery can also be represented equivalently as
2 3
y = Sample( IDFT 4XA GDja; + n5) 2 RN L (2.17)
j=1
where IDFT [] is the inverse discrete Fourier transform (DFT) operator, D; = diag(B h;) with
B = DFT[BY, and a; s are the DFT of spikes containing the location information. n = DFT [n9. The goal
of this application is to recover the super-resolution image from its bw-resolution framey, or
mathematically, locating the nonzerog; .
Other applications that t into the model investigated in this work include frequency estimation with

damping that appears in nuclear magnetic resonance spectroscopy [37] witlamping signals approximately
living in a common subspace [12] and the CDMA system with spreading spience sensitive channel as

described in Section 6.4 of [9].
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2.1.5 Main Contributions

Our contributions are twofold. First, we employ ",.; norm minimization to achieve sparse recovery and
blind demodulation simultaneously given the generalized signal moddrom equation (2.1). Second, for
perfect recovery of all parameters in the noiseless case, we dezimear optimal sample complexity bounds
for the cases wheréA is a random Gaussian and a random subsampled Fourier dictionary. Both of bous
require the number of observationsN to be proportional to the number of degrees of freedomQ(JK ), up
to log factors. We also provide bounds on recovering the column-wisgparse matrix in the noisy case; these

bounds show that the recovery error scales linearly with respectd the strength of the noise.
2.1.6 Related Work

The “,.1 norm has been widely used to promote sparse recovery in multiple nasurement vector (MMV)
problems [28,107]. The MMV problem involves a collection of sparse signal wtors that are stacked as the
rows of a matrix X. These signals have a common sparsity pattern, which results in a coimn-wise sparse
structure for X. The “2.1 norm is used to recoverX from linear measurements of the form
y= wmmv Vvec(XT). However, umv has a block diagonal structure where all diagonal sub-matrices are
the same which is the dictionary matrix. This is di erent from the s tructure of the linear measurements in
our problem; see for example (2.10).

Our work is also closely related to certain recent works in model-basd deconvolution, self-calibration,
and demixing. When all D; in (2.1) are the same, our signal model coincides with the self-calibradn

problem in [9], although that work employs “1 norm minimization rather than “,.; norm minimization to
recover X . A more recent paper [108] does apply thé,.; norm for the self-calibration problem but again
assumes a common modulation matrixD. The paper [10] generalizes the work of [9] and considers a blind
deconvolution and demixing problem which can be interpreted as the elf-calibration scenario with multiple
sensors whose calibration parameters might be di erent. However, thesignal model in that paper is not
directly comparable to our model, and the recovery approach studiedri that paper involves nuclear norm
minimization and requires knowledge of the number of sensors. A blith sparse spike deconvolution is
studied in [13], wherein the dictionary consists of sampled complexisusoids over a continuous frequency
range and all atoms undergo the same modulation. Inspired by [13], [12] generz¢s the model to the case
of di erent modulating waveforms. Like [13], however, [12] also considrs a sampled sinusoid dictionary
over a continuous frequency range, and it employs a random sign assuniph on the coe cient vectors h;

which makes it di cult to derive recovery guarantees with noisy measurements. More works considering a

common modulation process can be found in [18,109, 110].
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Our work can be viewed as a generalization of the self-calibration [9] and sid deconvolution
problems [18]. Moreover, our analysis is quite di erent from the worksconsidering the continuous sinusoid
dictionary [12, 13], since the tools in those papers are specialized to ¢hcontinuous sinusoids dictionary and
we consider discrete Gaussian and random Fourier dictionaries in bothaiseless and noisy settings.

The rest of the chapter is organized as follows. In Section 2.2, we presgeour main theorems regarding
perfect parameter recovery in the noiseless setting and matrix dising in the noisy setting. Sections 2.3
and 2.4 contain the detailed proofs of the main theorems. Several numeral simulations are provided in

Section 2.5 to illustrate the critical scaling relationships, and weconclude in Section 2.6.
2.2 Main Results

We present our main theorems in this section. In each of the noisless dmoisy cases, we consider two
models for the dictionary matrix A. In the rst model, A 2 RN M is a real-valued random Gaussian
matrix, with each entry sampled independently from the standard nomal distribution. In the second
model, A 2 CN M is a complex-valued random Fourier matrix, with each of itsN (< M ) rows chosen
uniformly with replacement from the M M discrete Fourier transform matrix F where FHF = M1y, .

Our rst theorem concerns perfect parameter recovery in the noiskess setting.

Theorem 2.3. (Noiseless case) Consider the observation model in equati (2.1), assume that at most
J(< M) coe cients ¢ are nonzero, and furthermore assume that the nonzero coe cients;; are real-valued
and positive. Suppose that each modulation matri0; satis es the subspace constraint(2.2), where
BHB = I« and eachh; has unit norm.
Then the solution X to problem (2.5) is the ground truth solution X g|which means that G, hj, and
D; can all be successfully recovered for eaghusing (2.9)|with probability at least 1 O(N *1)

1. if A2 RN M js a random Gaussian matrix and

N
log? N

C 2., KJ(og(M J)+log(N)): (2.18)

2. if A2 CN M js a random Fourier matrix and

N C 2,KJ |og(4p5) (log(M  J)+log(K +1)+log( N)) (2.19)

where = P 2M log(2KM )+2M +1.

In both cases,C is a constant de ned for > 1 and the coherence parameter

p—
max = mi;j;lx NjBj j: (2.20)
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We note that both of the sample complexity bounds in Theorem 2.3 require¢he number of
measurementsN to be proportional to the number of degrees of freedomQ(KJ ), up to log factors. We
also note that the sample complexity bounds scale with the square of theoherence parameter

max = MaXi; P WjBij j. Under the assumptionBHY B = I« which requires the columns ofB to be

orthonormal, max 2 [1; pﬁ]. Speci cally, given the system parameters with large enoughN, (2.18) is
q

satis ed when 1 max The valid range of .« for (2.19) and the

C logZ(N)KJ (Io';( M J)+log( N)) *
noisy case can be easily derived in the same manner. Andyax iS minimized when the energy of each
column of B is not concentrated on a few entries but spread across the whole column.

Our second theorem provides bounds on recovering the column-wisgparse matrix in the noisy case;

these bounds show that the recovery error scales linearly with rgeect to the strength of the noise.

Theorem 2.4. (Noisy case) Consider the observation model in equatio(2.12), assume that at mostJ (< M )

coe cients ¢ are nonzero, and furthermore assume that the norm of the noisesibounded,jjnjj.

Suppose also that each modulation matriD; satis es the subspace constraint(2.2), whereB"B = I .
Then with probability at least1 O(N  *!), the solution X to problem (2.13) satis es

1. if A2 RN M js a random Gaussian matrix,

§ ) p_
iR Xojir Ci+Cp J (2.21)
when

N

p___
IogTN C 2,4KJ 10g(C max KJI)C+1 (log(M J)+log(MK )+log(N)) (2.22)

where C is a constant.

2. if A2 CN M s a random Fourier matrix,

iR Xojie Ci+ czpﬁ (2.23)

when

N C 2.KJ |og(4p§) (log(M  J) +log( MK ) +log( N)) (2.24)

where = P 2M log(2KM )+2M +1 and P Iog(4pﬁ )=log 2.

In both cases,C is dened for > 1. C; and C, are constant.

Although Theorem 2.4 focuses exclusively on bounding the recoveryrr of the matrix X, one can
also attempt to estimate the parametersc;, h;, and D; from R using (2.9). And according to Theorem 2.4,

for any ®; =% Aij and xo; = Coj ho; where®; and xo; are thej-th columns of the solution X and the
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ground truth X respectively, we would havejj¢ B;  cojDojjir = jj§ A; cojhojjiz  Ci+ Czp J

with random Gaussian dictionary and jj& B;  coj Dojjir = jj6 A; cojhojjiz  Ci+ Czp PJ for
random Fourier dictionary. In addition, as results on structured matri x recovery from (possibly noisy)
linear measurements, we believe that Theorems 2.3 and 2.4 may be of iependent interest outside of the

sparse recovery and blind demodulation problem.
2.3 Proof of Theorem 2.3

To begin our proof of the main theorem in the noiseless case, we rst dere su cient conditions for

exact recovery.
2.3.1 Sucient Conditions for Exact Recovery

Su cient conditions for exact recovery are the null space property and an alternative su cient
condition derived from the null space property. Similar su cient ¢ onditions with complete proofs are
available for minimization problems using other types of norms [9,16,111, 112However, since we cannot
nd su cient conditions that suit our purpose and in order to be self- contained, we provide a short proof

for the ones speci c to the “,.; norm minimization problem in this section.
Proposition 2. (The null space property) The matrix Xo =[cth;  ch, i cyhw]2 CK M with
support T is the unique solution to the inverse problem (2.5) if

jh H;sign(Xo)ij + jjHtcjj22> 0 (2.25)
for any H 6 0 in the nullspace ofL.

Proof. Let X = Xo+ H be a solution to problem (2.5), with L(H) = 0. To prove X is the unique

solution, it is su cient to show that jjkjjz;l > jjXojj2:1 If H 6 0. We start by observing that

iXo+ Hjj21 = jiXoT1 + Hrji2a + jjH1c 21
jh Xox + Hyisign(Xo.1)ij + jjHrcjiza

= jX o sign(X o1 )i + MH 15 sign(Xo7)ij + jiH e jj2i1 (2.26)
I Xorliza jh HrisignXo;r)ij + jiHteji21
where signX o-1) = sign( X o) and the rst inequality comes from the fact that
jiXor + Hrljzn = X jiXoi + hijj2jj sign(Xo;i )jj2
X 12T (2.27)
jXoi + hyi;sign(Xo:)ij jh Xot + Hy;sign(Xorij:

i2T
Therefore, as long asjh Ht;sign(Xo)ij + jjHycjj2.1 > 0 for any H 6 0 in the nullspace ofL, X is the

unique solution. O
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Proposition 3. The matrix X2 CK M with support T is the unique solution to the inverse problen{2.5)

if there exist > 0 and a matrix Y in the range space ofL such that

iYr  sign(Xor)ijr Vit h and jjYtcjiza 5 (2.28)

and the operatorL satis es (Lt (X) = fby'Xa%; gi-;)

Lrly I 5 and jiLj (2.29)

Proof. Proposition 2 shows that it is su cient to prove that jh H+;sign(Xo)ij + jjHtcjj2.1 > 0 for any
H 6 0 in the nullspace ofL to establish uniqueness. Note that
jh Hr;sign(Xo)ij + jiHrc iz
= jh Hr;sign(Xo) Ygi+ MHr; Yrij + jjHrcjj2a (2.30)
jh Hy;signXo)  Yrij jh Hyc;Yrcij + jjHrcjjza
sincetHt;Y 1i = hHyc;Yci. By applying the Helder inequality, we get a stronger condition

ji sign(Xo) YriiriiHTiir (X Jj Yrcjiza)iiHrcjiz1> O (2.31)
SincejiLLt Itji 3 and jjLijj , we havejiL (Ht)jir  p5jiHTiie, jiL (Hre)iie  jiHrcjie and
FFEJJHTJJF iL (Hiir = JiL (Hre)iiF iHtciF iHtcji2a: (2.32)

Plugging (2.32) into the stronger condition above yields
1Ji Yreliza 2 jjsign(Xo)  Yrjir jiHrcjjza> O (2.33)

Therefore, if jY+  sign(Xo7)iir 3¢5, iiYrclizi 3, andHrc 6 0, the left hand side is positive. On

the other hand, if Hyc = 0, from (2.32), Hy = 0and H = 0. O
2.3.2 Bounding The Isometry Constant and Operator Norm

In this section, we bound the isometry constant and operator norm appearing in (2.29) based on the

randomness in the matrix A. The isometry bound for the linear operator L can found in Lemma 4.3 in [9].

Lemma 2.1. [9, Lemma 4.3] (Isometry) For the linear operator L de ned in (2.5),

i o Irii=dibeLr A1 (2.34)
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with probability at least1 N *! wherelt is the identity operator on the supportT such that
It (X)= X7,

1. if A is a random Gaussian matrix andN  C 2., KJ maxflog(N)= 2;log?(N)= g.

2. if A is a random Fourier matrixand N C 2, KJ log(N)= 2.

Here C is a constant that grows linearly with > 1.

Lt(X)= 1 vec(X)and 1 can be viewed as constructed usingA 1 following (2.10). Therefore,
1 2 CN KM has many zero columns and removing those zero columns results iny 2 CN KJ | |f
i® o 1gii=gitY oy i < 1, 7Y ~risinvertible and jj(7H ~1) i (1 ) ! according to
Lemma A.12 in [16]. This property will be applied in (2.38) and Theorem 2.5. Tobound the operator

norm of L, we use results from [18] and [9].

Lemma 2.2. [9,18] For operator theL de ned in (2.5) and 1,

1. if A is a random Gaussian matrix,

R
jiLi M log(MN=2)+ log(N) (2.35)
with probability at least1 N
2. if A is a random Fourier matrix,
... P
jiLj 2M log(2KM )+2M +1 (2.36)
with probability at least1 N  whenN 2 « K log(N).

2.3.3 Constructing The Dual Certi cate for The Gaussian Case

In the case whereA is a random Gaussian matrix, we construct a certi cate matrix Y that satis es the

conditions in Proposition 3. Whenjj Y 1 I1jj % we can set
vec(Y)= H"p=vec(L (p)2CcKM 1. (2.37)

where

p= "r(7F 1) ‘vec(sign®or)) 2 CN (2.38)
By construction, Y t = sign(X 1), and we need only to verify that jjY tcjj21 1=2.

Theorem 25, Ifjj H 1 I1jj % there existsY in the range space ofL such that
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: . N 1
Y1 =sign(Xor) and jjYtcjjza > (2.39)

with probability at least1 (M J)e whenN 40 2. KJ for log(M J).
Proof. To simplify the notation, without loss of generality, we assume the suport of X is the rst J

columns. LetY be the dual certi cate matrix de ned in (2.37). After removing the col umns of Y on

support T, we obtain vec(Y'rc) 2 CKMM J) 1 which takes the form
vec(Yrc) = ~'||_'|c p=[ If;J +1 P ; E;M p]T (2.40)

The columns of ~1c are independent ofp sincep is constructed with a; (i 2 T). Equivalently,

2af, diagbp  af diag(by)p°
al,, diag(bz)p aj diag(bz)p
Yo = | | | ; (2.41)
all,, diag(bx )p aj) diag(bk )p
Thus jjY tcjjj2 = jjPajjj2 (j > J ) where a; is real and
> pT diag(bs) °
p' diag(b)
P = _ 2 ck N: (2.42)
p' diag(bx )
Weset =PHP2CN N and have
L, 22 KJ
(e )=10Pie — (2.43)
since each row ofP can be bounded by
2
jip" diag(by)ijj3 %J’J’ pii3
2
= %VEC(Sign(Xo;T N (F 1) tvec(sign(X o)) (2.44)
2 %ax 2 ?nax ‘J

S8 sign(R o7 )jjE =

since we assumgi ¥ 1 Itjj 3 which impliesjj(~% ~r) ljj 2. By generalizing Proposition 1

in [113] to our case, one can easily get

p___
Pr ijajjj§>Tr( Y42 Tr( 2) +2j i e (2.45)
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. . " . . . n_ P > P 2 2
Since is positive semi-de nite whose eigenvalues are 0, Tr ( 9)= 2, § ( i )°=Tr( )

P
where j is the i-th eigenvalue of . jj jj= max iN:l i =Tr( ) where mnax is the maximum
singular value of . Therefore, for > 1, we obtain

22 KJ

Tr ( )+2pTr( 2y +2j i Tr( )+2Tr( ) +2Tr( ) N

1+4 ): (2.46)

If we pick N 40 2. KJ,jjPa;jj» > 1=2 with probability at most e . Taking the union over all

(M J) non-zero columns ofY ¢ gives

Pr(jiY rciiza > 1=2) (M J)e : (2.47)

Therefore, jjY tcjj21 1=2 with probability atleast1 (M J)e whenN 40 2_ KJ. To make

the probability meaningful, should be greater than logM J).

2.3.4 Proof of Theorem 2.3 for Random Gaussian Dictionary

In this section, we assemble the pieces to complete the proof of Theem 2.3 in the Gaussian case. To
do so, we ensure that all su cient conditions in Proposition 3 are met. First, if we take =1=2 and set

1> 1in Lemma 2.1, we have

, L1
jiLsLy  I7ji > (2.48)

whenN C, 2. KJ log?(N ) with probability at least 1 N **1. Then, applying the same 1 in

Lemma 2.2 and setting = P M log(MN=2)+ ;log(N), we have that jjLjj with probability at least
1 N * 1 N *1 InTheorem 2.5, we have proved thatY t = sign(Xor) and jjY rcjj21 % when
N 40 , 2, KJ with probability atleast1 (M J)e 2and , logM J).
Note thatif , (1 1)log(N)+log(M J),wehaveM J)e 2 N *1 Combining the
above requirements onN, all conditions in Proposition 3 are satis ed with probability at least
1 3N *! whenN maxfC ;40g(( 1 1)log(N)+log(M J)) 2. KJ log?(N). Furthermore,
maxfC ,;40g(( 1 1)log(N)+log(M J)) 2. KJ log?(N)
C (log(N)+log(M J)) 2., KJ log?(N)

if we setC =maxfC ;400 iand = 1> 1, which yields the Theorem 2.3 whenrA is a random

(2.49)

Gaussian matrix.
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2.3.5 Constructing The Dual Certi cate for The Fourier Case

In this section, we construct a certi cate Y that satis es the inexact duality condition in Proposition 3
when A is a random Fourier matrix. Speci cally, we construct the dual certi cate using the gol ng
scheme [17] which has been widely applied in compressive sensii@,[L11]. In the gol hg scheme, a series
of matrices in the range ofL are constructed iteratively. In each iteration step, only some of the
observations are utilized to ensure independence between iterians. And the constructed matrices will
converge to sign¥ o.7) on support T while entries onT¢ are small. The goal is to nd the conditions
under which the nal constructed matrix can serve as the certi cate matrix.

According to Section (4.2.1) in [9], there exists a partition of the N observations into P disjoint subsets

such that each subset, ,, contains Q elements and

. Q6 . Q.
1mpaxF> jiBp WIKJJ < N (2.50)

P
whereBp =" |, b andQ>C 7., Klog(N). So

.. 5Q
lmpaxp JiBpli N (2.51)
P
Dene Lp(X) = fbH Xalg, , and 0 onentriesl 2 . L,(x)= |, ; x;b%a™ . The gol ng scheme
iterates through
N .

Theorem 2.6. If X is the ground truth solution to problem (2.5), there exists a matrixY 2L such that

) . y 1 o 1
Yt sign(Xo7)ijr Zp?andJJYTCJIZ;l > (2.53)

with probability at least1 2N *! for > 1 when

p__
vepq P 4 ) 250

and
Q C rznax KJ (log(M J)+log(K +1)+log( N)) (2.55)

whereC a constant determined by .

Proof. If we dene W, =Y, sign(Xor), (2.52) gives
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N Q .
Wo=g § Larler (Wp o) (2.56)
P
where L7 (X) = fbf Xapr g2 , with Oonentries| 2 pandL,r(x)=, xbafy which are used to
generate the sequence .t . And we can obtain

W plie i 6(% L prlpm)ii iWp 4ir SIWp i (2.57)
with probability at least1 N ** whenQ C.; 2., KJ log(N) with > 1 applying Lemma 4.6 in [9].

Therefore,

iWeiie 2 PjiWojir =2 PjjsignXor)jir =2 7 J: (2.58)
To ensure that jjW pjjr = jjYp1  sign(Xo1)ijir fli— whereY p = Y is the nal constructed dual

certi cate after P iterations, we need

log(a” 23 ).

T (2.59)

We now turn to nd the conditions such that jjY rcjj21 % Note that substituting W, into equation
(2.52) yields
N X

Y=g LebeWp o) (2.60)

p=1
It is su cient to show jj tc(LLpoWp 1)jj2:1 2P 1%, where tc is the projection operator which

projects a matrix on the support T¢, to make jjY tcjjo:1 % because

N . NX }
iYteliza =i ) Te(LoLbp(Wp 1))iizin
p=1
N X i} N X Q
= i re(LplpWp )iz = 2P 1= (2.61)
Q. Q N
1 1
= p l = - P —
2 S 2P <3

p=1
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Dening , tobe with non-zero rows indexed by , and zero otherwise, we have,(X)= , vec(X)

and for a vectorw =vec(W) 2 CKM 1 whereW 2 CX M has supportT,
2 3

h B pwieki 1
) ) h b pwieki ez
I 1e(Lpbp(W )21 = max : (2.62)
h ' pwieki peki
wherei is the column index ande; is the j-th column of the identity matrix lxm . In addition,
2 .3 2 .3
h B pwieki 1 h? Hwieci e
h B pwieki ez x e@h?Hwexi 12l X
= . = Zyj . (263)
12 5 : 12 p
h b pwieki pexi h?Mwieci yeki
Furthermore, we have E(z;; ) = 0 because
02 .31
h‘:l|o b|o a|(H bF-I W ek (i 1)+1 |
rHP b|0 af“ bl(H W€k (i 1)+2 i
E(zi)=E
f’aP b|0 a|°* b|0-| W€k (i 1)+K i
2 .
h(iv  bH )wiek i 1y i
him BB )w; e 1 i
= . (2.64)

h(lm b )w;ex i 1+ ki

2 .
tvecDM W );ex (i 1)+ i
tvecbdM W );ex (i 142 i

hvecDM W ) e (i 1y« ki
following E(alaf') = Iy sincea?2 CM ! s the transpose of a random row of theM M DFT matrix

and b%* W has supportT and 0 on T€. Therefore, fori 2 T¢, E(z;) = 0. Moreover,

p__ 2 P
K Fax KJjiwijjz max K Jjiwjjz.

liziiliz N = N (2.65)

o<

Because each entry of; can be bounded by

jh 7 I(HW;eK(i p+jll = jeE(i 1)+ P wij
= jiek i 1+ tizii@® b)) wijz
= jjeE(i 1+ fizii(afr  BY)" wijz (2.66)
KJ jiwijjz

2
P2 jjaft b faliwip e
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where the third equality holds becausew =vec(W ) and W has support T. The variance ofz;; is also

bounded:
8 9
5 Zax KQjiwij3

X = X
max.ji  E(z ziiii - E(zizi)ii. E(jizi;i i) IN2

12 p 12 p 12 5

because for each element gjz,; jj3, we have

E jh P Mwiexi oejii® = E jiek i pei P 5 Wii5
2 2
NCE I Mwiis = fEew (e bb)w

and therefore

2
L K
E(iiz ji3) N wh (v b )w:

Furthermore,
X E Fr—ry X r2nax K H [ b0b0-|
(izii i) N w (Im o )W
2, 2,
2 2 Fig i 2
_ K 4 5 KQjjwijs .
= LKIX wh(lw  Bpw —maX4N2 ;

(2.67)

(2.68)

(2.69)

(2.70)

The second inequality in (2.70) applies the inequality (2.51) andjjlym ~ Bypjj = jilmij ji Bpjj- We then

apply the matrix Bernstein inequality from Theorem 1.6 in [114]. If we set w = vec(W , 1) and we know

from (2.58) that jjwjj> = W, ijir 2 P+1p3, we obtain
0 1 |
X 2
Pr@j oz A (K DO o
12 p Nz A
3Q
128 2., KJ

Jjjwijjat

Zl ©

(K +1)exp

wheret =2 P 12 for a particular i 2 T and p. We then take the union over alli 2 T and get

. " 1Q 3Q
Proji te(Lobp(Wp 1))jjiza 2P N (M J)K +1)exp 1282, KJ
To ensurejj tc(LoLp(Wp 1))jiza 2P 1N9 for all p, we obtain
Pri re(LyLp(Wp iiza 27 135 81 p P
3Q +1
>1 P(M  J)K +1)exp 2872, KJ 1 PN 1 N

(2.71)

2.72)

(2.73)

when Q 128ﬁ“%“(log(M J) +log(K +1)+log( N)) using the same as in deriving equation (2.57).

Setting C =maxfC;C. 1;12 g, where C is a constant comes from equation (2.51), gives us Theorem

3
2.6.
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2.3.6 Proof of Theorem 2.3 for Random Fourier Dictionary

We now complete the proof of Theorem 2.3 in the case wheA is a random Fourier matrix. First,

combining the conditions and probabilities from Lemma 2.1 and 2.2, we knowhat the operator L satis es

the inequalities jiL Lt I1]j % and jjLjj = P 2M log(2KM ) +2 M + 1 with probability at least
1 (N+1)N 1 2N ** whenN C.; 2. KJ log(N) for some constant,C. ;, that grows
linearly with > 1.

Applying the same in Theorem 2.6, the desired dual matrix exists with probability at least
1 2N ** whenN C., 2, KJ Iog(4pﬁ Ylog(M  J)+log(K +1)+log( N)). Merging the
requirement on N by setting C =maxfC. 1;C. g and combining the probabilities, we complete the proof

by applying Proposition 3.
2.4 Proof of Theorem 2.4
To derive our recovery guarantee in the presence of measurement nejsthe main ingredient of the proof

is Theorem 2.7 which is a variation of the Theorem 4.33 in [16] from the in nty norm optimization to 5.1

norm optimization problem.

Theorem 2.7.Dene 2 CN KM and  vedX)= L(X). Suppose the ground truthX 3 to (2.13) hasJ
non-zero columns with supportT and the observation vectory = L (X )+ n with jjnjj» . For

T > 0and < 1, assume that

ir?%ij Bl ki v K kil s (2.74)
i o i (2.75)

and that there exists a matrixY = L (p) 2 CK M such that

Yt sign(Xo7)iir ﬁ: Y teiizn ; and jjpjiz J: (2.76)
If = + 5 < 1 then the minimizer, R, to (2.13) satis es
y ) p—
iR Xojie  Ci+Cp J (2.77)

where C; and C, are two constants depending on; ; ; ;

Proof. Due to our assumption on the noise X is a feasible solution. Assume the nal minimizer to (2.13)
is X = X+ H, which implies
iiXoliza i Xo+ Hijza = jiXor + Hrjiza + jiHTc iz
jh Xor + HrisignXor)ij + jiHrcjiza (2.78)
i Xoliza jh Hrisign(Xo;r)ij + jiH7c iz
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where the second inequality comes from equation (2.27). Thus

iHtcliza jh Hyisign(Xo:1)ij
jn Hrisign(Xor)  Yrij + jhHT;Y 1)

Z%joTHF + jhH; Yij + jhH e Y rcij (2.79)

1 .. . p— .
ZP?JJHTJJF +2 J+ jjHrcjj2u:

The last inequality comes from the Helder inequality and our assumptionjjnjj , Which tells us
L (Hiiz = iL(R  Xo)iiz = jiL(R) L (XoJiiz it R) vyiiz+jiy L (Xo)iiz 2 (2.80)
and
. L L . P—. . P
jHYj = jhH; L (p)ij = jhL(H); pij JjL(H)ji2 2 J: (2.81)

Moreover, jjH 1 jjr can also be bounded as follows.

iiHriie =Y =) =% =1 vecEHNii2

T N 1 . .
T 77 7T ovecHniiz= i T 1 vecH1)i2
1 . "

=1 ) F( vecH)  1c vecHre))iiz
1 } } } (2.82)
T § vecHiiz+ i § 7o vecHre)ij
1 . N 1 . .

=7 L2+ i ¥ re vecHro)i
2 P 1+ . ..
1 + 1 IHTc]i2:1

becausgj Y 1 I1jj ensures thatjj(~% ~1) i = andji Yij p1+ according to Lemma

A.12 and Proposition A.15 in [16] respectively. Furthermore,

”X¥ tc vecHrc)jj2
=jj A R K 1+ K Ihijj2
X’ZTC
T ki ek i dihilia (2.83)

igTe

i2T¢C

fihili2= jiHycjj2a

| o
in which hj is the i-th column of H. By setting = + p=——, = 11" and substituting the

inequality (2.82) into (2.79), we obtain

i ) J
iHtcjj2a p + : (2.84)

Substituting inequality (2.84) into (2.82) yields
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I T
iHTjie 2 * 1 Fra )+ 1 ; (2.85)

Combining the above two inequalities, we obtain

iHjir i Hrlir + jiHrcjir Ji Hrlie +jiHtcji2n

2 + Pp= + Pp—
22@Q ) 22@a HXyr )
2 2 p_ (2.86)
+ + J
1 0 @a Ha )
= Ci1+GC, j
O
Next, we specify the values of the variables, , and whenA is a random Gaussian and Fourier

matrix. The Orlicz-1 norm [18] and associated matrix Bernstein inequality are needed for determining the

value of when A is Gaussian. Speci cally, the Orlicz-1 norm is de ned as [18]
iiZjj , = inf fE[exp(iZjj=u)]  2g: (2.87)

Its associated matrix Bernstein inequality is provided in Propostion 3 in [18] which can be rewritten as

Proposition 4. Let Z4;::;;Zy be independentM M random matrices with E(Z;) = 0. Suppose
max iz, R (2.88)
and de ne

=max j  EZZM)ii  E(EZ7Z)) (2.89)
j=1 j=1
Then there exists a constantC such that fort> 0

0 1 0 1

X 2
Pr@j zjji>tA 2Mexp@é tpf A (2.90)

[=1 2 +log R Rt

The following theorem utilizes the Proposition 4 and depicts the cowlitions under which = 1.

Theorem 2.8. For dened in (2.10)and L(X)= vedX),

maxjji 71 ki v i pexli 1 (2.92)
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with probability at least1 N *%

1. if A is a random Gaussian matrix and

N C 2,KJ log(C maxpﬁ)c+1
(log(KM )+log(M J)+log(N));

(2.92)
2. if A is a random Fourier matrix and
N C 2.KJ (log(KM)+log(M J)+log(N)); (2.93)

whereC is a constant that grows linearly with > 1 and C is a constant.

Proof. We rst prove the Gaussian case; the Fourier case is very similar. Notehat for an arbitrary i 2 T¢

JJ ‘l_r‘ [ K@i 1)+1 K (i 1)+ K ]JJ
iOH X 0 0 H H oo
=j o1 =1 agr by oay b
j=1 (2.94)
=1 ajrap ) (bbb jj=1j Zijj
j=1 j=1

where ;2 CN KM is  put only contains values in the (K (i 1)+ 1)-thto (K(i 1)+ K)-th columns
and is zero otherwise. ; can also be viewed as an extension of frc.x (i 1)+1 ToK (i 1+ k]bY
padding zero columns. Moreover,a}?i is the conjugate of thej-th column of AT who has only one non-zero
value in the i-th entry. In addition, E(Z;)= E(aly afff blb™)= E(ap; aff') b’ = 0fori2 TC. By
applying the property of the Kronecker product, we estimate the sgectral norm of Z; which can be used to

determine its Orlicz-1 norm:

iziji = jiapr i bYbji = jib’bMjj jjapr afi

2
= b o) jiajr aii - R —iiag agl
2K 0 oo (2.95)
= Nl izl gz
2 Ko alriig+iialiiz | 24K ., o
N 2 = —on JEitTigla

in which a? ;. , contains non-zero values in the entries indexed by T;ig. Therefore, jja? . /i3 follows

the Chi-squared distribution with J + 1 degrees of freedom which implies that

C 2., KI+1) c2,K2 _C2 K
2N

N = N = R for some constantC according to the proof of

iZiii
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Lemma 4.7 in [9] and the de nition of Orlicz-1 norm in (2.87). Moreover,

i E(Zy Z))ii

i E (apajt) o) (afraj)  (oPp) ji

j:]_ j=1
N 0 ~H 50 ~H OpH RO i
=1 E ajajragrag (bbb
-
! o)(q 1 (2.96)
= jjidlmg @ jiblji3 bPbM A jj
j=1
2 kg X L2 KJ
—m i i bPR i = E—

i=1
P
following from the fact that E a, aj?% aJ-?T al! = Jly; forallj and J-N:l bt = 1 from the

assumption. On the other hand,

X
i E@ZizMi=i E a}kaffalai bbb b’bHjj
j:]_ j=1

0 1
= jilmr @ jiblji3 blb™ A jj (2.97)
j=1
2 K R R
—n T uj=1 bbb jj = N

P P
Therefore, maijj Ly E(Z;ZP)iisii - |-y E(Z} Z))iig = M = 2 Substituting the variables R and

2 into Proposition 4 and taking the union bound over all i 2 T€ results in

Promaxjj T TCK (i 1)+1 e ek li>1

i2TC
' (2.98)
2(M  J)KM exp Ci N :

p—
2 KJ+log C max KJI C 2, KJ

De ne a variable > 1 and set

N C [ KJ log(C maxpﬁ)c"'l (log(KM ) +log(M  J)+log(N))

P (2.99)
Co aax KJ 109(C max KJI)C+1 (log(KM)+log(M J)+ log(N));
whereC = Cp . Simplifying the probability term gives
P o H ) ) . ) ) . - 1
r iTT@gJJ T texd pa Tek (i 1+ ki (2.100)
>1 2N 1 NN =1 N "

Following the same procedures, wher is a random Fourier matrix and for any i 2 T, we have

e e 2 . . e . 2 pi 2
E(Zj)= E(ay af) bbM =0, jizjji = =x"jjad jiziiaf iz = ==g— = Rand 2= = The
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matrix Bernstein inequality implies

Pr i"??g(jj Bl rewi 1a ek pekli>1

N (2.101)

2(M  J)KM exp p—
22 KJ+2=32_K' 3J

max

Similarly, if we de ne a variable > 1 and let

N C 2.KJ (log(KM)+log(M J)+log(N))
2 p_ (2.102)
(2 2. KJI + 3 2 <K J)(log(KM )+log(M J)+ log(N));

by setting C = % , simplifying the probability gives us
r ir?_?g(ll T[ texi o 1ok (i 1)+ ki (2.103)
>1 2N 1 NN =1 N
O

2.4.1 Proof of Theorem 2.4 for Random Gaussian Dictionary

Based on Section 2.3.4jj H 1 1] %: , = P M log(MN=2)+ log(N), and

iiYrtciiza 3= with probability at least 1~ 3N *1 if ﬁ‘m C.1 2, KJ (log(N)+log(M J)).

Moreover, in Theorem 2.5, where we construct the dual certi cate matix when A is a random Gaussian
matrix, we dene p= ~r(~H ~1) lvec(sign(Xor)) 2CN tandj ¥ 1 I7jj 3 leadsto
§CH ) Y2 So

q

iipiiz2 = vec(signX o))" (TF T1) tvec(sign(X o))
q (2.104)

.. - Hi p 271
Zjjvec(sign(X o;7))jiz = = 23

which implies = P 2. If we use the same in Theorem 2.8, we have = 1 with probability at least

1 N *! when
N C., 2,KJ log(C maxpﬁ)cu (log(MK ) +log(M  J)+log(N)): (2.105)

Combining the requirement on N and setting C =maxfC. ;;C. g yield

N

P—
o N C 2,.KJ 10g(C max KJI)C+1 (log(M J)+log(MK )+log(N)): (2.106)

Therefore, the conditions in Theorem 2.7 are satis ed with probability at least 1 4N *' whenN is as

de ned in equation (2.106). After substituting the parameters = + FTaC %+ F5 <1 and
Pr— P, P Ps P
- I+ _ n N — 3 6 —
= +— = 6into (2.86), 2 tPra ot Pra )—2 6+p5—; 5 6=Ciand
2 2 — 24 _
T taoa =P 1 #C
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2.4.2 Proof of Theorem 2.4 for Random Fourier Dictionary

P
In the proof of Theorem 2.6, we have derivedy = % Ezl LoLp(Wp 1). Since the sets , are

disjoint, the indices of non-zero entries ofL,(W , ) for di erent p are disjoint and

P
Y=L (¥ Ezl Lo(Wp 1)) = L (p). Moreover, W, 1 has supportT from its de nition in (2.56) which

gives us
L, N2X L, N2X -y
iipiiz @ iLp(Wp 1)jis = @2 iLpr (Wp 1)iiz
p=1 p=1
N2 X
= o7 vec(\W p )" E;T pTVecWp 1)
p=1 (2.107)
N2X . ., N2X 30
— b W, 1jjif = =4 P71
Q2 - I pr Tl WWop 1)l Q2 - >N
ZNT‘] =2PJ

becausejj pr prii 32 and jjW, 1jj2 4 P J following from Lemma 4.6 in [9] and equation (2.58)
respectively. 1 is constructed with At and only rows indexed by |, are non-zero. Therefore,

jipii2 P 2PJ and = P 2P with P Iog(4p 2J )=log 2 de ned in equation (2.59). In addition, from

Section 2.3.6 and Theorem 2.3, we have= 3, = Zand = P 2M log(2KM ) +2 M + 1 with probability

atleast1 4N *' when
N C.i 2, KJ |og(4pﬁ ) (log(M J)+log(K +1)+log( N)): (2.108)
Applying the same to Theorem 2.8, whenN C., 2. KJ (log(KM )+log(M J)+log(N)), =1

with probability atleast 1 N *! . One can easily examine that = + s i 3+ ?91? < 1.

If we setC =maxfC. 1;C. 2g and merge the requirements orlN , we obtain
N C Z,KJ Iog(4p§ ) (log(M J)+log(MK )+log(N)): (2.109)

Thus, the conditions in Theorem 2.7 are satis ed with probability at least 1 5N *1 when N satis es

. P p_ P p_
— I+ o o — 3 6 —
(2.109). Moreover, sm;:e = lp , 2 +p2vE Tt Pra g -2 6teyo; 5 6=Ciand
—*a 2)(1 ;= #5-F 24 P=C, Pwith P log(4 2] )=log2.

2.5 Numerical Simulations

Here we present numerical simulations that illustrate and support ourtheoretical results. We set
B 2 CM X to bethe rst K columns of the normalized DFT matrix plﬁF 2 CM M The ground truth
parametersc and h; are generated by sampling independently from the standard normal disibution, and

the J non-zero columns of the ground truth solutionXo =[¢ h; oy hu] are selected uniformly. 40
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simulations are run for each setting, based on which we compute the peeatage of successful recovery.
Both the dictionary, A, and the ground truth solution, X, including the support and its content, are
sampled independently for each simulation. We solve problems (2.5) an¢2.13) via CVX [115], and in the
noiseless case if the relative error between the solutioR and the ground truth X, is smaller than 10 °,

iR Xojie

TXoie 10 °, we count it as a successful recovery.

2.5.1 The Sucient Number of Measurement

In the rst noiseless simulation, we examine the recovery rate wih respect to the parametersK and J.
We x M =200 and N =100 and let K and J range from 1 to 20. The results are summarized in the
phase transition plots of Figure 2.1 for the random Gaussian dictionary and Fgure 2.2 for the random
Fourier dictionary. The results for the two dictionaries are similar. The reciprocal nature of the phase
transition boundary supports the linear scaling with KJ in equations (2.18) and (2.19). Roughly when

KJ 60, the recovery success rate is satisfactory.

K from 1 to 20
=
o
Recovery rate

=)
T

2 4 6 8 10 12 14 16 18 20
J from 1 to 20

Figure 2.1: The relation between the subspace dimension of the sengimatrix, K, and the number of
committed atoms, J, in terms of the success recovery rate wheA is a random Gaussian matrix.

To further illustrate the linear scaling of the required number of observationsN with respect to K and
J,we x M =200 and K =5, and let N and J range from 30 to 100 and 1 to 20, respectively. The results
are recorded in Figure 2.3 and Figure 2.4 for the random Gaussian and Fourierictionaries, respectively.
The same simulation but switching the roles ofK and J is also implemented, and the results are shown in

Figure 2.5 and Figure 2.6. These results support the linear scaling of Téorem 2.3.
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K from 1 to 20
=
o
Recovery rate

©
T

2 4 6 8 10 12 14 16 18 20
Jfrom 1 to 20

Figure 2.2: The relation between the subspace dimension of the sengimatrix, K, and the number of
committed atoms, J, in terms of the success recovery rate wheA is a random Fourier matrix.

2.5.2 The Recovery Error Bound with Noisy Measurement

To test the noisy case, we seM =200, K = J =5, and N =100, and we lety = L(Xo)+ n with
jinjj2 . Theorem 2.4 gives a recovery guarantee of the forfiX  Xjie C  for a constant C .

Therefore, after dividing both sides byjjXojjg, setting jjnjj = and changing the units to decibels (dB),

we obtain
!
iR Xoije jiniiz
20lo —— 20lo ——— +20log,,(C): 2.110
%o X ojir R X ojr 9:0(C) (2.110)
We call 201log,q ”ﬁx% the relative error in dB and 20 log,, jjj‘;(“oj}jzp the noise-to-signal ratio in dB.

To examine the linear relation between the relative error and the nois-to-signal ratio in equation (2.110),
we sample the real and complex components of the noise vector independently from a standard Gaussian
distribution and scale jjnjj, to attain di erent noise-to-signal ratios. Similar to the previous pl ots, 40
independent simulations are run for each noise-to-signal ratio and theange of the standard deviation and
mean (computed before transforming to dB) of the relative error in dB are recorded in Figure 2.7 and
Figure 2.8. The dashed lines show the theoretical error bound from The@m 2.4 by substituting the
parameters into equations (2.21) and (2.23), and the slope of each dashed lineeat. We observe that when
noise-to-signal ratio is smaller than 0 dB, the relative error scales fiearly with respect to the

noise-to-signal ratio with slope 1 for both random Gaussian and Fourier didonaries. This con rms that

jiX  Xojie grows linearly with respect to in Theorem 2.4. Moreover, if the noise dominates the observed

signal, solving the problem (2.13) results inX = 0 and the relative error becomes 0 dB.
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N from 30 to 100
Recovery rate

2 4 6 8 10 12 14 16 18 20
Jfrom 1 to 20

Figure 2.3: The nearly linear relation between the dimension of the obseed signal, N, and the number of
committed atoms, J, in terms of the success recovery rate wheA is a random Gaussian matrix.

2.5.3 Direction of Arrival Estimation

In this section, we apply the proposed signal model to the direction ofarrival estimation problem
introduced in Section 2.1.4. Note that there exist thousands of di eren subspaces that the complex
calibration could live in. To give a concrete example and compare to theelated work, we adopt the setting
from [9] where the calibration subspaceB 2 CN K is modeled by the rst K columns of the normalized
DFT matrix plﬁF 2 CN N The entries ofh; are sampled independently from the standard normal
distribution and h; is normalized to have unit norm. Moreover, we setM = 181 and discretize the
direction of arrival into ; = f0;1; ;180g degrees. When the distance between array elements is half of
the operating wavelength, we can obtainA by substituting d= 5 and ; into a( ) de ned in Section
2.1.4. Furthermore, we setN =50 and K = J =5 where the directions of arrival of the 5 sources are
f67;75;,92, 127,133y degrees and the signal magnitudes are sampled independently from thenifiorm
distribution on [0;1]. The real and imaginary parts of the noise vector are independent random &ussian
vectors with 0 mean and identity covariance matrix. SNR = 30 dB. By solving the “2.; norm minimization
problem in (2.13), the index of the nonzero column in the solutionX indicates the direction of arrival and
the norm of the nonzero column indicates the signal strength. The redtiis recorded in Figure 2.9 (a). As
a comparison, we also apply the Sparselift method proposed in [9] to thiproblem, which assume®; for

all j are the same and solves an; norm minimization problem. The result is recorded in Figure 2.9 (b).
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N from 30 to 100
Recovery rate

2 4 6 8 10 12 14 16 18 20
Jfrom 1 to 20

Figure 2.4: The nearly linear relation between the dimension of the obseed signal, N, and the number of
committed atoms, J, in terms of the success recovery rate wheA is a random Fourier matrix.

2.5.4 Single Molecule Imaging

Furthermore, we apply the proposed signal model to the single molecalimaging described in Section
2.1.4. All data comes from the Single-Molecule Localization Microscopy grandhallenge organized by ISB}
which contains 12,000 low-resolution frames. Each low-resolution framesi64 pixel 64 pixel with pixel
size 100 nm 100 nm, so thatN =64 64 = 4096. A typical, observed frame is shown in Figure 2.10 (a).
Superimposing all the observed frames leads to the low-resolutiortrsicture in Figure 2.10 (b). The target
of this experiment is to recover the high resolution image of size 320 p¢l 320 pixel, which implies that
M =320 320 = 102400, whose pixel is of size 20 nm 20 nm. In addition, according to the statistic of
the dataset, the number of activated uorophores in each frame is less oequal to J = 17 and we use the
Gaussian point spread functions to approximate the point spread fundbns of the microscope. By
implementing the SVD on the Gaussian point spread functions with di erent variances, we obtain aK =3
dimension subspace that point spread functions live in. Then by solwng an “».; norm regularized least
square minimization problem on each low-resolution frame, we get totallyl2,000 high resolution images

and superimposing all high resolution images results in the super-sslution output in Figure 2.10 (c).

2.6 Conclusion

In this chapter, we introduce the generalized sparse recovery andlind demodulation model and achieve
sparse recovery and blind demodulation simultaneously. Under the asimption that the modulating
waveforms live in a known common subspace, we employ the liftingeichnique and recast this problem as

the recovery of a column-wise sparse matrix from structured lineameasurements.

2EPFL Biomedical Imaging Group, Single-Molecule Localizat ion Microscopy: http://bigwww.ep .ch/smim/
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N from 30 to 100
Recovery rate

2 4 6 8 10 12 14 16 18 20
K from 1 to 20

Figure 2.5: The nearly linear relation between the dimension of the obseed signal, N, and the subspace
dimension, K, in terms of the success recovery rate wheA is a random Gaussian matrix.

In this framework, we accomplish sparse recovery and blind demodation simultaneously by
minimizing the induced atomic norm, which in this problem corresponds to “,.; norm minimization. In the
noiseless case, we derive near optimal sampling complexity that is pportional to the number of degrees of
freedom, and in the noisy case we bound the recovery error of the striured matrix. Numerical
simulations support our theoretical results. In addition to extending the class of dictionaries we have
considered, an interesting future direction would be to relax theconstraint that each D; is diagonal while

preserving the low-dimensional subspace assumption.
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Figure 2.6: The nearly linear relation between the dimension of the obseged signal, N, and the subspace
dimension, K, in terms of the success recovery rate wheA is a random Fourier matrix.
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Figure 2.7: The relation between the relative error (dB) and noise-to-gnal ratio (dB) when A is a random
Gaussian matrix. The blue horizontal sticks and red plus sign indicatethe range of the standard deviation
and the mean of the relative error (dB) respectively given a speci choise-to-signal ratio (dB). The dashed
line is the theoretical error bound from Theorem 2.4.
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Figure 2.8: The relation between the relative error (dB) and noise-to-gynal ratio (dB) when A is a random
Fourier matrix. The blue horizontal sticks and red plus sign indicate the range of the standard deviation
and the mean of the relative error (dB) respectively given a speci cnoise-to-signal ratio (dB). The dashed
line is the theoretical error bound from Theorem 2.4.
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(b) The Sparselift method using "1 minimization [9].

Figure 2.9: The direction of arrival (DOA) estimation. (a) The estimated d irections of arrival by solving the
“2:1 horm minimization in (2.13). (b) The result by applying the Sparselift method using “; minimization.
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(a) An observed frame.

(b) The low-resolution structure. (c) The super-resolution output.

Figure 2.10: The single molecule imaging. (a) The size of observed frame is kel 64 pixel and each
pixel is of size 100 nm 100 nm. (b) Superposition of all observed frames. (d) Superposition of allecovered
super-resolution images. The recovered image is of size 320 pixeB20 pixel with pixel size 20 nm 20 nm.
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CHAPTER 3
SUPPORT RECOVERY FOR SPARSE SIGNALS WITH UNKNOWN NON-STATIONARY
MODULATION

The problem of estimating a sparse signal from low dimensional noisy obs&tions arises in many
applications, including super resolution, signal deconvolution, and adar imaging. In this chapter, we
consider a sparse signal model with non-stationary modulations, in whih each dictionary atom
contributing to the observations undergoes an unknown, distinct modulation. By applying the lifting
technique, under the assumption that the modulating signals live h a common subspace, we recast this
sparse recovery and non-stationary blind demodulation problem as theecovery of a column-wise sparse
matrix from structured linear observations, and propose to solve it viablock “; norm regularized quadratic
minimization. Due to observation noise, the sparse signal and modulatiorprocess cannot be recovered
exactly. Instead, we aim to recover the sparse support of the ground trth signal and bound the recovery
errors of the signal's non-zero components and the modulation proces$n particular, we derive su cient
conditions on the sample complexity and regularization parameter for exacsupport recovery and bound
the recovery error on the support. Numerical simulations verify and sipport our theoretical ndings, and

we demonstrate the e ectiveness of our model in the application of sigle molecule imaging?

3.1 Introduction

3.1.1 Overview

The problem of recovering a high-dimensional sparse signal from its Y@ dimension observations using a
xed sensing mechanism arises naturally in a wide range of applicationgncluding radar autofocus [116],
magnetic resonance imaging [117], and video acquisition [118]. Typically, thsystem receives a low
dimensional signaly = DA ¢ 2 CN, wherec2 CM (M >N ) is an unknown high-dimensional signal, and
D and A are known sensing matrices. Although the sensing process is unddetermined, one can solve for
¢ by leveraging its sparsity; this sparse recovery problem has beertuglied extensively by the compressive
sensing community [2,80,111].

When D 2 CN N is a diagonal matrix containing a sampled carrier signal along its diagonal, it
describes a modulation process, and thus recovery with unknowdiagonal D is sometimes referred to as
simultaneous sparse recovery and blind demodulation [11]. Scenarioshere D is unknown arise in certain

self-calibration [9] and blind deconvolution problems [18].

3This is a joint work with Michael B. Wakin and Gongguo Tang [87  ,88].
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In this chapter, we further generalize this model, allowing each abm in the dictionary matrix A to
undergo a distinct modulation process, rather than multiplication by the same matrix D. We refer to this
generalized scenario as non-stationary modulation. Moreover, we supp@shat the observation is
contaminated with random noise. Although we no longer expect to recoverhe sparse vectorc and
modulating signals (which we denote ad;) exactly due to the existence of noise, we focus on recovering
the sparse support ofc and on bounding the recovery error ofc and D;. By employing the lifting technique
and under the assumption that the modulating signals live in a known,common subspace, we recast our
problem as the recovery of a column-wise sparse matrix from structwed linear observations. Under this
formulation, there are no unknown parameters in the lifted linear opeator. We solve the support recovery
problem by solving a block ™} norm (*,.; norm) regularized quadratic minimization problem, which is also
known as the group lasso in the statistics literature [119,120]. The generizled model encompasses a wide
range of applications, including direction of arrival (DOA) estimation for an antenna array with DOA
sensitive channel responses [103], frequency estimation with damnmgj in nuclear magnetic resonance
spectroscopy [12], and CDMA communication with a spreading sequencgensitive channel [9]. To give a

concrete example, we apply the proposed model to single molecule imagi [105] in Section 3.4.4.
3.1.2 Setup and Notation

Throughout the chapter, we represent matrices, vectors, and scalars dsold uppercase, X, bold lower
case,x, and non-bold letters, x, respectively. We use the symbolC to denote numerical constants that
might vary from line to line. Given a support set T, the notation Xt represents the restriction of X to the
columns indexed byT, and the notation xt represents the restriction ofx to the entries indexed by T.
Moreover, we usejj jj to denote the spectral norm, which returns the maximum singular valte of a matrix,
and jj jjr to denote the Frobenius norm. For a matrix X =[x1;X2; ;Xu]2 CX M we dene
iXjj21 = P jM:l JiXjji2 and jjXjj2;1 = max; jjXjjj2. In addition, later in the chapter we will have the
vectorized subgradient,s 2 CKM 1| of a function with respect to its matrix input X 2 CK M and we

de ne jjsjj2.1 = max; jjsjjj» wheres; is the subgradient with respect tox; .
3.1.3 Problem Formulation

In this chapter, we consider the following generalized signal modekith an unknown coe cient vector
and non-stationary modulation process. Speci cally, the observationsconsist of a contaminated composite
signal

X

y= ¢Djaj+n2cCM: (3.1)
j=1
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Hereg 2 C is an unknown scalar,D; 2 CN N is an unknown modulation matrix which is non-stationary
as it depends onj, a; is a dictionary atom coming from a dictionary matrix A =[a;; ;am]2CN M,
andn 2 CN ! s additive random Gaussian noise whose real and imaginary entries followhe i.i.d
Gaussian distribution with mean 0 and variance 2.

Since there are more unknown parameters than the number of observati@nin the model (3.1), to make
the recovery problem well-posed, we assume that at most (< M ) of the coe cients ¢ are non-zero and

that the diagonal modulation matrices, D, live in a common K -dimension subspace

D, = diag(Bh;) (3.2)

whereB 2 CN X (N >K ) is a known basis for the subspace with orthonormal columns, and; 2 CX 1
are unknown coe cient vectors. Similar subspace assumptions can béund in the deconvolution and
demixing literature [10,13]. Recoveringg and h; from y is a bilinear inverse problem [121,122].

To combat the di culties resulting from the bilinearity, we apply the lifting trick [10,11, 14], which
collects the unknown parameters into a matrixX =[c;hy ¢h; cwhm]2 CK M By using
Proposition 1 in [86] we can show that, whenn = 0, the observation model (3.1) takes the following

equivalent form:
y(n)=bYXa%:n=1;:::;N: (3.3)

where b2 and a2 are the n-th column of BH and AT respectively. We write (3.3) succinctly asy = L(X)
with L being a properly de ned linear operator. And the adjoint of the linear operator L is
L (y)= P ,N:1 yib’a . The matrix X incorporates the unknown sparse signal and modulation process with
at most J (< M ) non-zero columns. The support recovery problem we study in thischapter aims to
determine the indices,j, of the non-zero columns inX from the observation vectory. We also aim to
bound the recovery error of X in terms of the "2.1 norm. If we assume there is no trivial null modulation,
namely all D; 6 0, nding the indices of the non-zero columns of X is equivalent to recovering the support
of c. Moreover, note that due to the scaling ambiguity betweenc; and hj, the recovery error bound is
expressed with respect to their multiplication ¢ h; .

A natural way to recover the ground truth X, from y is to exploit its sparse property and solve the

following ",.1 norm regularized quadratic minimization problem

N NP
minimize Zjjy L (X)iiz+ iXlizx: (3:4)
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Alternatively, we can write (3.4) equivalently as

T ..o L
minimize Zjjy vec(X)jjz + B jixijjz: (3.5)
HereL(X) = vec(X) with
=[ 11 K; 1 M km ]2 CN KM (3.6)
and i; =diag(bi)a; 2 CN !, whereb is the i-th column of B. Moreover, we denote the set containing

the indices of the non-zero columns of the ground-truth matrixXo asT := T(X) with jTj= J and its
complement asT¢. Due to the special block structure of , when using the subscript notation 1 we refer

tothe N KJ sub-matrix of containing the K(j 1)+1to K(j 1)+ K-th columns forallj 2 T.
3.1.4 Main Contributions

Our contributions are twofold. First, we propose to apply ",.1 norm regularized quadratic minimization
to recover the support of the generalized signal model in (3.1). Secondve derive su cient conditions
under which, with overwhelming probability, the support of the r ecovered signal is a subset of the support
of the ground truth. More precisely, we show that the required numter of observations,N, is proportional
to the number of degrees of freedomQ(JK ), up to logarithmic factors. Moreover, the regularization
parameter, , should be chosen to be proportional to the of the noise. We also bound the error in
recovering the non-zero columns of the ground truth as measured in #°,.; norm. With an additional

assumption on the ground truth signal, all conditions lead to exact supportrecovery.

3.1.5 Related Work

The “,.1 norm constrained quadratic minimization problem, also known as the grouplasso in statistics
literature [119, 120, 123], has been widely studied. However, under our padular signal model (3.1), the
linear operator  contains randomness and has a special block structure as presented (8.6), which
distinguishes our work from other group lasso research. For example, [120]sasnes each block of
[ 1555 g ], to be orthonormal. [124] considers the adaptive group lasso and derives sient support
recovery conditions using the block coherence of a deterministi . [125] allows varying block sizes but still
assumes a deterministic . [126] assumes that has independent sub-exponential rows which is not
consistent with our formulation, and they bound the recovery error in terms of *, norm instead of ",.;
norm as in our theorem. Moreover, [112,127] provide a general recovery anaigdor regression problems
regularized with partly smooth functions relative to a manifold de n ed in [112], which encompasses thg.1
norm. However, the precise bounds on the regularization parameter and saohle complexity for exact

support recovery with  de ned in (3.6) are not derived, and that work bounds the error in terms of *,
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norm instead of the 2., norm.

As for the signal model itself, the model we study is closely relatedo certain works in self-calibration
and blind deconvolution [9, 18]. The work in [13] considers a similar modeéxcept that the dictionary
therein consists of all sampled sinusoids over a continuous frequey range, and its modulating waveforms,
Dj, are all the same. As an extension, [12] allows non-stationary modulating weforms but still concerns
the sinusoid dictionary. The fact that [12] considers a more general signahodel than [13] actually
facilitates the derivation of a near optimal result on the su cient samp le complexity. Our work in this
chapter similarly bene ts from expanding the signal model of [9]. Spei cally, our model ts into the
self-calibration problem [9] when allD; are the same. However, in the noisy case, [9] does not aim to
recover the support and only bounds the error in terms of the’ ; norm. [10] generalizes the model in [9] and
can be interpreted as the self-calibration with multiple sensorswhile allowing varying calibration
parameters. However, [10] studies a constrained nuclear norm minimgion problem with bounded noise
and requires knowing the number of sensors. Additional related mods for di erent applications, all
requiring the same modulation matrix, are available in [18,108{110].

We have also previously studied the sparse recovery and blind demdulation problem [11,86] and
numerically compared the support recovery performance of the Sparét method [9] and the “,.; norm
minimization method for direction of arrival estimation in [11]. In those works, however, we assume either
zero or bounded additive noise, whereas we consider random Gaussian reis this chapter. Moreover,
in [11,86] we solve a constrained,.; norm minimization problem due to the consideration of bounded
noise. The regularized formulation used in this chapter is a natural cbice when considering unbounded
noise [128] and is more convenient for support recovery analysis. Finallyn those papers, we derive the
recovery error bound in terms of the ; norm and do not study the question of exact support recovery
when noise is involved.

The rest of this chapter is organized as follows. In Section 3.2, we preseour main theorem regarding
the support recovery problem. The detailed proof of the main theoremis shown in Section 3.3. Several
simulations and an experiment are conducted in Section 3.4 to demonsite the important scaling
relationships and the e ectiveness of our model in practical applicaion. Finally, we conclude this chapter

in Section 3.5.
3.2 Main Result

In this section, we present our main theorem, which presents thewgpport recovery conditions and
recovery error bound for solving (3.4) (or equivalently (3.5)). In this result, we assume that the dictionary

matrix A is a random Gaussian matrix, by which we mean a matrix whose entries fadw the i.i.d standard
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normal distribution.

Theorem 3.9. Consider the observation model in equation (3.1), assoe thatA 2 RN M (N <M ) is a
random Gaussian matrix, at mostJ (<M ) coe cients ¢ are nonzero, and the real and imaginary parts of
each entry of the noise vectom 2 CN 1 follow the i.i.d Gaussian distribution with 0 mean and 2
variance. Suppose also that each modulation matri; satis es the subspace constraint(3.2), where

BHB = Ik . If the number of observations

N C.; 2,JK log(M J)+log?(N) (3.7)

and the regularization parameter

q
C.2 2 fax K[logM J)+log(N)] (3.8)

whereC. ; and C. , are constants that grow linearly with > 1 and the coherence parameter
P— _ .
max — I’T]I?X NjBj J; (3.9)

then the following properties hold with probability at leastt O(N  *'):
1. Problem (3.5) has a unique solutionk 2 CX M with its support, the set of indices of the non-zero
columns in X, contained within the support T of the ground truth solution, X o.

2. The recovery error between the solution® , and the ground truth, X o, satis es

p _
X Xojj21 Cc 2 rznaXJK[Iog(J)+Iog(N)]+4pJ (3.10)

where C is a constant that grows linearly with . If in addition the non-zero columns of X are

bounded below

- . p p_
min jixojjjiz > C 2 Zax JK [log(d) +log(N)[+4" J; (3.11)

then X and X, have exactly the same support which implies exact support recovery.

According to (3.10), we can derive that for any®; =% A; and xoj = Co;j hoy which are the j -th

columns of the solutionX and the ground truth X o respectively,

.. N N . p p—
iigD; cojDojiir = jigA; cojhojiiz  C 2 2, IK [log@)+log(N)]+4 J: (3.12)

. P— .
Moreover, since the columns oB are orthonormal, max 2 [1; N]. Given the system parameters and a

q

large enoughN, (3.7) is satis ed when 1 max and max T [Iog(MN Tyriog TN - In addition, since

we solve the column-wise sparse matrix support recovery problem aithe group lasso and bound the
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recovery error in terms of 2.1 norm, Theorem 3.9 may be of interest outside the support recovery mblem

and shed light on the performance of the group lasso with random block stretured linear operators.
3.3 Proof of Theorem 3.9

We present proof of the main theorem in this section. We rst derive the optimality and uniqueness
conditions of the solution to (3.5) and then apply the primal-dual withess method [22] to construct a
solution and nd the conditions regarding the regularization parameter and number of observationsN

such that the optimality and uniqueness conditions are satis ed.
3.3.1 Optimality and Uniqueness Conditions

Lemma 3.3.

1. A mgtrix3>’% 2 CK M js an optimal solution to (3.5) if and only if there exists a subgradient vector

S1
s=§ ! 72vec @Xjj21 , such that
Sm
2 3
S1
Ho veqR) Hy+ § : Z: 0 (3.13)
Sm
which is equivalent to
H veqX) vedXo) Fn+ s=0 (3.14)
wheres; 2 CX is the subgradient ofjj jj, at ®; de ned as
C . Lo
s = Rijj2 if ji%ijj2 6 0; (3.15)

fz :jizjiz  1g if jjRijj2 = 0:
2. If the subgradient vectors of the optimal solutionX satisfy jjsijj, < 1 for all i 2 T(X), then any
optimal solution, X, to (3.5) satises x; =0 for all i 2 T(X).
3. When conditions in (2) are satis ed, if in addition $(k) ry 2 C¥ K is invertible, then R is

the unique solution to (3.5).

Proof.
1. Since problem (3.5) is convex, any optimal solution,X , must satisfy the rst-order condition (3.14).
2. We rst argue that when is xed, for two arbitrary di erent optimal solutions X; and X, to (3.5),

we have vec()Q 1) = vec()'( 2). This can be proved by contradiction as follows.
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Assume vec(R;) 6  vec(R,) for two arbitrary optimal solutions X; 6 X, to (3.5). By
constructing X3 = 3(R1+ X>), a little linear algebra yields
Ziy U Rig+ iisiiza < iy L RO+ iRz (3.16)
for k 2 f 1; 2g, due to the strict convexity of the function f (x) = %jjy xjj3 and the optimality of R
and X,. Thus, X1 and X, are not optimal. By contradiction, ~ vec(R1)=  vec(R,). Then from
(3.14), we can derive thats for di erent optimal solutions are the same. Therefore, assume we have
an optimal solution X such that jjsijj» < 1 for all i 2 T(X), any other optimal solution, X, would
have subgradient vectorsjjsijj. = jjSijjo < 1 forall i 2 T()’() which implies x; = 0 according to (3.15).
3. If conditions in (2) are satis ed and ?(k) TRy 2 CKXJ KJ s invertible, the solution of the support
restricted problem %jjy T(R) vec(X)jj3 + jjiXjj2:1 is unique by solving the restricted rst order

condition.

3.3.2 Primal-Dual Witness Construction

The method we apply to nd the conditions regarding the regularization parameter and number of
observationsN for satisfying optimality and uniqueness conditions is the primal-dual witness method [22]
which constructs the solution matrix, X, and subgradient vector, s, through the following steps.

1. Conditoned on H 12 CK) KJ jsinvertible, we rst obtain Xt 2 CX 7 by solving the support

restricted problem
Rr=ag min | Sy 1 veck)i3+ iXjzs : (3.17)
x2cKk 32
The solution X 1 is unique under the invertibility condition on #‘ 1. And we set
Ric 2 CK M 2) =0 Thus, X has support contained within the support T of the ground truth
solution X .
2. We calculate the subgradient vectorst 2 C'X based onX 1, where st is a sub-vector ofs consisting
ofsj forallj 2 T.

3. We solve for a vectorstc 2 CM K gatisfying (3.14) and check whetherjjsijj, < 1 foralli 2 T.

If & 1 isinvertible and jjsiji < 1foralli2 TC, R constructed via the primal-dual witness method
is the unique optimal solution to (3.5) with its support contained with in the support of the ground truth
solution X . And note that the primal-dual witness construction succeeds only ifthe problem (3.5) has a
unique solution whose support is contained within the support of the gound truth. The challenges of the

construction lie in characterizing the regularization parameter and the number of observationsN such

that jjsijjo < Lforalli 2 TC.
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To simplify the notation, without loss of generality, we assume the suport of X ¢ is the rst J columns
and T = f1;2;:::;Jg throughout the proof. Therefore, rewriting (3.14) into matrix multip lication form

results in
" o P 4 " "

re vec®t) vecXor) T, ST Lo (3.18)

H
c TC 0 TC Stc

—I HxT

When H 1 isinvertible, from (3.18) we can derive that

( X)=vec(R1) vecXor)=( % 1) % Hn sr (3.19)

and

1
ste == Hen Mo (X)) (3.20)

Substituting the full expression of ( X) into (3.20) results in

n
ste= fe v (¥ )P Y =+ Fo o r(F 1) s (3.21)

3.3.3 Important Lemmas

In this section, we introduce some important lemmas and propositions hat will be applied during the
proof of Theorem 3.9. First is the isometry bound for the linear operatorL de ned in (3.3) (and  de ned

in (3.6)) which can be found in Lemma 4.3 in [9].
Lemma 3.4. [9, Lemma 4.3] (Isometry) For the linear operator L de ned in (3.3) with BHB = I« and
> 0,
T S B I | N I By (3.22)

with probability at least1 N *! wherelt is the identity operator on the supportT such that
I+(X)= X7, if A is arandom Gaussian matrix andN  C 2. KJ maxflog(N)= 2:log?(N)= g. Here

C is a constant that grows linearly with > 1.

According to Lemma A.12 in [16], ifjj % 1 17jj < 1, ¥ 1 isinvertible and
jc Y 1) Y (@ ) . Inaddition, we have the following quadratic Gaussian tail bound propostion,

developed from Theorem 1 in [113].

Proposition 5. Let H 2 CX N and = H"H. Let a 2 CN whose real and imaginary entries follow the

i.i.d normal distribution with 0 mean and 2 variance. For all > 0,
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h i
P
Pr jjHajjis> 2 2Tr( )+2 2Tr( 2) +2jj j e (3.23)

If a2 RN only contains the real part, for all > 0,
Pr jiHajj3 > 2hTr( )+2pTr( 2) +2j ji | e : (3.24)
Proof. When H and a are a complex matrix and vector, we can writeH = Hgr + iH, anda = agr + ia,
whereHg, H|, ar and a, are all real and the entries ofar and a, are i.i.d Gaussian random variables
with 0 mean and ? variance. We then have
jiHajj3 = ji(Hr + iH|)(ar + ia))ji3
= jj(Hrar Hja)+ i(Hra + Hagr)jj

= jjHrar  Hiaji3 + jjHra + Hjarjj3 (3.25)
" #"  #

_ Hr Hy ar

~ H Hr a

2
2 3

Hr H
De ne Hozg gand o= HJH,. o has the form

Hi  Hg
n #ll #
_ H-lF; H;r Hr H,
° H] HL H, Hg
" #
_ H;HR+HFH| HEH|+H?—HR (326)
HFHR+H-|£H| H;I—H|+H1F;HR '
" #
_ H, H»
"~ Hz Hi

where we deneH; = HYHr + H/H, andH, = HJHgr + HLH,. Applying Theorem 1 in [113], we get
h i
P . .

ProjiHaji3> 2 Tr( o)+2 Tr( 2) +2ji i e : (3.27)

If we further de ne

H"H = (Hgr + iH))P (Hg + iH))

(HE iH)(Hg +iH))

=(HRHr + H{H )+ i( HIHgr + HEH))
=Hi+iHy;

(3.28)

57



by comparing (3.26) and (3.28), one can check that Tr ( o) =2Tr ( H1) =2 Tr (
Tr( 5)=i olif =2(iiH4iif + iiH20if)=2]i jiz =27Tr (

i ol =

wherex, and x, 2 RN since

) since Tr (H,) =0,

2), and

" #
H1 H>
Ha Hi

" #" #
max Hi Ho X3
2)(1 H Hi X2 5
8L =
X2

q.. as e e
2 Max jiHix1  Hoxgji + jjHx1 + H1xojj3
X1 (3.29)
§ 7 =1
X2

2
q

max i(Hix1  Haxp)+ i(Haoxy + Hixp)jis

fixaiiz+iix2iiz=1

max i(Hy+ iH2)(x1 + ix2)ji3

fixaiiz+iix2iiz=1

max i X+ ixiiz=1 1

jixaiiz+iix2iiz=1

o IS a real matrix, so that the vector corresponding to its largest singuar

value is also real. Therefore, we have

h i

p
Pr jiHajjs> 2 2Tr( )+2 2Tr( 2) +2j j e (3.30)
Similarly, when a only contains the real part
P ,
L Hr
IIHajj3 = H ar (3.31)
! 2
still follows (3.28) and
o=[HgHr + H{H 1= Hu: (3.32)
Inthiscase, Tr( o)=Tr( ), Tr( 2) Tr( ?)andsince , is real, we have
e e q e .
i oii=  max jiH1xjj3
jixji2=1;x2RN q
. max liH1xji5 + jiH2xji3
jixji2=1;x2RN q
= max jiH1x + iH2xjj3 (3.33)
jixji2=1;x2RN q
max (H1+ iH2)Xjji5
jixjj2=1;x2CN
= omax - ji Xjz2 =i i
jixjj2=1;x2CN
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So we have, for > 0,

P ———— p
Tr( )+2 Tr( 2 +2jj ji  Tr( o)+2 Tr( 3) +2j o (3.34)
which results in
h 0 i
Pr jjHaji3> 2 Tr( )+2 Tr( 2) +2jj j e (3.35)
O
Proposition 6. Let H 2 CX N and = HM"H. Let a 2 CN whose real and imaginary entries follow the

i.i.d normal distribution with 0 mean and 2 variance. For all > 1,
h p_ i
Pr jjHaji3> 2 2+ 2+2) Tr( ) e (3.36)

If a2 RN only contains the real part, for all > 1,
Pr jjHaji2> 2(1+4 )Tr( ) e : (3.37)

Proof. Since is a positive semi-de nite and hermitian matrix, all its eigenvalues, ;, are non-negative.
P N P N P N

Thus, Tr( 3= 5, 2 ( iy )?=Tr( )?andjj jj= max iz i =Tr( ). As aresult, for
> 1,

h p_ i h P i

2242 2+42) Tr( ) 2 2Tr( )+2 2Tr( 2) +2j j (3.38)
and

h p i
2A+4 )Tr () 2 Tr( )+2 Tr( 2 +2ji ji (3.39)

Then applying Proposition 5 yields Proposition 6. O

3.3.4 Bounding jjSrcjj2a

Recalling (3.21), to prove that jjsijj> < 1 for all i 2 T¢ which is equivalent to jjstcjj21 < 1, where the
“2:1 norm of the subgradient vector is de ned in Section 3.1.2, we only need tshow that for a constant

2 (0;1),

N H 1w N

I Te In (1 1) 7 —l2a > (3.40)
and

H

i e 1Y 1) stz (3.41)

EZ

Then by the triangle inequality, jjStcjj2:1 < 1.
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Lemma 3.5. Conditioned on ¥ 1 being invertible, we have
H

.. n..
i ote In GRS B L [P > (3.42)

for 2 (0;1) with probability at least1 N *! when

> c 2 ,ZnaXK[Iog(I\Z/I J) +log(N)] (3.43)
and
N 10logM J)+10 Ilog(N) (3.44)
whereC is a constant that grows linearly with > 1.
Proof. jj Hc I (8 o)t 8 Nign 5 for 2(0;1) is equivalent to
22
maxji  Ino (7 1) T oniz - (3.45)

where ; (i 2 T€) is the sub-matrix containing the [K (i 1)+1]to [K (i 1)+ K]-th columns of . If we

dene Hi = [ Iy 1 % 1)t H | the projection matrix P = Iy (H )t H and

= HMH;, we get
Tr( )= jiHijig =ii ' PjiZ = jjB" diag(a)" Pijj2
= jjP diag(ai)Bjj2
= jiP [diag(b1)ai; diag(by)ai;  ;diag(bk )ai]jj2

e . . % e e 2 e e (3-46)
= jiP diag(be)aiji3 iPi - liaili
k=1 k=1
N Jailiz:
Sincen is the additive Gaussian noise vector, applying Proposition 6 gives udpr > 1
2 2 h p_ i
Pr jjHinjj3> 22+(2 2+2) 1 Tr( ) e ! (3.47)
in which we need
s p—
28+(8 2+8) 1 Z, Kjaiji
2N
s (3.48)

28+(8" 2+8) 1 Tr( ).
: :

To control the term jja;jj3, we de ne an eventE = fmax,1c jjaijj3 < 2N g. Because each entry of

aj 2 RN follows the standard normal distribution, jja;jj3 is a 3 random variable. According to Lemma 1
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in [129], for ,> 0

P
Pr(jiaijj? 2 N+2 ,+N) e 2 (3.49)

By solving 2N 2P LN +2 5+ N, we require » (pr 2)2N 0:134(N. Sofor0< , X, we have
Pr(jjaijiz 2N) e = (3.50)
Taking the union over all i 2 TC gives us
Pr(E€) (M J)e 2 (3.51)

which is meaningful when logm  J)  , X

In addition, if we de ne another event F = fmax;,rc jjH;njj3 > %g, conditioned on E and with

® 16+(16P2-;16) 1 ek 352)
by taking the union of (3.47) over all i 2 T¢, we obtain
Pr(FJE) (M J)e (3.53)
Therefore,
Pr(FjE)+Pr(E®) (M J)e '+(M J)e 2 (3.54)

=2N N
for > 1bysetting 1= ,=log(M J)+ Ilog(N). Substituting 1 into (3.52) and some simpli cation

yields
s

C 2 faxKllogM J)+log(N)]
2

(3.55)

whereC = (16p 2+16) +16 is a constant that grows linearly with > 1. Moreover,

log(M J) 2=log(M J)+ log(N) 1'\‘—0 requiresN  10logM J)+10 log(N). Finally, the law

of probability implies

2 2
Pr(maxjj F v r(§ 0¥ i3 —)
=Pr(F¢) Pr(F¢\ E)=1 [Pr(EC)+Pr(F\ E)] (3.56)
1 [PEC)+Pr(FIE)] 1 N "%
O

Lemma 3.6. Conditioned on Y 1 being invertible andjj( ¥ 1) %jj 2, we have
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i e tC 5 1) 'sriian 3

for 2 (0;1) with probability at least1 N  when

2 KJ

N C -ma

[logM  J)+log(N)I;

whereC is a constant that grows linearly with > 1.

Proof. ji Hc +( % 1) sriizn 5 for 2 (0;1) can be reformulated as
iryggjj P Y 1) tsriig

2 3
al! diag(by)" ?

af! diag(bz)"
= max _ v
i27¢ :

af' diag(bx )" ,
= max jiv" [diag(by)a;; diag(by)ai;  ;diag(bk )a;ljj3

2 diagby) > 2

vH diag(b,) , 2
_ o e
He : a = RFInal g

vH diag(bk ) 5

where we denev= (¥ 1) sy 2CN and

2 UM diag(by) >
0o
H= EV dlég(bzé 2 cKk N
vH dia;g(bK)
Therefore, for = H"H, we have

2 UM diag(by) > 2

vH diag(b,) 2 2
()= g | mes K g 2 meckCd

: N
vH diag(bx )
since

jviig=ivtvi=gst ! o)t (1) tsri
H

=it % 1) st (¥

Becausea; 2 RN fori 2 TC is independent of 1 and a;'s entries follow the i.i.d standard normal

distribution, Proposition 6 implies, for 1> 1
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(3.57)

(3.58)

(3.59)

(3.60)

(3.61)
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Pr jiHaij2> 1+4 )Tr( ) e 1 (3.63)

To ensure that 72 @a+4 )Tr( ), we need

(8+32 l) rznax KJ.
5 .

N (3.64)
By taking the union over all i 2 T, we get
2
Promaxj ' +( % 1) 'srif> 7 (M de =N (3.65)
i C

if we set ;=log(M J)+ log(N)for > 1. Substituting the full expression of ; into (3.64) and some
simpli cation yields

rznax KJ

N C -ma

flogM  J)+log(N)] (3.66)

whereC =32 +8is a constant that grows linearly with > 1. O
3.3.5 Bounding jjRt Xotiiz1

When the support of the unique optimal solution X is contained within the support of the ground truth
solution X o, the recovery errorjjX Xojjz1 = ikt XoTli2:1 - And because the optimal solution on the
support, 1 2 CK 7 (we assumeX 1 6 X1, otherwisejjXor Xr1ji21 = 0) is attained by solving the
support-restricted regularized least square problem (3.17) whose obgéve function
f (vec(X)) = %jjy T vec(X)jj3 + jiXjj2:1 is strongly convex, since%jjy T vec(X)jj3 is strongly
convex conditioned on Y 1 being positive de nite and jjXjj2.1 is convex, by the property of the
strongly convex function, we have

n h oy
f(vec(Rr)) f(vec(Xor))+Re gvec(XXor)" vec®r) vecXor) + ikt Xorjj  (3.67)
where g(vec(X o.1)) is the subgradient of f (vec(X -1 )). In addition, if we set = % in Lemma 3.4, we have
iC ¥ 1) i 2according to Lemma A.12 in [16], which implies # 1  1I. Asaresult, m = . Then
by the Helder inequality,

n h io

i
f(vec(R1)) f(vec(Xor))+Re gvecXor)" vecRt) vec(Xor) + %jjkT XoTiig

f (vec(Xo)) ji g(vecXor )izt iRt  Xoriiza + ﬁHRT Xotiiza iRt  Xoriiz1

(3.68)
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where the “,.; norm of the subgradient vector is de ned in Section 3.1.2, and the seconchequality comes

from the fzct that % p-. Because ifjXjjZ = L, one can check thatjjX jj2;1 P L and
iXJiza LJ where the equality is achieved when the 2-norm of all columns are the same.
Therefore, sinceX 1 6 X1 and X 1 is the optimal solution, f (vec(R 1))  f (vec(X 7)), (3.68) yields
R Xoriz: 4 Jjglvecor iz
=4 Jjj ¥ tvecor) Yl+ Ssoriiza
=4 Jjj fn+ soriiza (3.69)
4 3 i Fnjiza + i soriiza
=43 ji Ynjiza +
where we have usedy = tvec(Xor)+ n andjjsorjj21 = 1. Now we turn to bound the term jj Hnjjo.1

applying the following lemma.

Lemma 3.7. Conditioned on ¥ 1 being invertible, we have

. . p
i Yniiza C 2 2.,Klog@)+log(N)] (3.70)

with probability at least1 N *! when

N  10log@)+10 log(N) (3.71)

where C is a constant that grows linearly with > 1.

Proof. If wedene  (j2T)tobethe[K(j 1)+1Jto[K(j 1)+ K]-th columns of , we have

i ¥njiza =maxjarji 'njj,. Foranarbitrary j 2 T,let = ; M,

T()=Tr( 5 (=T )

=jj jii2 = ji[diag(by)aj; ;diag(bx )a;liig
X I S

= jjdiag(bk)a;jj3 - Jalz

k=1

(3.72)

If we de ne an event E = fmax;,7 jjajjj3 < 2N g, in the proof of Lemma 3.5 we have shown that for
0< 4 1’%
Pr(jjaijis 2N) e *: (3.73)

Taking the union over all j 2 T results in

Pr(EC) Je * (3.74)
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which is meaningful when logQ) 1 %- Therefore, conditioned onE, Tr () < 2 2., K. Applying

Proposition 6 gives us, for , > 1

Pr(jj JHnjj'g‘>h4+(4p§+4) zl 22 KJiE) e 2 (3.75)
Taking the union over all j 2 T yields
Pr(max i s ar@P2eg ) P AKiE) de o (3.76)
Therefore,
h o i
Pr(max j Hnjig> 4+@ 2+4) , 22, ,KJjE)+Pr(E®) Je 2+Je *=2N Nt

3.77)
ifweset 1= ,=log(J)+ log(N)for > 1. Moreover, logd) 1 =log(J)+ log(N) % requires
that N 10log@)+ 10 log(N). Substituting . =1log(J)+ log(N) into (3.76) and some simpli cation

yields that, for an event

n [0)
F= maxj > C 7 7, K [0g@) +1og(N) (379)
I

J

whereC = (4p 2+4) +4,wehave Pr(F jE)+Pr(EC) N *1. Therefore,

Proji ¥nijizs o fax K [log(J) +log(N)]
=Pr(F®) Pr(FC\ E)=1 [PEC)+Pr(F\ E)] 3.79)
1 [P(ES)+Pr(FjE)] 1 N *1:

3.3.6 Proof of Theorem 3.9

We now sum up the related lemmas to derive the nal results in Theoem 3.9. By setting = 3,
Lemma 3.4 shows that ¥ 1 isinvertible and jj( Y 1) !j 2 with probability atleast1 N *!
whenN C.o 2., KJ log’(N) for > 1.

By applying the same to Lemma 3.5 and 3.6 and setting = % we can get that, conditioned on

1 being invertible and ji( ¥ 1) Yi 2 jistciiz1 3 which implies that the support of the unique
optimal solution X to (3.5) is contained within the support of the ground truth solution X, with

probability at least 1 2N *!, when

q

C;2 ? faxKllogM J)+log(N)] (3.80)

and
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N C.3 2, JK[logM J)+log(N)]: (3.81)

As for the recovery error, we apply the same to Lemma 3.7 and substitute (3.70) into (3.69). As a
result, conditioned on Y 1 being invertible and the support of the unique optimal solution R being

contained within the support of X,

) ) p_ . ) p p_
X Xojiza 4 3 ji Hnjizg + C 2 2, JK [log(d)+log(N)+4 J (3.82)

where C is a constant that grows linearly with , with probability at least 1 N *! when
N  10log@)+10 log(N).

Therefore, after combining the probability and the requirement onN and , we can conclude that, with
probability at least 1 4N *1, (3.5) has a unique optimal solutionX with its support contained within
the support of the ground truth solution X and the recovery error in terms of ».; norm satis es (3.82)
when satises (3.80)andN C.; 2, JK[logM J)+log?(N)] whereC. ; =maxfC. o;C. 3g for

> 1.

3.4 Numerical Simulations

In this section, we present several numerical simulations to demastrate and support the theoretical
results in Theorem 3.9. In these simulations, each entry of the dicbnary A 2 RN M is sampled
independently from the standard normal distribution and B 2 CN ¥ contains the rst K columns of the
normalized N N DFT matrix. The real and imaginary components of ¢, 2 C and h; 2 CX * follow the
i.i.d standard normal distribution and the support, T with jTj= J, of the ground truth solution

Xo=[ch1; ;ecwhm]2 CK M s selected uniformly at random. Problem (3.5) is solved via CVX [115].
3.4.1 Range of for Exact Support Recovery

In the rst simulation, we determine the e ective range of  for exact support recovery. Theoretically,

(3.8) provides a lower bound for such that Theorem 3.9 holds and (3.11) gives an upper bound to achieve

exact support recovery. To verify the bounds of , we dene ¢ = P = 2 K [log(M J)+log(N)] and

= m (3.8) implies that we could set = k o for somek > 0. In addition, according to (3.8)

and (3.11) in Theorem 3.9, when all system parameters except are xed, to achieve exact support

recovery, should satisfy

min; 271 jjXojjji2  Co

Cc =k o<
10 0 Ca

(3.83)
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which is equivalent to

C: k< g Cs (3.84)

where C, = é and Cs = 0(3:20' To examine this relation, we x =0:1,J =K =3, N =100, and

M =150, and we vary k and . 50 trials are run for each ; ) pair and we record the exact support
recovery rate in Figure 3.1, from which we do observe thak should be larger than a constant which is

approximately 1:2 under this setting and that k has a reciprocal relation with

0.9
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0.6
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~ from 0.02 to 1

o
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Exact support recovery rate
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0.2

0.1

k from 0.2to 6

Figure 3.1: The relation betweenk and in terms of the exact support recovery rate where = k ¢ and
—_ 0

Tominjat jXojjiz”

3.4.2 Number of Observations N for Exact Support Recovery

Equation (3.7) in Theorem 3.9 indicates that the su cient number of observations, N, scales nearly
linearly with respect to the subspace dimensiorK and the sparsity J. To verify that, in the second
simulation, we setM =150, k =3, and =0:02 to make sure that is in an appropriate range for exact
support recovery. We vary N and K (with xed J = 3) and record the exact support recovery rate in
Figure 3.2. The result of a similar simulation but varying N and J (with xed K = 3) is shown in
Figure 3.3. 50 simulations are run for each setting. We observe that linearcaling of the number of

observationsN with the subspace dimensionK and the sparsity J is su cient for exact support recovery.
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Figure 3.2: The nearly linear relation between the number of observatios, N, and the subspace dimension,
K, to achieve exact support recovery.
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Figure 3.3: The nearly linear relation between the number of observatios, N, and the sparsity, J, to
achieve exact support recovery.

3.4.3 Recovery Error Bound

Next we turn to verify the recovery error bound in (3.10), which scales linearly with respect to and
nearly linearly with respect to pj_ We setK =3, N =100, M =150, and =0:02. In Figure 3.4, we use
= k o (with xed J =3) and vary k within the proper range for exact support recovery based on
Figure 3.1. 100 trials are run for eachk and we calculate the mean and standard deviation of the recovery
error jjX Xojj2:1 - Note that the recovery error is counted only when the exact support reovery is

achieved. In this gure, we do observe linear scaling of the error wit
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Similarly, we vary J (with xed =3 () within the proper range for exact support recovery based on
Figure 3.3 and record the squared recovery errojjX Xojji1 in Figure 3.5. Again, the squared recovery
error is counted only when the exact support recovery is achieved.nlthis gure, we can observe nearly

linear scaling of the squared error withJ.

Recovery error
N
2 w
\
\
R N
X
\
\
X
A\
\
\

k from 2 to 6

Figure 3.4: The linear relation between the recovery errorjjX Xoji2:1 , and the regularization parameter
= k o. The red plus signs and the blue horizontal sticks indicates the meamand standard deviation of
the recovery error.

0r

Jfrom1to6

Squared recovery error
)

Figure 3.5: The nearly linear relation between the squared recoveryreor, jjX Xojjg;1 , and the sparsity
J. The red plus signs and the blue horizontal sticks indicates the meamand standard deviation of the
squared recovery error.

3.4.4 Single Molecule Imaging

In this experiment, we apply our signal model (3.1) to the single moleale imaging problem and achieve
super-resolution by solving (3.5). In molecule imaging via stochast optical reconstruction microscopy

(STORM) [106], the sub-cellular structures are dyed using uorophotes, and during each observation only
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a small portion of the uorophores are activated. Moreover, uorophores at di erent depths will undergo
di erent degrees of blurring.

Consequently, each observed image frame consists of a few activated umphores convolved with the
non-stationary Gaussian point spread functions of the microscope as shown Figure 3.6 (a). Speci cally,
the observed low resolution frame is of size 64 64 pixels and each pixel corresponds to a region of size
100 100 nm. The goal is to construct a target image with 320 320 pixels with each pixel corresponding
to a region of size 20 20 nm.

If we vectorize the frames, each observed low resolution frame can bepresented as

2 3

b
y = Sample4 ¢ (B%hj)~e +n® 2RV ! (3.85)
j=1

where Sample[ ] denotes the sub-sampling operatorN =64 64 = 4096 andM =320 320 =102400.
Moreover, ¢; is the unknown uorophore intensity at the j-th position, B® models the subspace containing
the non-stationary Gaussian point spread functions (with unknown coecient vector h; for the j-th
position), e; 2 RM is the j -th column of the identity matrix, and n®is the unknown additive noise. All
observed framesy, come from the Single-Molecule Localization Microscopy grand challenge orgaed by
ISBI*. The dataset contains 12000 low resolution frames, and the maximum number aictivated
uorophores in each frame is 18 which implies that at mostJ = 18 coe cients ¢ are non-zero for eachy.

To apply our model, we must construct the subspaceB? to capture the non-stationary point spread
functions. By changing the variances (widths), we generate nine dierent Gaussian point spread functions;
four examples are shown in Figure 3.6 (b). We then apply the singular vale decomposition (SVD) to a
matrix of the vectorized point spread functions and record their singdar values in Figure 3.6 (c). From this
we see that the point spread functions approximately live in a 3-dimasional subspace. Therefore, we set
K =3 and let B contain the singular vectors corresponding to the 3 largest singular vales. We display
the corresponding singular vectors in Figure 3.6 (d).

To better illustrate the connection between the single moleculemaging problem and the signal model
we study, (3.85) can be equivalently represented as

( 2 3)

pd
y = Sample IDFT 4 ¢Dja;+n> 2RMN ! (3.86)
j=1

where IDFT [] denotes the inverse discrete Fourier transform operatorg; s are the DFTs of spikes at all

possible spatial locations,D; = diag(Bh;) where B = DFT[BY, andn = DFT [n9.

4EPFL Biomedical Imaging Group, Single-Molecule Localizat ion Microscopy: http://bigwww.ep .ch/smim/
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(a) An observed frame. (b) Point spread functions.

10°

o

o

o

(c) The singular values. (d) The singular vectors.

Magnitude of the singular value

1 2 3 4 5 6 7 8 9
Index of the singular value

Figure 3.6: The analysis of point spread functions. (a) A typical observedrame is of size 64 64 pixels
with each pixel corresponding to a region of size 100 100 nm. (b) Four examples of the non-stationary
point spread functions. (c) The singular values of the point spread fuetions. (d) The singular vectors
corresponding to the three largest singular values.

In this case, if we representy = L(X) with X =[cihy; ;cm hwm ], the linear operator L incorporates
additional inverse Fourier transform and sub-sample operators, and\ is a Fourier dictionary instead of
random Gaussian. The noisen, h;, and ¢ for all j are unknown, and the indices of the non-zero columns
in X indicate the locations of the activated uorophores in the high resolution image.

We pre-process each low resolution frame by subtracting the averagatensity of the data set, and
superimposing all the frame results in the low resolution image in Fjure 3.7 (a). Moreover, we solve (3.5)
for each observed low resolution frame via SpaRSA [130]. By superimpogjrall the high resolution images
that we get, we obtain the super-resolution result in Figure 3.7 (b). Athough the dictionary is not
Gaussian in this application, the superior super-resolution resultveri es the e ectiveness of the proposed

signal model and minimization problem.
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(a) Low resolution input. (b) Super-resolution result.

Figure 3.7: The single molecule imaging experiment. The image in (a) is dfize 64 64 pixels with each
pixel corresponding to a region of size 100 100 nm. (b) shows the super-resolution result, which has size
320 320 pixels with each pixel corresponding to a region of size 20 20 nm.

Finally, when K =1, (3.5) degenerates to the classical; norm constrained lasso problem which has
been comprehensively studied. However, by choosing = 1, the model sacri ces its ability to capture
non-stationary modulation, which is signi cant in this problem when t he point spread functions have
several comparable singular values. Although in our case, we happen to haeme dominant singular value
as shown in Figure 3.6 (c), which implies that super-resolution can b attempted with K =1, we see that a
larger K still bene ts the super-resolution process. To demonstrate ths, we run the single molecule
imaging experiments again usingk =3 and K = 1. Three super-resolution examples are shown in
Figure 3.8, from which we can nd that although K =3 and K =1 achieve similar performance, some
activated uorophores can be more accurately represented using the 3ihensional subspace K = 3), and

that leads to a more clear and accurate super-resolution result.
3.5 Conclusion

In this chapter, we consider the problem of recovering a sparse sighwith unbounded noise and
non-stationary blind modulation. Using the lifting technique and with a subspace assumption on the
modulating signals, we recast this problem as the recovery of a columwise sparse matrix from structured
linear observations. We apply ,.; norm regularized quadratic minimization, also known as the group lasso,
to solve this problem and derive su cient conditions on the sample conplexity and regularization
parameter for exact support recovery. We also bound the recovery eor in terms of the “,.; norm.
Numerical simulations are consistent with our predictions and supportthe theoretical results. Moreover,

we apply our model to single molecule imaging and achieve promising sep-resolution results.
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(a) Input frame. (b) Result for K =3. (c) Result for K =1.

(d) Input frame. (e) Result for K =3. (f) Result for K =1.

(9) Input frame. (h) Result for K =3. (i) Result for K =1.

Figure 3.8: Comparison between the super-resolution results fok =3 and K = 1. (a), (d), and (g) are
three low-resolution input frames. (b), (), and (h) show the suger-resolution results forK = 3. (c), (f),
and (i) show the super-resolution results fork = 1. The area of interest is highlighted using the red
rectangle. The input frames are of size 64 64 pixels and the outputs are 320 320 pixels.
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CHAPTER 4
ROBUST PARAMETER ESTIMATION OF CONTAMINATED DAMPED EXPONENTIALS

Parameter estimation of damped exponential signals has wide applicationsicluding fault detection and
system parameter identi cation, etc. However, existing methodsfor estimating parameters of damped
exponentials are either sensitive to noise or restricted to dealig with a certain type of noise such as
Gaussian noise. In this chapter we aim to estimate parameters of dampedkponentials from contaminated
signal, i.e., a mixture of damped exponentials, random Gaussian noise, and spike ietference. We propose
two robust approaches, a convex one solved by the alternating directiomethod of multipliers (ADMM)
and a non-convex one solved by coordinate descent, to recovering adeank Hankel matrix of damped
exponentials from noisy measurements for further parameter estimatin using the matrix pencil technique.
Numerical experiments show that our proposed methods outperform clascal ones in detecting small
damped fault signatures from noisy measurements. While the convex appach is amenable to theoretical
analysis and global convergence guarantees, the non-convex one exhibits raapbustness and

computational e ciency. °
4.1 Introduction

The model of damped exponentials occurs naturally in a wide range of apjgations including fault

detection [131, 132], structural health monitoring [133], and system identcation [134], etc.
4.1.1 Parameter Estimation of Damped Exponentials

Mathematically, the system observes a time-domain signal

Nd .
y(t) = Ajeitd@hity )4 () (4.1)
j=1

where y(t) is composed ofM damped exponentials but contaminated by noise (t). Parameters A; > 0,

i O0,f; >0and ; 2 R represent the corresponding amplitude, the damping coe cientthe frequency,
and the phase of thej " (j = 1;:::;M) damped exponential component, respectively. In many practical
applications, e.g. signal analysis of electric circuits [135] and fault detection of indudbn machines [136],
these parameters as well as the numbek are typically unknown and to be identi ed for either analyzing
the system status or evaluating the machine fault severity,etc. Furthermore, the noise (t) may include not

only white Gaussian noise but also spike interference, which is caed by external interference such as

5This is a joint work with Dehong Liu, Hassan Mansour, and Petr  os T. Boufounos [89].
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switching operations or internal defects such as mechanical faults. Aerefore, it is of great interest to
identify damped exponentials as well as spikes from contaminated measments.

The goal of this chapter is to provide robust solutions to decompose a miare signal of damped
exponentials, spikes, and random Gaussian noise, and further to estiate all unknown parameters of the

exponentials.
4.1.2 Related Work

Parameter estimation of damped exponentials has been extensively alied in the noiseless
setting [137,138]. Well-established methods for solving this problenmclude Prony's method [139, 140],
which contains a polynomial root- nding operation, and the matrix pencil method [141], which forms a
matrix pencil based on the input signal and solves a generalized eigenva problem. According
to [142,143], the matrix pencil method is computationally more e cient and has better statistical
properties compared to the Prony's method. However, both methods a very sensitive to noise.

To combat noise, data pre-processing methods based on singular valueacbmposition (SVD) have been
proposed for the matrix pencil method, and demonstrated very e ective for Gaussian noise [138, 144]. For
example, the total-least square matrix pencil (TMP) [138] truncates the singular values of a Hankel matrix
constructed from the noisy observation. The underlying principleis that the true noise-free Hankel matrix
of damped exponentials is low-rank [37,145]. However, in the presence adbiquitous spike
interference [80,135], a few grossly corrupted entries severely a ethe result of SVD [31], resulting poor
performance in parameter estimation. Although one may use robust pringle component analysis
(RPCA) [31] to e ectively extract a low-rank matrix despite of spike interference, this low-rank matrix
typically cannot preserve the Hankel structure required for further parameter estimation.

In this chapter, we propose two robust approachesi.e., a convex one which we refer to as Convex
Robust Parameter Estimation (CRPE) and a non-convex one which we refeto as Non-convex Robust
Parameter Estimation (NRPE). Both methods take into consideration the low-rank property and the
structure of Hankel matrices, as well as the sparse property of spike tarference. We solve the former
problem using the alternating direction method of multipliers (AD MM) [85], and the latter one using
coordinate descent. By solving these problems, we can robustly dempose the Hankel matrix constructed
from the noisy observations into a low-rank noise-free Hankel matrix of dmped exponentials, a sparse
matrix of spike interference, and a residual matrix of Gaussian noiselt is then straightforward to estimate
parameters of damped exponentials from the recovered low-rank Hankel atrix by applying the classical
matrix pencil algorithm [138,141]. Our numerical experiments show thatboth approaches outperform

classical ones in recovering small fault signatures, at similar compuational cost. While the convexity of
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CRPE makes it amenable to theoretical analysis and global convergence guaraggs, NRPE exhibits better
robustness and computational e ciency.

This chapter is organized as follows. In Section 4.2 we propose two approaeh to decomposing the
Hankel matrix of noisy measurements. We then develop two optimization ajorithms respectively in
Section 4.3. Details of our numerical experiments are described in 8&on 4.4 with conclusion drawn in

Section 4.5.
4.2 Convex and Non-convex Robust Parameter Estimation

Without loss of generality, we de ne a Hankel matrix Hp(x) 2 C(N P (P*1) of 5 sampled signal

x 2 CN as
2 x(1) X (2) o x(p+1)3
X (2) x(3) o x(pt2)
Hp(x) = : : : : (4.2)
Xx(N p) x(N p+1) ::: x(N)

If the sampled signalx 2 CN is a sum ofM (M << N ) damped exponentials, by choosingp 2 [M;N M],
the Hankel matrix is proved to be arank M (M p) matrix [37,145], or a low-rank matrix if M <<p . In
the noiseless case, the matrix pencil algorithm exploits this low-&nk property to accurately estimate
parameters of the exponentials by eigen analysis. Following this idedn this chapter we aim to extract
such a low-rank Hankel matrix, H ,(x), where x is the estimated sum of damped exponentials, using the
Hankel matrix of noisy observationY = Hy(y) 2 C(N P} (P*D) "wherey 2 CN is the sampled noisy
observation. Sincep is xed during the optimization process, we simplify the notation of Hankel matrix as

H (x) by dropping the subscript p.
4.2.1 CRPE Optimization Problem

Inspired by the success of the robust principal component analysis3[L] and the blind signal
decomposition work in the compressive sensing community [11,86,116], werfulate the Hankel matrix

demixing problem as a convex optimization problem
min SiiY  H(x) Siiz+ adiH()i + 2iiSiis; (4.3)
where we apply the nuclear normjj jj to relax the low-rank constraint on H(x), use the *; norm to

impose sparsity on matrix S caused by spike interference, and assume the residual is Gaussiaoise.
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4.2.2 NRPE Optimization Problem

Alternatively, we can also perform a non-convex optimization by replachg the nuclear norm

regularization in (4.3) with an explicit constraint on the rank of H(x) as follows
min EJ]Y H(x) Sj3+ 2jiSii;; st. Rank(H(x)) (4.4)
X3

wherer denotes the maximum number of damped exponentials we expect to reger. In practice, r can be
set according to an initial estimate ofr or a prior knowledge based on the nature of the practical
application. The main advantage of this non-convex method is that the constaint on rank is more intuitive
and relatively easier to set than the convex one in (4.3). However, duea its non-convexity, the

optimization algorithm could get trapped in local minima.

4.3 Optimization Algorithm
4.3.1 ADMM for CRPE

To solve the CRPE optimization problem (4.3), we introduce an auxiliary variable Z with constraint

Z = H(x). Then the augmented Lagrangian function of (4.3) can be expressed as

L (¢SiZov)= SiY  H() S+ adiZi + LiiSjii+ H(x)  Z;Vie + SjiH(X)  Zjiz;  (45)

whereV 2 C(N P (P*1) s the Lagrange multiplier matrix, is the penalty parameter associated with the
augmented term, andhA ;Big = Re(Tr( B" A)). The update steps of ADMM [85] are summarized in
Algorithm 1, where the symbols are explained as follows. The Reverse Bjonal Mean operator
(RevDM : C(N P} (p*D) 71 CN) is de ned as
2 3
A(L1;1)
;AR +AL2)
RevDM(A) = 5AGD+ A2+ AL;3)]4- (4.6)

AN p;p+1)
for A 2 C(N P (P*D) and A(i;j ) is the entry of A in i row and j column.
S (A) =sign(A)maxfjAj ; Ogis the complex element-wise soft thresholding operator with threkold
[146], where signf) = A=jAj for the non-zero entry and O otherwise. max ; g is the element-wise
maximum operator. Moreover, D (A) = U diag(maxf ; 0g)W M is the singular value soft thresholding
operator [85] with threshold , where the singular value decomposition oA = U diag( )W " . fcrpe is

the objective function of the CRPE optimization problem de ned in (4. 3).
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Algorithm 1 Solving CRPE via ADMM

Input: 'y, 1, 2,p, , tol, Maxiter

1. Initialization: Y = Hp(y), X0=0,So=2Z9=Vo=0, Lossp =0
2. for k=0;1 ; Maxlter do

3 Update x:

4: Xk+1 = 13‘ RGVDM(Y S+ Zg Vk)
5: Update Z:

6: Zs1 =D .t Hp(Xk+1)+ 1Vk

7 Update S:

8: Sk+1 = S 2 (Y H p(xk+1 ))

9 Update V:

10: Vi1 = Vi + [H p(Xk+l) Zy+1]

11: Calculate the Loss:

12: Lossk+1 = fcrre (Xk+1 3 Sk+1)

13:

14:  if jLossk+1  LosskjSjLossk+1j  tol then

15: Break

Output: X k+1, Sk+1

Algorithm 2 Solving NRPE via coordinate descent

Input: vy, 2,p r, tol, Maxiter

1: Initialization: Y = Hp(y), Xo=%R0=0,Sp=Lp=0, Lossp =0
2: for k=0;1 ; Maxlter do

3 Update R:

4: Ry+1 = RevDM( Y Sk)

5; Project Hp(Rk+1 ) onto the low-rank space:

6: Lker = Tr(Hp(Rk+1))

7. Update x by projecting L+ onto the Hankel space:
8: Xk+1 = RevDM( L+ 1)

9 Update S:

10: Sk+1 = S, (Y H p(Xk+1 )

11: Calculate the Loss:

12: Lossk+1 = fnrPE (Xk+1 ) Sk+1)

13:

14: if jLossk+1  LosskjSjLossk+1j tol then

15: Break

Output: X k+1, Sk+1 5Lk

4.3.2 Coordinate Descent for NRPE

We solve the NRPE optimization problem (4.4) by coordinate descent withprojection. The details of
this solver are summarized in Algorithm 2, whereT, (A) is the singular value truncation operator, which
implements the singular value decomposition on the input matrix A and returns the matrix constructed
using A's r largest singular values.fyrpe IS the objective function of the NRPE optimization problem

in (4.4).
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4.4 Numerical Experiments

4.4.1 Robust Parameter Estimation in Fault Detection

In the rst experiment, we consider the bearing fault detection problem of induction machines [136],
where the machine current includes a 60Hz operating signal and a 90Hz sidahd wave related to its
rotational frequency component in the presence of Gaussian noise andikp interference. When a bearing
fault or defect occurs, a damped frequency component in the currérwill be generated with parameters
related to the fault location and the bearing size. For example, in our ase a 73Hz frequency component is
caused by the cage defect of an outer ring. The magnitude of this defectdguency component is typically
very small compared to the 60Hz operating current signal, making bearingdult detection a very
challenging problem. Still, its parameters, and sometimes the spi interference, are useful to evaluate the
fault severity and operating condition of the machine.

To evaluate our approaches in this application, we simulate a noisy fault obervation as follows

y(t) =e”1:0cos(2 60t +1:3)+ e *20:1cos(2 73 +0:2)
+e 130:3cos(2 90t +1:7)+ g(t) + s(t):

We collect 1 second of current signaly with N = 1000 samples. The signal to Gaussian noisg(t) ratio is

4.7)

25 dB and spike interferences(t) has 1% cardinality whose non-zero entries are randomly selected with
magnitudes uniformly sampled in [Q5; 1:5], as shown in Figure 4.1 (a). By xing p=167 (N=6), 1 =4,
and =10 for CRPE, r =10 for NRPE, and ne tuning »,, we obtain the demixing results of CRPE and
NRPE recorded in Figure 4.1 (b) and (c). We observe that both CRPE and NRPE can demixy into the
sum of damped exponentials, Gaussian noise, and spikes accurately. Thensequent parameter estimation
results are shown in Figure 4.2. For comparison, we also plot the resultsf RPCA [31] and TMP [138],

where the objective function of RPCA is
minjiXj + Sl st X+ S=Y; (4.8)

with  selected based on [31]. From Figure 4.2 we note that all the parameters are gxisely recovered by
CRPE and NRPE except that the damping coe cient  of the fault signature component is a little smaller
than the ground truth. Although RPCA and TMP also succeed in recovering the parameters of 60Hz and

90Hz components, both methods fail to identify the fault signature compomnt for detection purpose.
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(c) The demixing result of NRPE.

Figure 4.1: The demixing results of CRPE and NRPE methods.
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(d) Estimation using RPCA [31]. (e) Estimation using TMP [138].

Figure 4.2: Comparison of frequency spectra using di erent methods denotes the damping coe cient
and denotes the phase.

To further investigate the performance of di erent approaches underdi erent noise conditions, we

generate noisy observations using the same exponentials as the rst eepgment but with only 25dB random
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Gaussian noise or 1% cardinality spike interference whose magnitudeseauniformly sampled in [1; 3].
Results are recorded in Figure 4.3 and Figure 4.4 respectively. We obsre that both CRPE and NRPE
recover all exponentials and related parameters accurately, no mattewith only Gaussian noise or with
only spike interference, exhibiting robust performance. In bothcases, the relative error of any estimated
parameter with respect to the ground truth is less than 71%. In contrast, RPCA failed to identify the
weak exponential with the existence of Gaussian noise, because RPCA not capable of preserving the
Hankel structure when recovering a low rank matrix. TMP failed in t he spike interference case because
those grossly corrupted non-Gaussian entries distort the result of SVDthe most critical operation in TMP.
As regarding to computational time, it takes 2.5 seconds and 0.7 second for (e and NRPE,

respectively, to nish parameter estimation on an i7-6700 CPU, comparable ¢ 2.0 seconds and 0.1 second

for RPCA and TMP, respectively.
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Figure 4.3: Estimation results with random Gaussian noise only.
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Figure 4.4: Estimation results with spike interference only.
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4.4.2 The E ect of Sparse Constraint

To examine the e ect of hyper-parameter , which controls the sparse constraint, we randomly
generate a mixture of 6 complex damped exponentials dfl = 300 samples in 0.3 second, with their
frequencies, magnitudes, phases, and damping coe cients uniforhg random chosen in [60180] with 10Hz
separation, [1 2], [1; 2], and [ 5; 1] respectively. The signal to complex Gaussian noise ratio is 30dB and
the complex spike interference has 10% cardinality and for each spikéné real and imaginary parts are
uniformly sampled in [ 1;1]. Fixing p=50, ;=1,and =10 for CRPE, and r =10 for NRPE, we
record in Figure 4.5 (a) the average relative error of damped exponentia@ﬁ%ﬁ’ij2 (over 100 trials) versus
di erent values of ,, where x is the estimated sum of damped exponentials and g is the ground-truth.
We also record the recovery success rate of parameters, as depictedRigure 4.5 (b), where a success is
counted when the di erence between the estimated frequency anthe corresponding ground-truth is
smaller than 1Hz and at the same time the relative errors of all other associ&d parameters are no larger

than 15%. We observe that to achieve the same success rate, the NRPE meitth has a much wider range of

2 for selection than CRPE does, meaning much less sensitive to the agtment of .
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(a) The relative error of exponentials. (b) The recovery success rate.

Figure 4.5: E ect of the sparse constraint for CRPE and NRPE.

4.4.3 The E ect of Low-rank Constraint

We run the same experiment but with xed , =0:095 for CRPE and , =10 3 for NRPE based on
Figure 4.5 and varying ; and r for CRPE and NRPE respectively. The relative error of the damped
exponentials and the recovery success rate of the exponentials paratees are recorded in Figure 4.6. To

achieve above 90% recovery success rate; should be set within [(8; 1:7] for CRPE and r can be set in
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the range of [ 30] for NRPE. Note that 6 is the true number of exponentials. Similarly, we can observe
that NRPE is less sensitive to the adjustment of its hyper-paramete of the low-rank constraint than

CRPE in terms of the relative range of parameters.
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(a) The CRPE method. (b) The NRPE method.

Figure 4.6: E ect of the low-rank constraint for CRPE and NRPE.

4.5 Conclusion

In this chapter, we propose two novel approaches, named CRPE and NRPE ot decomposing damped
exponentials contaminated by Gaussian noise and spike interferencepnsidering the low-rank property of
the Hankel matrix as well as the sparsity of spike interference. Numecal experiments demonstrate that
our proposed approaches outperform classical ones in detecting small fagignatures, exhibiting robust
performance in di erent noise situations. While the CRPE method is amenable to theoretical analysis and
global convergence guarantees, the NRPE method is less sensitive togsr-parameters and

computationally more e cient.
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CHAPTER 5
CHESS PIECE RECOGNITION USING ORIENTED CHAMFER MATCHING WITH A COMPARI SON
TO CNN

Recognizing three dimensional chess pieces using computer visinneeded for an augmented reality
chess assistant. This chapter proposes an e cient 3D pieces recognith approach based on oriented
chamfer matching. During a real game, the pieces might be occluded bgther pieces and have varying
rotation and scales with respect to the camera. Furthermore, di erent pieces share lots of similar texture
features which makes them more di cult to identify. Our approach add resses the above problems and is
capable of identifying the pieces with di erent scales, rotation andviewing angles. After marking the
possible chessboard squares that contain pieces, the oriented chamgeores are calculated for alternative
templates and the recognized pieces are indicated on the input image amalingly. Our approach shows
high recognition accuracy and e ciency in experiments and the recogniton process can be easily
generalized to other pattern recognition applications with 3D templates Our approach outperforms the
convolutional neural networks under severe occlusion and low resolign conditions and has comparative

processing time while avoids the time consuming training procss®
5.1 Introduction

Augmented reality (AR) can greatly improve the e ectiveness of peoplein work and play. It can
automatically recognize objects using computer vision techniques andisplay graphical augmentation
registered to the object, to provide guidance and instruction. AR hasbeen widely applied in
education [147], industrial design and medical treatment [148]. AR can also He people learn the game of
chess, a popular intellectual and entertaining game all over the world For example, the system could
display allowable moves as an overlay on an image of the board, using eitha hand-held or a
head-mounted display. In order to do this, a chess AR system mustrst recognize the chessboard and the
chess pieces, from a mobile hand-held or head-mounted camera, and loedhe pieces on the board. The
task can be challenging if the board is viewed from a low viewing anglenstead of directly overhead. This
may cause pieces to partially occlude each other. Additionally, someipces are highly similar to each other,
such as the rook and pawn, which may lead to misidenti cation.

This chapter focuses on the problem of recognizing di erent 3D chespieces from a single image of the

chessboard, under game conditions. We use a chamfer matching approachhish permits exible operating

8This is a joint work with Gongguo Tang and William Ho [91].
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angles and allows for di erent occlusion conditions. Furthermore, ourmethod has potential in other
applications. For example, in many industrial applications, the objects to be recognized are small with
relatively little image texture [149] and CAD models are often not available or are di cult to obtain. In
these cases, taking a small number of training images is feasible and omrethod is applicable to these
problem domains.

The chapter is organized as follows. In section 5.2, we describe relatedbrk. In sections 5.3 and 5.4, we
present our approach for chessboard and chess piece recognition, regpegy. In section 5.5, we show
experimental results and a comparison to an alternative approach usinganvolutional neural networks

(CNNs). We conclude this chapter in section 5.6.
5.2 Related Work

Many algorithms have been developed to recognize a chessboard for therpose of camera calibration
and 3D scene reconstruction. Most of these use the approach of detectimgprners on the board [150, 151].
However, when the chessboard is populated with chess pieces, sweh during an actual game, many corners
might be occluded by pieces. Therefore, algorithms for recognizinggpulated chessboards typically use line
detection based methods [90, 152, 153].

The research on chess piece recognition is sparse. Early approaches rnedl the chessboard and pieces
with sensors [154]. However, modi ed chessboards and pieces are expee and not portable. Fortunately,
with the rapid increase of computing power on mobile devices, an oppounity exists to apply computer
vision methods to chess piece recognition, which is inexpensiand transferable.

Conventional approaches to object detection extract and match featureswch as the histogram of
oriented gradient (HOG) [43] and the scale invariant feature transform (SFT) [46]. These techniques work
well when the objects have adequate visual texture. However, as shm in Figure 5.1, very few e ective
SIFT features can be extracted from the small chess pieces sinceety do not have much distinguishable
textures. Moreover, similar features among pieces complicate the atching process. In order to avoid
incorrect matching, [155] and [156] assume the initial positions of the pieceare known, and then track the
movement of pieces on the chessboard. However, those assumptions aralasirable and we want as few
manual operations as possible.

Fortunately, although there is not much distinctive texture on the p ieces, the di erent pieces have
distinctive contours. A contour-based recognition method can match the observed contour to a template
contour that is obtained from a model of the piece, or from a training image.By exploiting the relative
positions of the edge points and normalizing the magnitudes, contour-baskedescriptors can be scale and

rotation invariant like the Fourier descriptor with di erent shape s ignatures [157] and the context
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shape [158]. However, they also face some challenges. Methods using Feudescriptors or polygonal
approximations [159] may be a ected severely when pieces have sirail shapes or when occlusion occurs. A
contour based method that is more robust to these e ects is oriented lsamfer matching [160, 161], and this

is the method we selected.

Figure 5.1: The SIFT features matching for the bishop. 2010 and 1211 SIFT feates are extracted from
left and right images respectively but only 40 matched features pairs a found.

Besides the above methods, convolutional neural networks have reatty achieved great success in image
classi cation and object detection problems [61,162,163], on large scale data selike the ImageNet [164].
Therefore, we also implement several convolutional neural networks ahcompare them to our oriented
chamfer matching approach. As far as we know, this is the rst work applying a convolutional neural

network approach to the problem of 3D chess piece recognition under game aditions.
5.3 Chessboard Recognition

Chessboard recognition is an important rst step towards piece recognibn, since nding the board
constrains the search for pieces. Additionally, we need to nd the boad in order to determine the relative
locations of the pieces with respect to the board. As stated in the intoduction, there are many chessboard
recognition algorithms but only a few consider populated boards where thgieces cause occlusion. We
chose to use a line detection based method since it is rare that a boaldhe is completely occluded by the
pieces. Speci cally, we use the algorithm of [90] which achieves a higthessboard recognition success rate
and more importantly, their workable viewing angles range covers the angls that a player would naturally
look at the chessboard during a game. We brie y introduce their algorithm as follows.

Given a chessboard image, the Canny edge detector and Hough transform are dst® nd all possible
lines in the image. The detected lines are clustered into two group based on their locations in a scaled
Hough transform space. These two groups correspond to the two orthogonal setf lines on the
chessboard. In the same space, outlier lines are Itered out by obseiwg the relation between the detected

lines. The intersections of two groups of remaining lines are calculad and recorded. Finally, all possible
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chessboard location candidates are transformed and matched to a chessbdaeference model. The
location with largest number of correct matching corners and the smakst matching residual error becomes
the system output.

Once the chessboard lines are found, we need to nd the pose of the boawdth respect to the camera,
in order to predict the possible locations and appearance of the chessgees. This requires the camera
intrinsic parameter matrix K, and the board-to-camera rotation matrix RS (R is used to indicate RS in
the following content). These two matrices can be estimated from tle vanishing points of the two sets of

chessboard lines by solving the following equations [165].
2 3 2 3

X1 X2
Rx = K lﬁ)ﬁg Ry = K 19)/2%
1

2 3
o <& (5.1)
kK 1=80 2 24
0 0 1
<Ryx;Ry> =0

where Ry and Ry are the board coordinate system's bases ix and y directions. (Xx1;y1) and (x2;y») are
the vanishing points coordinates on the image plane. In additiongc,, ¢, and f are the optical center of the
image and the camera focal length in pixels. Finally, the last column of he rotation matrix, R, can be
obtained by taking cross product of Ry and Ry .

Since we only have a single image of the chessboard, unless we know #iee of the chessboard, there is
no way to nd out the true object scale. Therefore, we de ne a hypeiplane using the board coordinate
system's R, basis as the support vector and a xed constant to control the scale factor atomatically.

Based on the hyperplane and the rotation matrix, the normal vector for each guare can be calculated and

printed on the image as shown in Figure 5.2 using blue sticks.

Figure 5.2: The chessboard preprocessing result. The board boundasi@re marked by green lines and the
normal vector of each square is indicated using a blue stick.
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5.4 Piece Recognition

Once the pose of the chessboard has been found, the pose of each square caredtimated. This is
needed to rotate and scale the templates that are used for matching. We Wifocus on piece recognition in

the following sections.
5.4.1 Piece Location and Color Detection

Before matching templates, we want to determine possible piece &ations in order to reduce the
computation complexity. By leveraging the four chessboard corners in @omography transformation, an
orthophoto (i.e., top-down view) of the chessboard is generated as shawin Figure 5.3. Possible squares
where pieces might be located are determined by counting the numédr of edge points in the areas that are
indicated by green rectangles. An eight times eight matrix stores the pssible squares occupied by pieces.
When the board is viewed from a very low angle, one chess piece might @y several squares in the
orthophoto like the bishop in Figure 5.3 which covers both the squaretioccupies and the square behind it.
In this case, a false indication of occupancy may occur. So a chamfenatching score threshold operation is

implemented to avoid a false positive detection.

o
L
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Figure 5.3: Left: Orthophoto of the board. Right: Search regions for occupid squares.

W W
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We next locate areas of interest (AOI) Figure 5.4 in the original image that may contain chess pieces.
The size of an AOI in the image is relative to the viewing angle of the board When the chessboard image
is taken from a relatively low angle, pieces are taller than in a directoverhead view. So a lower viewing
angle leads to a larger AOI height. The height of the AOI must be large enougtto contain the image of
the largest pieces, which are the king and queen. The width of the ADis set to the width of the

corresponding square on the board.
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Figure 5.4: The AQIs in the input image.

We can determine the color of the pieces at this stage as well. Since wadw the locations of the
squares, we can nd the average intensities for both black],, and white squares,|,,. Each candidate's
color is initiated to the square color which it stands on. The nal decision can be easily made by

comparing each candidate square's intensity); , to I and Ip.

8
3 Black; if Ij <kwlw; square (;]j ) is white
Py = 3 White; if Ij >kyplp; square (;j ) is black (5.2)
" same as the {;j ) square's color
Pj indicates the color of the piece associated with thei(j ) square on the chessboardk,, and ky, are

scaling factors and in our project,ky, =0:7 and k, = 1.
5.4.2 Template Preparation

Three steps are performed in preparing the templates for matching. Kst, selecting the template based
on the viewing angle. Second, rotating the template based on the normal wor. Third, scaling the
template based on the square size.

For each chess piece, 12 templates with di erent viewing angles areaptured as shown in Figure 5.5.
They range from 10 to 70 degrees, where the template viewing angle is deed in Figure 5.6. Note that the
knight is not symmetrical around its vertical axis, so additional templates are needed for this piece to
represent its appearance for rotations about the vertical axis. Howeverfor simplicity, we assume all the
knights are facing right and therefore only 12 templates are applied in tlis chapter. During recognition, the
viewing angle of the square being examined is calculated, and the terfgies nearest to that angle will be

selected for the following translation and matching.
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Figure 5.5: The bishop templates for chamfer matching.
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Figure 5.6: The viewing angle.

The viewing
angle

Furthermore, the pieces do not always lie vertically and have varyng sizes in the images due to their
positions with respect to the camera. In the case that a piece is not wical in the input image, we will

rotate the templates accordingly as shown in Figure 5.7 and scale it to t hto the observing square.

Figure 5.7: The selected and translated pawn's template.

5.4.3 Oriented Chamfer Matching

As previously stated, we use a contour-based recognition method becari®f the lack of texture features.
Chamfer distance matching, originally proposed in [166], is a well-estaldhed contour matching technique

which measures the similarity between the objects in the input mage and templates. For every candidate
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object position, a chamfer matching score is calculated. The object'slass and location are determined by
the template and the region that get the minimum chamfer matching score

The traditional chamfer matching requires the edge images for both thenput image, |, and the
template, T. The chamfer distance can be obtained by solving the following leastquare problem whergjT]j
is the number of total edge points in the template and is the truncation parameter for normalization. In
our project, = 30.

1 X o )
daist (X) = T min( ; min i(xe + X)  Xijj2): (5-3)
Xt2T '

For a speci ¢ matching starting point x in the input image, the chamfer distance score is the average
distance between the template edge points and their nearest edge pa#in the input image. Furthermore,
the above least square problem can be solved e ciently by mapping thedesired template's edge image onto
a pre-computed input image's distance transformation image and summingip the element-wise product of
pixel intensities within the template covered region.

To provide additional stability and resistance to background noise, edje orientation is adopted to
compare the gradient di erences [160,161]. The orientation score can be cal@ted by solving the following
least square problem where is a function measuring the edge point's orientation in radians. The plysical

meaning of and dgist in the input image can be found in Figure 5.8.

2 X o L
dorient (X) = —= j (xt) (arg min j (Xt + X)) Xijj2)j: (5.4)
xt2T :

T

#(x,)

Figure 5.8: The oriented chamfer matching.

Similarly, the orientation score can also be calculated e ciently using the pre-computed gradient

images. The nal chamfer score is calculated by:
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dscore (X) = (1 )daist (X) + d orient (X); (5.5)

where is a weight factor in the range of [Q 1]. In our project, = 0:5 and the detailed analysis regarding
di erent values of can be found in the Section 5.5. A perfect matching would get a score of 0. Adr
template matching, the template with smallest oriented chamfer matding score and its corresponding

location will be marked on the input image for each AOI. Templates with high scores are rejected.

5.4.4 Matching Process

The matching process is quite straight forward. For each AOI, all temgates taken from the angle that
matches the observing square's viewing angle are selected and traattd for chamfer matching. A list
stores the chamfer scores for all di erent templates and records thegmplate with the minimum score. In
addition, to expedite the matching process, anN -sampling strategy is applied. Namely, we compute the
chamfer score with a stride ofN pixels if we are in a high score area, but compute the score at every pike
in the low score areas. The idea is to focus our computational resources the most promising piece
locations. After nishing all AOI matching, the recognition results i ncluding the pieces colors, names and

their corresponding locations are shown on the input image as shown inigure 5.9.

Figure 5.9: The recognition result.

We can reject invalid piece detections by a threshold on the chamfematching score. To determine this
threshold, we recorded the oriented chamfer matching scores for déerent templates and true classes for a
typical image in Table 5.1. Based on the table, @ is a reasonable threshold to rule out a false positive

detection.
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Table 5.1: The oriented chamfer matching scores.

True classn Template | King | Queen | Bishop | Knight | Rook | Pawn

King 0.1285| 0.1705| 0.2201 | 0.2041 | 0.1930| 0.2050

Queen 0.1537| 0.0605| 0.1969 | 0.1731 | 0.1674| 0.2016

Bishop 0.3044 | 0.3482| 0.0764 | 0.2007 | 0.1270| 0.1669

Knight 0.3283| 0.3473| 0.2550 | 0.0925 | 0.1820| 0.1868

Rook 0.1992 | 0.1838| 0.1288 | 0.1871 | 0.0860 | 0.1389

Pawn 0.2809 | 0.2701| 0.1899 | 0.2605 | 0.1994 | 0.0794

Empty square 0.3083| 0.2619| 0.2754 | 0.2778 | 0.2588| 0.2754

5.5 Experiments

We tested our approach and compared it to several alternative approaches bad on convolutional
neural networks, on real chessboards taken from varying angles and resolabs. In addition, we quantify
the e ect of occlusion and pan angles and evaluate their processing tim We also study the performance
with di erent algorithm parameters. Examples of input images and the recognition results are shown in

Table 5.2.
5.5.1 Experimental Setup

In order to imitate the views that a player would naturally have duri ng a real game, the viewing angle
of the test images is approximately 40 degrees using the de nition in kyure 5.6. The sampling mode is
3-sampling and = 0:5. Thirty test images are taken and the number of pieces by type is showin

Table 5.3.

Table 5.3: The pieces distribution of the test set.

Board | King | Queen | Bishop | Knight | Rook | Pawn

30 43 32 76 63 98 173

In addition, several test sets with same piece distribution but dierent occlusion conditions and pan
angles are collected. In all test sets, we assume there is no pieceatitly behind another since we will study

the e ect of occlusion individually.
5.5.2 Convolutional Neural Networks

In this experiment, we selected three of the most popular convolutinal neural networks,

GoogleNet [162], ResNet [61] and VGG [163], to compare with the oriented chamfenatching approach.
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Table 5.2: The 3D chess pieces recognition experiments. The rst rovghows the recognition process of a
720 960 pixels test image. The second row shows the recognition processthiva 240 320 pixels test
image. The third row shows the 60% occlusion image's recognition procesand the last row shows the
recognition process on a test image with a 30 degree pan angle.

Input images Preprocessing Templates matching Recognition result

pm——
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Furthermore, the research of transfer learning shows that the learad CNN features are transferable
among similar tasks [167]. Therefore, all the selected networks are pteained on the ImageNet [164]
classi cation data set for initialization. And to adapt to the piece recognition application, the networks'
last layers are replaced by a softmax regression with six output nodeand all test images are resized to
223 223 3 pixels accordingly. The Adam optimization algorithm [76] is applied with 0:001 learning rate
and 1000 maximum iteration number. To train the system, we took 20 additioral chessboard images and
extracted the pieces as the training set which contains pieces imagewith varying viewing angles and
colors. The number of training images for each piece type is listed in dble 5.4 and four bishop training

examples are shown in Figure 5.10.

Table 5.4: The number of training images of each piece type for convolutionaheural networks and oriented
chamfer matching.

Convolutional neural network

King | Queen | Bishop | Knight | Rook | Pawn

40 40 40 40 40 60

Oriented chamfer matching

King | Queen | Bishop | Knight | Rook | Pawn

12 12 12 12 12 12

Figure 5.10: Four bishop training examples for CNN.

In the rst experiment, we train and evaluate the neural networks and oriented chamfer matching's
performance on images where the pan angle of the camera (the rotation about theertical axis) with
respect to the board is zero degrees. Pieces have less than 10% osido and the resolution of the images
is 720 960 pixels. Their recognition accuracy is recorded in Table 5.5 from whit we can observe that all
approaches perform quite well at piece recognition. The oriented charef matching method achieves
95:46% accuracy which is better than ResNet50 but slightly worse than GoogleNeand VGG-16. However,

to achieve this performance, the neural networks require 3.6 timefarger training set than the oriented
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chamfer matching.

Table 5.5: The recognition accuracy for di erent approaches.

King Queen | Bishop Knight Rook Pawn Overall
GoogleNet 97.67% | 100.00% | 100.00% | 100.00% | 97.96% | 96.53% | 98.14%
VGG-16 100.00%| 90.63% | 97.37% | 98.41% | 87.76% | 99.42% | 96.08%
ResNet50 88.37% | 100.00% | 100.00% | 100.00% | 81.63% | 97.69% | 94.43%
Oriented Chamfer | 90.70% | 90.63% | 85.53% | 100.00% | 95.92% | 100.00% | 95.46%

5.5.3 E ect of Resolution

In this section, we evaluate the e ect of image resolution. We use 120, 240, 360, 4&0id 720 to indicate
120 160, 240 320, 360 480, 480 640 and 720 960 resolution test sets respectively and record both
the convolutional neural networks and the oriented chamfer matching's @erall recognition accuracy in
Figure 5.11. The oriented chamfer matching outperforms convolutional netal networks when the images
are taken by a low resolution camera. It may be that the low resolution test images lose the features that

neural networks learned from the high resolution training images.
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Figure 5.11: The recognition accuracy with di erent resolutions.

5.5.4 E ect of Occlusion and Pan Angle

The above two experiments are evaluated on the test set with no or giht occlusion (< 10% occlusion).
To quantify the occlusion e ect, we select several test images wére all pieces are successfully recognized
and start occluding the pieces with a 10% interval. Speci cally, 60% @clusion means 60% area of the
pieces from the bottom is occluded and an example is shown in the 3rd woin Table 5.2. The overall

accuracy for both convolutional neural networks and oriented chamfer matcing under di erent occlusion
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conditions is recorded in Figure 5.12. As expected, accuracy decreasesths occlusion e ect becomes
stronger. We observe that under severe occlusion (60%), oriented chamfer matching outperforms the
convolutional neural networks. It is possible that the convolutional neual networks might perform better

in these cases if the training set included many more examples of daded pieces.

100%
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80%

70%
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50%

Accuracy

40%

30% - | —6— OriChamfer AN
—%— GoogleNet
20% |- VGG-16 .
—5— ResNet50

10% I I I I I I I
0% 10% 20% 30% 40% 50% 60% 70% 80%

Occlusion

Figure 5.12: The recognition accuracy with di erent percentages of occlsion.

Finally, in a real usage scenario, the camera may pan around the chessboard@herefore, we also
evaluate the approaches with di erent pan angles in Figure 5.13. It can be oberved that panning the
camera away from the zero angle brings down the accuracy. The orientechamfer matching achieves

similar accuracy to GoogleNet while outperforms the VGG-16 and ResNet50.
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Figure 5.13: The recognition accuracy with di erent pan angles.
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5.5.5 Processing Time

Regarding the e ciency, we evaluate the convolutional neural networksand oriented chamfer matching
in terms of the processing time using TensorFlow [168] and Matlab resgctively on an i7 6700K CPU. For
the oriented chamfer matching, two major factors a ecting the procesing time are the sampling method
and the image resolution. By manipulating these two factors, we acquirghe average processing time of
oriented chamfer matching for di erent settings in Table 5.6. Lower resolution implies smaller searching
area and the same applies for the sampling method. The convolutional ngal networks' testing time is also
recorded in Table 5.6. We nd that if we choose 9-sampling method for the720 resolution test set, the

oriented chamfer matching has comparable processing time to the neal networks.

Table 5.6: The processing (testing) time for recognizing 10 pieces fit: second). Di erent resolution
images should lead similar testing time for neural networks since aftepreprocessing, all images would have
the same dimension.

Oriented Chamfer 120 240 360 480 720

0-Sampling 1.3776| 1.4578 | 1.9259| 3.4092| 7.2975 Network Time

3-Sampling 1.3932| 1.4472| 1.8124| 3.0181| 5.3851 GoogleNet | 1.2181
6-Sampling 1.3975| 1.3809| 1.7419| 2.8735| 4.7469 VGG-16 | 8.2453

9-Sampling 1.3796 | 1.3772| 1.6405| 2.7951| 4.3742 ResNet50 | 3.1680

12-Sampling 1.3719| 1.3723| 1.6662| 2.6239 | 4.1666

In addition, there is a tradeo between processing time and accuracyfor oriented chamfer matching. To
visualize the tradeo , we evaluate the overall accuracy for di erent settings in Figure 5.14. In the low
resolution, the width of each piece is too short to capture useful egle structures and the 12-sampling

method might skip the ground true locations. Both cases lead very low werall accuracy.
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Figure 5.14: The recognition accuracy with di erent sampling methods ard resolutions.
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5.5.6 Lambda

Another important factor in the oriented chamfer matching is the parameter , which controls the
weighting of the distance score to the orientation score. When = 0, the oriented chamfer matching
degenerates to the chamfer distance matching [166]. When = 1, only the orientation term is applied. We
examine and record the overall accuracy with di erent in Figure 5.15. The accuracy with zero is far
smaller than other settings. Because in a noisy edge image, the distodn of the templates combing with
the false edge points may lead the false matching while the orientatioterm provides an e ective guideline
to rule out this situation. In addition, = 0:5 achieves the highest accuracy in most cases which makes it

an excellent choice for pieces recognition.
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Figure 5.15: The recognition accuracy with di erent values of

5.6 Conclusion

In this chapter, we present an approach for 3D chess piece recognition ing oriented chamfer matching.
After recognizing the chessboard, we can select the appropriate temales for matching and compute the
oriented chamfer score e ciently. We quantify the e ect of resolut ion, occlusion and pan angles, analyze
the processing time and accuracy tradeo and examine the e ect of di erent algorithm parameters. We
also implement the convolutional neural networks for comparison. In exgriments, the chamfer matching
approach achieves similar performance as the convolutional neural netwosk but uses a much smaller
training set and avoids the time consuming training process. In addion, the oriented chamfer matching is
more robust in severe occlusion and low resolution cases. This resuhay follow from the fact that in the
chamfer matching method, we explicitly give the system informaton on what features belong to the object,
but in the convolutional neural networks, the system must learn what is object versus background from

training examples. It is possible that if more training examples wee used, the performance of the
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convolutional neural networks might improve in severe occlusion anddw resolution cases. However, the
collection of labeled training images is time consuming and a burden fothe user. Since the performance of
the two approaches is otherwise comparable, this might indicate the abice of the oriented chamfer

matching approach.

101



CHAPTER 6
LEARNING TO FIND GOOD CORRESPONDENCES OF MULTIPLE OBJECTS

Given a set of 3D to 2D putative matches, labeling the correspondenceas inliers or outliers plays a
critical role in a wide range of computer vision applications includingthe Perspective-n-Point (PnP) and
object recognition. In this chapter, we study a more generalized protdm which allows the matches to
belong to multiple objects with distinct poses. We propose a deep &hitecture to simultaneously label the
correspondences as inliers or outliers and classify the inliers iatmultiple objects. Speci cally, we discretize
the 3D rotation space into twenty convex cones based on the facets of a regulicosahedron. For each
facet, a facet classi er is trained to predict the probability of a correspondence being an inlier for a pose
whose rotation normal vector points towards this facet. An e cient RANSAC- based post-processing
algorithm is also proposed to further process the prediction resuk and detect the objects. Experiments
demonstrate that our method is very e cient compared to existing methods and is capable of

simultaneously labeling and classifying the inliers of multiple ofects with high precision.”

6.1 Introduction

6.1.1 Finding Correspondences of Multiple Objects

In this chapter, we propose an e cient method to tackle the problem of nding reliable correspondences
of multiple objects from a set of 3D to 2D putative matches. Ideally, we vant the predicted, good
correspondences of an object to be a subset of the ground truth inliersf that object. This problem occurs
naturally in many computer vision tasks including the Perspective-n-Point (PnP) problem [169] with
multiple objects and 3D object recognition [170]. After obtaining inlier correspondences, they can be
applied to estimate the poses of multiple objects [171] and help the syam in scene recognition and
understanding [172]. An example of the process of nding good corresporaices is shown in Figure 6.1.
Here, we used a color and depth camera (RGB-D camera) to capture a temale image of objects, and then
matched points from the template image to a test image. In this examplewe used the scale-invariant
feature transform (SIFT) descriptor [46] for feature matching. Other descriptors, such as oriented fast and
rotated brief (ORB) [45], speeded up robust features (SURF) [173], and d&p descriptors [174,175] are also
applicable.

Since the 3D rotation can be uniquely determined by a rotation normal vetor and a rotation angle

around that vector [176], we discretizes the 3D rotation space based on the miction of the rotation vector.

"This is a joint work with Yingheng Tang, Gongguo Tang, and Will iam Ho [92].
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RGB-D template

Test image Our method output

Figure 6.1: Finding good correspondences of multiple objects. Givea set of 3D to 2D putative matches
between the RGB-D template and test image, our method will label theinliers and classify them into
multiple objects. In this example, two objects are detected in tke test image and the predicted good
correspondences of the two objects are shown in di erent colors reggtively.

Speci cally, we put a regular icosahedron in the origin of the 3D rotation space and use the twenty
facets of the regular icosahedron to de ne twenty convex cones, whereaeh convex cone is constructed
using three vertex vectors belonging to the same facet of the regulacosahedron [7]. All vectors that point
towards a facet are associated with that facet and belong to the correspating convex cone de ned by this
facet. Then for each convex cone (or facet of the regular icosahedron), wedin a classi er to identify inlier
correspondences for poses whose rotation normal vector falls within thisonvex cone (or points towards
this facet of the regular icosahedron). We say that an object belongs to a fat when the pose of the object
is associated with a rotation vector pointing towards this facet. Therefore, if objects have distinct poses,
namely, if di erent objects belong to di erent facets, each facet dassi er is responsible for classifying the
inliers of at most one object. We discuss how to handle the case when ttiple objects belong to the same
facet in Section 6.2.4. The inlier correspondences identi ed by thenetwork classi er are then post-processed
to lter out any remaining outlier matches, and t a rotation and translati on for each detected object.

An important contribution of our method is that we do not require any costl y iterations to identify
inlier correspondences, unlike traditional methods. Instead, ifiers are identi ed by a single pass through a
network, followed by a short post-processing step. The post-pragssing step does use an iterative algorithm,
but the number of iterations are very small. As a result, our method ismuch faster than competing state
of the art methods. Also, we can handle the case where multiple objectare present in the scene. In

Section 6.3, we show experimental results on synthetic data as well as publicly available dataset.
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6.1.2 Related Work

Given a set of putative matches, many methods have been proposed tceetkct inlier correspondences
and t a model, among which RANSAC [177] is the de facto standard in practice[178]. Some extensions of
RANSAC include MLESAC [179] which chooses the solution maximazing the kelihood, PROSAC [180]
which explores hypotheses from a gradually increasing subset of matek, and USAC [181] which combines
multiple RANSAC improving techniques into a uni ed framework. S ome approaches [182, 183] extend
RANSAC to incorporate multiple objects. However, since these approacds rely on sampling a small subset
of matches to estimate the hypothesis, as the portion of outliers or noiséevel increases, the required
number of iterations for hypothesis estimation increases signi canty.

In contrast, learning-based methods have attracted much interest de to their non-iterative end-to-end
processing approaches [91,93,184]. Most learning-based methods for posénestion take raw images as
the input [185{188]. However, [178] shows that this approach is not suitable foscenes with occlusion and
large baselines. For outlier rejection, [189] proposes a learning-basedatientiable counterpart of RANSAC
called DSAC, which tries to mimic RANSAC.

Recently, some approaches have been proposed to use a network to ndliers among point
correspondences. [178] proposes a network to directly predict inligorobabilities for 2D to 2D
correspondences. [72] applies the network of [178] to the case of 3D to 2D capendences and achieves
promising results for the Perspective-n-Point (PnP) problem. Qur work is closely related to [178] and [72].
Nonetheless, [178] and [72] assume there exists only one model or object amahg correspondences,
whereas our work allows multiple objects.

The rest of this chapter is organized as follows. In Section 6.2, we propodke learning-based facet
network and post-processing algorithm. Several numerical simulatios and an experiment on real data are

reported in Section 6.3. Finally, we conclude this chapter in Sectior6.4.

6.2 The Proposed Method
6.2.1 Learning-based Facet Network

As introduced in Section 6.1, we discretize 3D rotation space into twety convex cones according to the
twenty facets of a regular icosahedron. For each facet, as shown in FigureZ.a facet classi er is trained to
identify correspondences that are compatible with a pose whose rotatiomormal vector points towards this
facet. Thus, there is a bijective relationship between the 20 fadeclassi ers and the 20 convex cones de ned

by the 20 facets of the regular icosahedron.
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Figure 6.2: The regular icosahedron and three vectors pointing towards te same facet.

Since all the 3D to 2D point correspondences are interchangeable, the aed of the input
correspondences should not a ect the prediction result. Thereforewe adopt the ResNet block structure
proposed in [178], which shares weights between correspondences andw# di erent number of matches as
input, to build our facet classi ers as shown in Figure 6.3. Speci caly, the facet network consists of 20
facet classi ers of the same structure but di erent weights. If we have N putative matches, the input of the
facet network is of sizeN 5 where each row stores a 3D to 2D match. Each match consists of the 3D
point from the RGB-D template and its corresponding normalized 2D point in the test image. A multilayer
perceptron with shared weights is applied to each match individualy and context normalization [178],
which implements normalization on each neuron using information among almatches, is responsible for
embedding global information. The output is of sizeN 20 where the ;] )-th entry stores the inlier
probability (from O to 1) of the i-th match for facet-j. The outputs of the facet classi ers are passed
through a non-maximum suppression block. This ensures that each rolas at most one non-zero entry,
since we assume that each inlier match can only belong to one facet.

Note that there is a trade o between the number of classi ers and resoldion in the 3D rotation space.
Increasing the number of classi ers by discretizing the 3D rotationspace into more exclusive convex cones
would lead to higher rotation space resolution but requires more trainirg e ort. In addition, an alternative
approach is to train a multi-class classi er instead of several binary assi ers as in this chapter.
Nevertheless, having several binary classi ers that can be trainedgeparately and individually provides
much more exibility to the model. Speci cally, if some of the weights are missing or corrupted, we only
need to retrain the speci ¢ classi ers with corrupted weights. Moreover, if we are only interested in the
objects with certain range of rotation or we have the prior knowledge on therange of rotation for the
objects of interest, we don't need to apply all classi ers and only theclassi ers for the rotation of interest

are su cient for the object detection.
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Facet-1 classifier

Facet-2 classifier

Facet-20 classifier PHL

(a) The structure of the facet network.
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Figure 6.3: The structure of facet network consists of twenty facet clasi ers of the same structure. (a) The
facet network. (b) The facet classi er where P denotes multilayerperceptron. (X;Y;Z); is the 3D point in

the RGB-D template and (x;y); is the corresponding, normalizedx and y coordinates of thei-th match in

the test image.

6.2.2 Network Training

Since each facet classi er is responsible for only one facet (or convewme), hamely, it identi es whether
a 3D to 2D match is compatible with a pose whose rotation vector lives in thespeci ¢ convex cone, the
matches which are inliers for one classi er are outliers for the rest bthe classi ers. Therefore, the 20 facet

classi ers are trained separately using the binary cross entropy losfunction.
" #

L= L logte 2 ~ ~
= ilog(p) + (1 1ilog(l pi) (6.1)
i=1

Nin

out

where N, and Ny, are the total number of inlier and outlier matches. Nij, + Noit = N. 1; is the
indicator function which is 1 when the i-th match is the inlier for the classi er under training and 0
otherwise. p; is the estimated inlier probability of the i-th match. ;=1 and , =2 are the weights.

For each facet classi er, its training dataset contains 32000 examples whereach example consists of
200 3D to 2D matches. The validation set is of size 320. Each example contains theatches of multiple
objects whose number is uniformly selected irf 1; 2; 3g. At most 1 of them is the inlier object of the current

facet, which provides robustness to the classi er against outlier opects interference. The matches
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belonging to the same object follow the same 3D transformation. To createhe inlier object of a specic
facet, we randomly sampled its rotation vector within the convex cone asociated with this facet using the
three vertex vectors [7]. The network is trained using Adam optimization algorithm [76] with 0.0001 initial
learning rate and 32 batch size for 200 epochs. The learning rate would demase by half if the loss on the
validation set does not decrease for 7 consecutive epochs. The detall 3D to 2D matches generation

process and noise information for our experiment are described in S@on 6.3 Experiments.
6.2.3 Post-processing and Object Detection

After receiving the inlier probabilities, denoted asW ;, 2 RN 29, from the facet network, a
RANSAC-based post-processing component is implemented to detet¢he objects in the test image and
return the correspondences for each of the detected objects. Spexilly, the post-processing component
contains two steps. The rst step is adaptive thresholding. If we assime there are at mostk objects in the
test image, we threshold each entry oW, to either O (outlier) or 1 (inlier), starting with a threshold of
0:9 and then gradually decreasing the threshold value with a step size d:05. This process will stop when
we havek columns of W i, that have at least n; non-zero entries, or when the threshold value reaches;.

The second step is a RANSAC-based clustering step. We sort the colums of W i, based on the number
of non-zero entries in each column. Then starting from the column wih the largest number of predicted
inliers, we rst t a rotation and translation and then verify this tran sformation using predicted inliers
from all columns. Predicted inliers in other columns that agree with this transformation will be assigned to
the current examining column. In addition, those con rmed inliers will be excluded in the following
transformation veri cation for other columns. This process will repeat until all columns with at least n»,
number of predicted inliers are examined. The RANSAC-based clusténg step can be viewed as RANSAC
with a restricted subset of matches for hypothesis estimation. Beguse the inlier portion in each subset is
very high after network prediction and thresholding, the post-processing component is extremely e cient,
requiring very few iterations (this is veri ed in the experiments in Section 6.3). The reason that we verify
the transformation using predicted inliers in other columns is that, due to noise, some ground-truth inliers
belonging to the same object may spread to several facets. This can happ, for example, if this object's
rotation normal vector is pointing close to the facet boundary. Any remaining predicted matches after the
clustering step will be discarded.

Thus, the post-processed output denoted asV o 2 RN 20 has many zero columns and, ideally, onlyk
columns with a large number of non-zero entries. Then a simple thrgholding with threshold value T, on
the normalized number of predicted inliers for each column can be apj@d to detect the objects. Here, the

normalized number of predicted inliers is de ned as the number of pedicted inliers in a facet divided by
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the total number of predicted inliers. For the example object shownin Figure 6.1, we show the results of
processing in Figure 6.4. This gure shows raw matches, and the normaed number of predicted inliers for

di erent facets after thresholding and after clustering respecively.
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Figure 6.4: Post-processing and object detection. (a) Raw matches usj SIFT descriptor. (b) The
normalized number of predicted inliers for di erent facets after adaptive thresholding. (¢) The normalized
number of predicted inliers for di erent facets after post-processing. Yellow dotted line shows the threshold
T, for object detection. We setk =3, T; =60%, T, =0:1, n; =20, and n, = 10.

The hyper parameters of the post-processing should be set accordilygbased on the estimated statistics
and noise level of the data. Speci cally,k should be set to be the estimated, largest number of objects
among the matches andn, represents the minimal number of matches expected for each objech; should
be set slightly greater than n, to allow for some contaminated inliers prior to the post-processing ®p.
Note that due to the false negative prediction caused by the noise and nefork error, n, is normally
smaller than the ground-truth statistics of the data. T; represents the desired minimal probability of each
predicted match being an inlier, which should be set higher whentie noise level is low.T, should be set

slightly less than the estimated, mininal normalized number of inliers of the objects.
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6.2.4 Discussion

In this chapter, we assume objects to have distinct poses; namelgi erent objects have their rotation
normal vectors pointing towards di erent facets, so that each peak in Hgure 6.4 corresponds to one object
in the test image. If there exist several objects with normal vectorsthat point towards the same facet, we
nd that one potential solution is to train another angle network which con sists of multiple angle
classi ers. Speci cally, each angle classi er is responsible for decting correspondences for poses that have
the rotation angle around the normal vector falling in a speci ¢ angle range. Then by combining the results
from the facet and angle networks, one can classify several objects belotgthe same facet in a
non-iterative manner. Alternatively, one can implement RANSAC sequentially on the predicted inliers
belonging to the same facet, and set the stop criterion based on a pretseinimum number of inliers for

each object.
6.3 Experiments

In this section, we report the results of several numerical simulabns and an experiment on the GMU
kitchen dataset [190]. To train our network®, we generate a synthetic training dataset of 32000 examples
and a validation dataset of 320 with outliers and noise as described in Seci 6.2.2. We follow the data
generation procedure described in [72] for PnP and extend it to the casof multiple objects. Speci cally,
each example comprises 200 3D to 2D matches. The number of objects in eackample and the inlier
portion of each object is uniformly selected inf 1; 2; 3g and between [02; 0:3] respectively. We rst generate
3D points in camera coordinates whoseX , Y, Z are uniformly sampled from the ranges of [ 1;1], [ 1;1],
and [4; 8] respectively. Then using the intrinsic parametersf, = f, = 800, x. = 320 and y. = 240, we
project the 3D points onto the 2D image and add Gaussian noise with 5 pixelstandard deviation. For
those matches belonging to the same object, we set their ground-truttranslation of the camera pose as
their centorid and randomly set the rotation. Matches that do not belong to any objects have random
translation and rotation.

Metrics. For simulations, we generate a testing dataset of 1000 examples. For eachample, we
calculate the inlier detection precision and recall, and record the gerage number of RANSAC iterations in
the post-processing step and the average time consumption (unit:exond) using a GTX 1080 GPU for
network inference and an i7-6700 CPU for post-processing. Inlier detéion precision is de ned as the
number of detected ground-truth inliers divided by the number of predicted inliers. Recall is de ned as the

number of detected ground-truth inliers divided by the number of all ground-truth inliers.

8Code is available at https://github.com/youyexie/Learni ng-To-Find-Good-Correspondences-Of-Multiple-Objects
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Compared methods We implement sequential RANSAC [183,191] which applies RANSAC to detect
each object sequentially, and removes the inliers from the dataset asach transformation is detected. If the
number of objects is one, sequential RANSAC is equivalent to classic8ANSAC. In addition, we train the
inlier prediction network proposed in [178]. Since they assume theres only one object in each example, we
retrain their network so that it predicts the inliers without clas sifying them into di erent objects. Then a
sequential RANSAC post-processing is performed to t the transformations of multiple objects. Moreover,
since their network is deeper than our facet network, we train it with a training dataset of 64000 examples.
And if not explicitly stated, we set k =3, T, =60%, T, =0:1, n; =20, and n, = 10 for our approach. Note
that both sequential RANSAC as well as the network of Yi et al. [178] followed bysequential RANSAC
require knowledge of the ground-truth number of objects, which contols the number of transformations
they want to t. For fairness and to study the performance of inlier pr ediction and object detection of our
method individually, in Section 6.3.1 and 6.3.2, we directly pick then largest peaks from the
post-processed normalized number of predicted inliers for di eent facets to calculate the metrics, wheren
is the ground-truth nhumber of objects. In Section 6.3.3, we study the olfect detection performance of our

method individually. For the real data, the ground-truth number of obj ects is not provided.

6.3.1 Finding Correspondences of One Object

We rst study the simple case where there is only one object with 30%iilier portion in each example of
the testing dataset, with 2 pixels standard deviation Gaussian noise Since the network of Yi et al. [178]
predicts weights for each match, an inlier detection threshold is neded. We adjust this threshold so that
they achieve similar recall to our method. Since in the one object casthe standard deviation of the noise
is not very large, we setT; = 70%. The result is recorded in Table 6.1, from which we can observe that &l
methods achieve over 99% precision and over 75% ground-truth inliers ardetected. However, our method

requires a much smaller average number of iterations compared to other

Table 6.1: Finding correspondences of one object.

Precision | Recall | Average number of iterations

RANSAC 99.9% 80.4% 374.3
Yi et al. [178] 99.8% 75.4% 24.4
Our method 99.2% 75.7% 17.5

6.3.2 Finding Correspondences of Multiple Objects

Now we turn to the case of multiple objects, where each example of theesting dataset contains 3

objects with distinct poses and the same inlier portion of 30%. Thus, tke outlier portion is 10% and the
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pseudo-outlier [192] portion, which is de ned as the outlier portion to each object, is 70%. We set the inlier
detection threshold as 05 for Yi et al. [178]. We vary the standard deviation of the Gaussian noise and
record the results in Figure 6.5. Under severe noise, some inliers aheavily contaminated and that

explains the signi cant drop of recall as the noise standard deviation inceases.
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Figure 6.5: Finding correspondences of multiple objects with varyilg standard deviation of the additive
noise.

From the results we can observe that although our method is slightly inérior to sequential RANSAC
and Yi et al. [178] in terms of inlier detection precision and recall, our méhod nevertheless achieves over
94:2% precision under severe noise and large pseudo-outlier interferm® More importantly, our method is
around 15 faster than Yi et al. [178] and 20 faster than sequential RANSAC in terms of the average
number of iterations and average time consumption when the standard daation of noise is 5 pixels. In
addition, the average time consumption of our method is below 0.1 seconder example consisting of 200
3D to 2D matches. This is due to the fact that the feed-forward classi & network is very e cient and
e ective in predicting inliers, thus reducing the number of iterations required by the RANSAC-based

post-processing step and total processing time. To further vefy the e ciency of our method, a similar
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experiment xing the Gaussian noise standard deviation to 2 pixels aml varying the inlier portion of each
object is also implemented, and the average number of iterations and mie consumption are recorded in
Figure 6.6. These results con rm that our method is substantially faster than the other two methods, in

terms of the number of iterations and average time consumption.
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Figure 6.6: The e ect of the inlier portion of each object on the average nurber of iterations and time
consumption.

6.3.3 Object Detection Performance

Besides being very e cient, our method can detect multiple objects among correspondences
automatically and we examine the object detection performance in this sction. Each example of the
testing dataset has the ground-truth number of objects uniformly sampged from f 1;2; 3g and all objects
have the same inlier portion. When 20% of the inliers of an object are detged, we count it as a success
detection and we de ne the object detection accuracy as the number of etected objects divided by the
total number of objects. The object detection accuracy under di erert noise level and inlier protion of each

object is recorded in Figure 6.7, which shows that our method can detédhe objects very accurately.

6.3.4 Performance on GMU Kitchen Dataset

In the last experiment, we implement our method on the GMU kitchen dataset [190] which consists of
multiple kitchen scenes. Speci cally, we take two images from saees 1 and 7 as the RGB-D templates and
several images from the rest of the scenes as the test images. Then basedthe distribution of the 3D
points in the templates and the provided intrinsic matrix, we generate a synthetic training dataset to train
our facet network. SIFT descriptors [46] are applied for the feature matbing. The inlier prediction results

of multiple objects on GMU Kitchen Dataset are shown in Figure 6.8 and Fgure 6.9.
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Figure 6.7: The object detection accuracy with di erent Gaussian noisestandard deviation and inlier
portion of each object.

Di erent colors of correspondences indicates di erent detected ofects. The promising results imply
that by slightly adjusting the synthetic training dataset, our meth od is capable of simultaneously nding

the good correspondences and classifying them into multiple objég on real data.
6.4 Conclusion

In this chapter, we propose an e cient method consisting of a learnirg-based facet network and a
RANSAC-based post-processing step to accurately nd good corresporahces of multiple objects with
distinct poses, given a set of 3D to 2D putative matches. We discretie the 3D rotation space using a
regular icosahedron, and for each facet of the icosahedron, a classi er isdined to identify inlier
correspondences for poses that have a rotation normal vector pointing toards the facet. According to our
experiments, the proposed method is extremely e cient comparedto existing methods and is able to

simultaneously identify inliers and detect objects accurately.
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Figure 6.8: Finding good correspondences on GMU kitchen dataset. (a) shvs the RGB-D template. (b)
and (d) are the raw matches using SIFT descriptor and the results areshown in (c) and (e) respectively.
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Figure 6.9: Finding good correspondences on GMU kitchen dataset. (a) slws the RGB-D template. (b),
(d), and (f) are the raw matches using SIFT descriptor and the resuls are in (c), (e), and (g) respectively.
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CHAPTER 7
FAST APPROXIMATION OF NON-NEGATIVE SPARSE RECOVERY VIA PROJECTED GRADI ENT
DESCENT INSPIRED DEEP LEARNING

Non-negative sparse recovery refers to recovering non-negative sgarsource signals from linear
observations. This model arises naturally in many image processing afipations such as super-resolution
and image inpainting. In this chapter, we propose two e cient neural networks for fast approximation of
non-negative sparse recovery. We also derive upper bounds on netwoskzes measured by the numbers of
layers and neurons to achieve a speci ed approximation error. Numedal experiments demonstrate the
e ectiveness and robustness of the proposed networks and show theiotential in solving more complicated

signal recovery problems with the non-stationary transformation process and noisy observatior?.

7.1 Introduction

7.1.1 Algorithm Approximation

Deep learning has found numerous applications [91, 184], among which one impant eld is algorithm
approximation [193]. The basic idea is to unfold an iterative algorithm and transform the iteration process
into a series of network layers. The network parameters are then traied with back-propagation. For
example, [193] and [194] solve a sparse recovery problem without the nongedive constraint by
approximating the Iterative Soft-Thresholding Algorithm (ISTA) [195] an d Alternating Direction Method
of Multipliers (ADMM) algorithm with neural networks, respectivel y. [196,197] address the non-negative
matrix factorization problem through algorithm approximation and [198] approx imates the optimization
algorithm for the network training. [199] considers the non-negative sparseecovery problem but their
network contains a special integrator component and the networks in thischapter have a unique skip
connection design which can be seen as a variation of the skip connection ResNet [61]. More
importantly, few of the algorithm approximation literatures quantify t he relation between the system

performance and the network size as we do in this work.
7.1.2 Non-Negative Sparse Recovery

Throughout this chapter, we consider the non-negative least square prdbm for sparse recovery which
occurs naturally in many machine learning and image processing task200, 201].
minimize Liax yjz
I 2JJ Y2 (7.1)
subjectto x 2 R"

9This is a joint work with Zifan Wang, Weiping Pei, and Gongguo Tang [93]
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wherey = Ax 2 R™ for some ground truth signalx 2 R" is the measurement vector, and

A 2R™ "(m<n)is the sensing matrix. Sincem < n, this problem is under-determined and ill-posed.
There are an in nite number of solutions ® such that f (®) = 1=2jjAR yjj3 = f(x ). Fortunately, in many
scenarios, the ground truth signal is both sparse and non-negative. More pcisely, we assume& only

contains at most s positive entries and we callx a s-sparse vector.

Proposition 7. [202,203] If the matrix A 2 R™ " satis es the self-regularizing condition and
(3= 2?;s)-restricted eigenvalue condition, the convex optimization(7.1) has a uniques-sparse solution with
overwhelming probability.
A. Self-regularizing condition: there exists a constant > 0 such that
n A T h [0}
max :9h 2 R™;jjhjj 1;such thaHe;ﬁ 1 ; (7.2)
B. (3= ?;s)-restricted eigenvalue condition: given from (7.2) and sparsity s, the following inequality

holds

A
AL
Jf Lung; 2R"60; mj slj2

190 s i seiin 3= % glia

(7.3)

wherejJj measures the cardinality ofJ and ; is the vector with all but entries whose indices2 J set to

Zero.

When A satis es the conditions in Proposition 7, solving (7.1) equals to solvinga non-negative sparse
recovery problem and we assumé\ satis es Proposition 7 throughout the chapter. [202] shows that if the
entries of A are sampled from i.i.d sub-Gaussian distribution onRy o, Proposition 7 is satis ed with
overwhelming probability.

A classical approach to solve convex optimizations like (7.1) with a simp constrained set is the
projected gradient descent (PGD) algorithm. Due to the convexity of the objective function and the
uniqueness of the solution, starting from an arbitrary initial point, e.g. xo = 0, PGD is guaranteed to
converge to the ground truth solution. Given the sensing matrix A and the observationy, PGD alternates
between a gradient descent step and a projection step

Xk+1 = ReLU(xx  (ATAx, ATy))
=ReLU((I ATA)Xx+ ATy) (7.4)
= ReLU(W x¢ + Sy)
where is the step size and ReLU represents the projection onto the non-mative orthant de ned as

ReLU(x) =argminyrn jjX Yij2 = maxf0;xg.
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PGD can be accelerated with improved convergence rate to obtain the fidwing accelerated projective

gradient descent (APGD) [204, 205]:

Xk+1 =ReLU[yk 1 f(yw)]

(7.5)
Yier = Xke1 + (X1 Xk):
Substituting yx = Xk + (Xk Xk 1) andr f(yx)= ATAyK ATy into Xy yields
n )
Xx+1 =ReLU 1+ )I 1+ )ATA x+ ATA | x¢ 1+ ATy 7.6)

= ReLU (W 1xx + Woxy 1+ Sy):
When initialized at xo =0, the PGD and APGD have block diagrams shown in Figure 7.1 (a) and
Figure 7.2 (a). The rest of the chapter is organized as follows. In Sectiofi.2, we propose two neural
networks for non-negative sparse recovery and derive bounds on the webrk sizes to achieve a speci ed

reconstruction error. Section 7.3 contains experiments and the chatr is concluded in Section 7.4.
7.2 Deep Learning Approximation

In this section we propose two e cient neural networks for non-negative sparse recovery inspired by the
algorithmic pipelines of PGD and APGD. We refer to the networks inspired by PGD and APGD
algorithms as the learned projective gradient descent (LPGD) networkand the learned accelerated
projective gradient descent (LAPGD) network respectively. Speccally, we unfold the PGD and APGD
algorithms and make their parameters,W , W, W, and S, trainable. The block diagrams and network
structures of LPGD and LAPGD networks are shown in Figure 7.1 and Figure 7.2.x is the output of the
k-th ReLU layer and we call the network whose output isxy the k-depth network. In sparse recovery,
samples f;;x;) from a speci c distribution are fed to networks to learn the mapping from y; to x; which is
denoted asg(yi; W), where W designates all the trainable parameters. GiverN samples, the training
process tries to minimize the Euclidean distance between therpdicted and ground truth signals,

Loss(W) = Ni P iNzl jix; 9(yi;W)jj3. We derive the relation between the reconstruction error,
%jjA g(y;W) vyijj3, and the LPGD and LAPGD network sizes in terms of the number of neurons and

layers in Theorem 7.10.

Theorem 7.10. LetF be the optimal value of the problem (7.1), then for any > 0, there exists an LPGD
(or LAPGD) network, g(y;W ), which outputs non-negative vectors and ha®(log__ 6 ) layers

(including input, hidden and output layers) andO(n log_ 6 + m) neurons, such that

1. ) )
SIA - oly; W) yiiz F + (7.7)

where is the square of the largest singular value oA, is a quantity depending only onA and

C = jiyiiz=2
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(a) The block diagram of the LPGD network.

(b) The network structure of the LPGD network.

Figure 7.1: The learned projective gradient descent (LPGD) network.

119



(a) The block diagram of the LAPGD network.

(b) The network structure of the LAPGD network.

Figure 7.2: The learned accelerated projective gradient descent (LAPG) network.
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Proof. The problem (7.1) can be reformulated as an unconstrained optimization,

minixmizeF(x) = f(x)+ g(x) (7.8)

wheref (x) = ZjjAx yjj3 and g(x) is the indicator function of the nonnegative orthant. Apparently f has
-Lipschitz continuous gradient with = kAK3 = ax (A)?.

Furthermore, we argue that F (x) satis es the proximal-Polyak-Lojasiewicz (PL) inequality [206]:

%Dg(x;) (F(X) F) (7.9)

for some > 0, where

Dgy(x; )= 2 mzin hrf(x);z xi+§kz xk?+ g(z) g(x) : (7.10)

Then [206, Theorem 5] ensures that the proximal gradient algorithm with sep sizel applied to (7.8),
which reduces to the PGD applied to (7.1), has a linear convergence rat

k
F(xk) F 1 — (F(xo) F): (7.11)

Following the line of arguments in [206, Appendix F], one obtains that > 0 can be taken as the Ho man
T

constant for a system of inequalities with a system matrix AT AT | , which can be further upper

T
bounded using the minimal singular values of certain submatrices of AT AT | [207, Theorem

4.2]. The choice of also implies <

Therefore, for an arbitrary " > 0, if we initialize xo =0 and set C = jjyjj3=2, we have

1. "
SIAXK yii3 F 1 - c " (7.12)
which results in
k log = =log 1 - =lo — 7.13
9 ¢ g 9 ¢ (7.13)
Therefore, according to the structure of the LPGD network in Figure 7.1, whenW =1 1ATA and

S= 1AT, the LPGD network requires dke+ 1 layers including the input and output layers and ndke+ m
neurons to minimize the reconstruction error below" if F = 0. In addition, since the LAPGD network
degenerates to the LPGD network whenW , = 0, the result applies to both LPGD and LAPGD

networks. O
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Note that the proposed networks and theorem are also applicable to (7.1) wheA does not satisfy
Proposition 7. But in that case, (7.1) could have more than one solution and we @&n no longer guarantee

that ® converges to thex .

7.3 Numerical Experiments

7.3.1 Fast Approximation for Sparse Recovery

In the rst experiment, we compare the non-negative sparse recover performance of the proposed
networks with the PGD and APGD algorithms. Speci cally, we synthesize 20000 data pairs
(xi 2 R%;y; = Ax; 2 R19) for training and another 2000 data pairs for testing. The goal is to recover tte
high-dimensional signalx; from observationy; with known A 2 R° 20, For each ground truth vector, x;,
we randomly select its sparsity from the setf 1; 2; 3g and choose the locations of the non-zero entries
uniformly at random. Then the non-zero entries ofx; are sampled from the i.i.d uniform distribution on
[0; 100]. Similarly, each entry of A is sampled from the i.i.d uniform distribution on [0; 1].

The neural networks are trained using the Adam algorithm [76] with 10  initial learning rate. All
weights of the network are initialized with i.i.d entries uniformly on [0; 0:001]. In addition, W, W ; and
W , are initialized as symmetric matrices since they are symmetric irPGD and APGD algorithms. The
batch size is 200 and the whole training process takes 10000 epochs. The LB@nd LAPGD networks
with di erent depths are trained separately and we record their average recovery error,jjx a(y; W)jj2,
on the testing set in Figure 7.3. The PGD and APGD algorithms start with xo = 0 and their step sizes are
L where = kAkZ and =0:9. We can observe that the LPGD and LAPGD networks manage to learn
the sparse recovery process and outperforms PGD and APGD by a large mamgiwith the same

computational cost in the test set.

The average recovery error

—*—PGD

>— APGD
\ LPGD
\ —%—LAPGD

The iteration number k

Figure 7.3: The average recovery error on the testing set. For LPGD and LAP® networks, k indicates
their depths.
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7.3.2 The E ectiveness of The Skip Connection

We refer to the connection that does not come from the last layer or comefom the last layer with an
identity transformation as the skip connection. The second experimat illustrates the e ectiveness of the
skip connection in the LPGD and LAPGD networks by comparing the average reovery error of the
3-depth LAPGD, 3-depth LPGD, 3-depth LPGD without skip connections and a vanilla neural network
with same number of layers and initializations. We adopt the same setupn the last experiment and the

results are recorded in Table 7.1.

Table 7.1: The average recovery error on the testing set.

LAPGD | LPGD | Vanilla Network | LPGD w/o skip

8.89 12.59 12.71 14.52

Recall that, unlike the vanilla network, the weights between hidden layers in the LPGD network are the
same and skip connection improves the network performance signi cahy. The LAPGD network with

additional skip connections achieves better performance than LPGD netork.
7.3.3 Non-stationary Super Resolution

In this experiment, we examine the robustness of the LPGD and LAPGD néworks when applied to the
sparse recovery problem with non-stationary sensing matrix and noisybservation. This problem can no
longer be solved by the PGD and APGD algorithms. Particularly, we apply the networks to the single
molecule imaging, in which all sub-cellular structures are dyed wih uorophores before imaging by the
microscope and in each observation, only a small portion of the uorophores aractivated for imaging.
Thus each frame is composed of the activated uorophores convolved with nestationary point spread
functions of the microscope with additive noise as shown in Figure 7.4d). If we superpose all the frames,
we obtain the low resolution image in Figure 7.4 (b). The data comes from Sigle-Molecule Localization
Microscopy grand challenge organized by ISBf which contains 12000 imaging frames. With the same
initialization from last experiment, we train the 7-depth LPGD and 7-de pth LAPGD networks using 8000
imaging frames and implement the super-resolution on the rest 4000 franse Thus, the training and testing
datasets follow the same distribution but have di erent sparsity pattern and intensity for each frame. All
data are pre-processed by subtracting the average intensity of théraining set and the super-resolution

results of the LPGD and LAPGD networks are presented in Figure 7.4 (c) and(d).

10EPFL Biomedical Imaging Group, Single-Molecule Localizat ion Microscopy: http://bigwww.ep .ch/smim/
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(a) A typical frame. (b) The sum of all frames.

(c) Super-resolution result of the (d) Super-resolution result of the
LPGD network. LAPGD network.

Figure 7.4: The single molecule imaging. The size of the images in (a) and (@re 32 32 pixels with pixel
size 200 nm 200 nm. (c) and (d) show the super-resolution results from LPGD and LAPGD networks
whose sizes are 64 64 pixels.

7.4 Conclusion

In this chapter, we propose two e cient neural networks for fast approximation of the non-negative
sparse recovery. Speci cally, we design the LPGD and LAPGD networks # unfolding the projected
gradient descent and accelerated projective gradient descent algéhims and making their parameters
trainable. Moreover, we derive an upper bound on the network sizes foa given approximation error. The
experiments illustrate that the proposed networks are extremely ecient compared to the classical
optimization algorithms and are capable of handling problems with non-statbnary sensing matrix and

noisy observation.
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CHAPTER 8
CONTAMINATED MULTIBAND SIGNAL IDENTIFICATION VIA OPTIMIZATION-INSPIR ED DEEP
LEARNING

Multiband signals, whose active frequencies lie within continuoudntervals, arise in a wide range of
applications like radar imaging. In this chapter, given limited and varying-length time-domain samples of a
contaminated multiband signal, we propose novel deep networks to estiate the number of bands and
locate the bands' centers. A multiband signal representation modelwhich combines the long short-term
memory (LSTM) and convolutional neural network, is trained to map varying- length observed samples to a
frequency spectrum representation. A counting model then courg the number of bands based on the
estimated spectrum. Combining the spectrum representation and gtimated number of bands, the bands'
centers can be recovered e ciently and automatically. Numerical experiments demonstrate that the
proposed method is very e ective and can leverage extended samplesrfbetter performance. Moreover, it
outperforms other deep architectures for line spectral estimation atdi erent noise levels and is much faster

than an atomic norm-based method!!

8.1 Introduction

8.1.1 Contaminated Multiband Signal Identi cation

Conventional line spectral estimation [79] appears widely in many appliations, e.g., power

electronics [208]. Mathematically, one observes a time-domain multitoa signal

pd .
y(t) = Aje?Fit+ (1) (8.1)
i=1

where the number of tonesM is unknown, A; 2 C is a complex weight consisting of the unknown
amplitude and phase,F; is the unknown frequency of interest, and (t) denotes additive Gaussian noise.
In [77,78], deep networks are proposed that solve the line spectral estation problem with competitive
performance. These networks give insight into the connections beteen a fundamental problem in signal
processing and an emerging tool in machine learning.

The multiband signal identi cation problem generalizes the model in (8.1), such that each component is
supported over a continuous narrow band in the frequency domain. Nameg] y(t) has its continuous-time

Fourier transform, Y (F), supported on a union of several bands,

11 This is a joint work with Michael B. Wakin and Gongguo Tang [94  ].
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4
F = . [F;, Bj;F +Bjl; y)= . Y(F)e2Ft dF + (1): (8.2)
j=1
Here B; is the width of the band whose center isF;. Such multiband signals arise in applications like radar
imaging [209] and communication [210]. Unfortunately, the deep networks in [778] are not designed to
accommodate multiband signals. In addition, most deep architectures?7, 78,93, 193] for signal processing
problems only allow a xed-length input signal, while leveraging extended samples for better identi cation
accuracy is characteristic of many signal processing techniques ékthe discrete Fourier transform (DFT).
In this chapter, we propose novel deep networks to tackle the multband signal identi cation problem

while allowing for input signals of di erent lengths. After uniform an d non-aliased sampling with sampling

interval T, the multiband signal has the form [211{213]

pd Z Wj
y=  Aja(fy) a(f)m;(f)d + 2cN (8.3)
j=1 Wi
wherea(f)=[¢&2f 0;g2f 1. .20 (N DJT "N s the length of the observed samples,

f; = TsF; 2 [ 0:5;0:5) denotes the band's digital frequency centerW; = TsB; 6 0 denotes the digital
band width, and m; (f ) is the envelope of thej -th band in the digital frequency domain. Moreover, (:)"
denotes the transpose operator and denotes the element-wise (Hadamard) product.

Given only the sampled signal vectory, the goal of this chapter is to estimate the number of bandsM
and the center frequencyf; of each band. This task is complicated by the fact that Fourier analysis
techniques, when applied to the nite vector of samplesy, are plagued by the problem of spectral leakage:

the boundaries of the bands become smeared and bands can blend into one amet
8.1.2 Related Work

When all bands in the multiband signal have zero band width, our problen reduces to line spectral
estimation [79,214]. When the band widths are nonzero, however, those mebds no longer apply. Most of
the research involving the multiband signal model studies the sigal sampling problem, in which the aim is
to reconstruct the time-domain multiband signal using a minimal samging rate [212,213,215]. For
example, [215] proposes periodic nonuniform sampling for mutiband signakconstruction when the number
of bands is known, [212] proposes a universal sampling pattern which reges the lowest and highest
frequencies and the occupancy rate of the bands, and [213] studies sidyquist sampling for
spectrum-blind multiband signal recovery under a compressed ssing framework [2,87]. More sampling

schemes are available in [216,217]. Meanwhile, [211] studies the multibarsignal identi cation in the
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noiseless case, using discrete prolate spheroidal sequences (BP£18] to construct a subspace model for
the active bands and employing these in an atomic norm minimization franework [11,101].

Deep learning has gained much attention in signal processing [93,219] due its e ciency and
promising performance. Relevant to our work are [77,78], which addressnie spectral estimation via deep
architectures for sample vectors of a xed size. Their networks map lhe observed samples to a
pseudo-spectrum [78], from which the frequencies can be located byding peaks. This mapping process is
inspired by atomic norm minimization methods [79,211], which take timedomain samples and solve for the
dual polynomial. In this chapter, we extend these works to solve the naltiband signal identi cation
problem, and we allow for varying numbers of observed samples. Our worghows the potential to design
deep architectures that enjoy both the e ciency of deep learning ard the capability of leveraging extended
data points for better performance. Speci cally, we propose a novel mltiband signal representation model,
which combines a long short-term memory (LSTM) [69] and convolutional newal network [47], to encode
the observed samples and map the encoded signal to a frequency speich representation. A counting
model is then applied to estimate the number of bandsM , based on the predicted spectrum. The bands'
centers can then be automatically extracted from theM tallest peaks in the spectrum.

This chapter is organized as follows. In Section 8.2, we introduce therpposed multiband signal
representation and counting models for multiband signal identi cation. Several numerical experiments are
conducted in Section 8.3 to evaluate the e ectiveness of the proposeghethod. We conclude this chapter in

Section 8.4.

8.2 Proposed Method
8.2.1 Multiband Signal Representation Model

For line spectral estimation, [78] demonstrates that predicting a freyuency spectrum which encodes the
frequency information is more e ective than estimating the frequencies directly. Inspired by their
methodology and traditional atomic norm optimization methods [79, 80], where adual solution is
constructed and a frequency spectrum can be plotted to locate the grund truth frequencies by correlating
the dual solution against exponential atoms of di erent frequencies, ourmultiband signal representation
model maps the observed signal to a frequency spectrum (FS) rementation. In the dual
polynomial-generated frequency spectrum, the ground truth frequacies would have magnitude 1 just like
the estimated frequency spectrum in [78] and our work. An example of a tggth-50 observed signal, its
length-1000 over-complete DFT, the signal's ground-truth bands, and tte target frequency spectrum for
the deep network are shown in Figure 8.1. The target FS is a superpos@n of M Gaussian kernels,

P
FS(f) = jle K (f f;) where each Gaussian kernel has the forn (f) = exp( f?= ?). We set
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¢ =0:006 as in [77] and note that there is a trade-0 between the resolution in thespectrum and the
number of informative non-zero values for network calibration. The disretized FS is of length-1000 with

circular periodization.

——Real part
——Imaginary part| |

o

10 20 30 40 50 -0.5 -0.3 -0.1 0.1 0.3 0.5

(a) Observed signal. (b) Over-complete DFT.
0.2 ‘ ‘ ‘ ‘ 1
0.8+
0.15
0.6
0.1
0.4+
0.05¢
0.2
0 0
-0.5 0.3 0.1 0.1 0.3 0.5 -0.5 0.3 0.1 0.1 0.3 0.5
(c) Signal's ground-truth bands. (d) Target frequency spectrum.

Figure 8.1: An observed signal of 50 length at SNR 30 dB, whose bands' digital fregncy centers are

f 0:15; 0; 0:15g with digital band width W =3=N =0:06. (a) The real and imaginary parts of the
observed signal. (b) The signal's 1000 length over-complete DFT. (c) Th signal's ground-truth bands. (d)
The target FS.

The architecture of the proposed multiband signal representation moel, termed DeepMultiband, is
shown in Figure 8.2. The input of the model is §r;y;]2 RN 2 whereyg andy, denote the real and
imaginary parts of the observed signaly andy = yg + iy,. Long short-term memory (LSTM) [69] has
achieved great success in handling data of di erent lengths and is inmbduced in our model to deal with
varying-length inputs (N is not xed). However, an individual exponential signal sample can not piovide
valuable information about the signal's frequency. Thus, we add an inputconvolutional layer, whose
convolution kernel has the view of several consecutive data samples) embed the raw time series

exponential signal data. Intuitively, each embedded data point will contain the frequency and noise
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information within its time window. The LSTM is then responsible f or examining all the embedded data
and outputting a deconvolution signal. Speci cally, an input convoluti on layer with kernel size 20 (we
assumeN  20) rst encodes the observed samples into a data bank of 30 channels, weh results in an

(N 20+1) 30 matrix. An LSTM with hidden size 200 then processes each row of the datmatrix one
at a time starting from the rst row. After processing all encoded data, the last hidden state of size 200 1
is mapped to an intermediate feature space with 32 channels by a linedransformation. Intuitively, we
expect that each feature channel encodes a Fourier transformationke spectrum as in the network
proposed in [77] for line spectral estimation. The transformed featuresre then processed by 20
convolutional neural network (CNN) blocks of the same structure but with di erent weights; the data
preserves its size through those CNN blocks. Each CNN block consists a convolution layer with kernel
size 3 with circular padding to process the local frequency infanation, a batch norm minimization to
facilitate the training, and a recti ed linear unit (ReLU) layer to im pose non-linearity. The structure of the
CNN block in DeepMultiband and counting model in Section 8.2.2 are inpired by [77, 78] but with the
hyper-parameters, e.g., the kernel size and number of feature chaeh ne tuned based on the mutiband
signals in our experiments. Finally, a transposed convolution layer220] with kernel size 12 and stride 5

produces the estimated frequency spectrum of length 1000.

Figure 8.2: DeepMultiband, the multiband signal representation modé. The input and output sizes of the
model and the data sizes between the hidden layers are marked b&lo

8.2.2 Multiband Signal Counting Model

Given the frequency spectrum estimated by a pre-trained DeepMlItiband model, a counting model is
trained to determine the number of bands within the observed signal The input of the counting model is
the estimated FS and the output is a single value that is rounded to thenearest integer. The counting
model consists of an input convolution layer with 32 kernels of size 12 ahstride 8, 20 CNN blocks as

introduced in Section 8.2.1 with the same setting, an output convoluton layer with kernel and output
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channel size 1, and a fully connected layer that outputs the nal value

8.3 Numerical Experiments

8.3.1 Experiment Setup

We generate the simulation data based on (8.3). The training, validation, aml testing data sets contain

200000, 1000, and 1000 multiband signals, respectively. The length of each multibdrsignal, N, is

The bands' digital frequency centers are uniformly sampled within[ 0:5; 0:5) with a minimal separation of
2W + 1=N so that they are not overlapping; we study the case of overlapping bands Section 8.3.4. All
bands have a xed maximum digital band width W = 0:06 and 200 complex exponentials with frequencies
uniformly sampled within [f;  W;f; + W] are summed together to generate the corresponding signal
component within the j band. Each complex exponential's amplitude is generated as (0 + jgj)€ , where
g follows the standard normal distribution and is uniformly selected in [3 2 ]. We train the
DeepMultiband and counting models for 200 and 100 epochs, respectiyelwith batch size 256 and using
the Adam algorithm [76] with learning rate 0:001. In each epoch, we add additive Gaussian noise to the
multiband signal to yield an SNR drawn from the uniform distribution o ver [0; 50] dB. The loss functions
for the DeepMultiband and counting models are the squared, error between the ground-truth and
predicted FS,jjFSgt  FSpreqjj3, and the squared error between the ground-truth number of bands and te
predicted number of bands, Mg M preq )?, respectively. We train DeepMultiband rst and the counting
model second based on the FS predicted by a xed-weight DeepMuliand.

Compared methods Since the multiband signal identi cation problem can be viewed as a greralized
line spectral estimation problem with a band convolution in the frequency domain, we implement the
PSnet [78] and DeepFreq [77] models, which to the best of our knowledgee the state of the art deep
architectures for line spectral estimation, for comparison. Because 8net and DeepFreq take a xed-length
input, their networks are trained following the same setting as our nmodel but using a truncated input
consisting of the rst 25 samples. In addition, for each compared deep miel, a counting model is also
trained based on its predicted FS to determine the number of bandsWhen the bands are modeled using
the DPSS dictionary [218] in Section 8.3.5, we implement an atomic norm mimnization method proposed
in [211].

Metrics. We analyze the performance of the proposed method in terms of false negat rate (FNR), F1
score, and chamfer error. Speci cally, FNR is de ned as the percent ofindetected true band centers. A
successful detection is counted when there is a detected bandrter within  0:02 of a true band center.

The F1 score is calculated based on the precision and recall. The chamferror [91] between the
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ground-truth bands' centers, fo = ff1;  ;f,, g, and estimated centersf = ffy; ;fy,g, is
P . . . P . . .

A fi2f, MiNp et fli+ X f’\jzf’\mlnfizfo]t/} fij.

8.3.2 E ect of The Signal Length

We rst examine the capability of our model to handle di erent length s of signals. The results with
di erent SNRs are recorded in Figure 8.3, where gures in the left colunn show di erent models'
performance on the testing dataset with signal lengths following the miform distribution over [25; 50].
Without retraining the models, gures in the right column of Figure 8. 3 present the models' performance
with signal lengths uniformly drawn from [100; 200]. We observe that the DeepMultiband model
outperforms other models at the low to middle SNRs when the signal legth is within [25;50] and
outperforms those models across all SNRs when the signal length is withi{100 200]. The results also show
that the DeepMultiband model can leverage extended samples to achie better performance. Note that
when N increases, the minimum separation 2 + 1=N reduces, which makes the identi cation problem
harder. Taking a xed-size input limits the problem complexity t hat PSnet and DeepFreq models can

solve, which explains the diminished performance.
8.3.3 E ect of The Band Shape

We again generate each signal in the testing dataset with length uniformlydrawn from [100; 200]. For
each band in the testing dataset, however, we evenly generate 200 expantials within the band with
magnitudes gradually increasing from 01 to 0:2. This gives all bands in the testing dataset a trapezoidal
shape rather than the rectangular power spectrum used for training. Wihout retraining, the performance
of di erent models on this testing dataset is recorded in Figure 8.4. Athough the performance of all
models is slightly worse compared to the results in the right columnof Figure 8.3, our method still
outperforms other models and achieves around 2% FNR,:08 F1 score, and @013 chamfer error when SNR

is above 20 dB.
8.3.4 Multiband Signal with Overlapping Bands

To examine the e ect of overlapping bands, we x the number of bands h each multiband signal to 3,
where the rst and second bands have separation uniformly selectechi[W; 2W]. Thus, there exist two
bands with overlapping ratio uniformly drawn within [0% ; 50%] and another non-overlapping band that is
at least 2W + 1=N separated from them. Since the number of bands is xed, no counting mdel is needed.
We retrain di erent representation models on this distribution w ith a signal length uniformly selected from
[25;50]. In Figure 8.5, we record the performance of di erent models on the tsting dataset with

overlapping bands and signal length uniformly selected from [10®00]. The results demonstrate that the
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DeepMultiband model is robust to the overlapping bands and outperbrms other models by a large margin

over the whole range of noise levels.
8.3.5 Multiband Signal Modeled by DPSS

The DPSS dictionary [218] gives a collection of time-limited and esseidlly band-limited functions. In
this section, all bands in the training, validation, and testing datasets are generated using the DPSS
dictionary of length 50 with W =3=N = 0:06 and using the NW = 6 most band-limited sequences.
Dictionary coe cients follow the random normal distribution and are nor malized to have unit ", norm.
Thus, all observed samples have the same length of 50, and we retrain our BgMultiband model on this
distribution. The atomic norm minimization method proposed for multi band identi cation in [211] involves
solving for a dual polynomial, but it does not include an estimator for the number of bands. Thus, the
ground-truth number of bands is provided in this experiment. The performance of the atomic norm
minimization method [211] and the proposed DeepMultiband method on noisless mutiband signals are
recorded in Table 8.1.

Table 8.1: Noiseless multiband signal with bands modeled by DPSS.

FNR | F1 score| Chamfer error
AtomicNorm [211] | 0.15% | 0.9985 0.0009
DeepMultiband 0.07% | 0.9993 0.0012

Both methods perform very well in this case and achieve less than:P% FNR, over 099 F1 score, and
around 0:001 chamfer error. It is worth noting, however, that our model is trained on the noisy dataset and
thus is applicable to di erent noise levels, while [211] assumes a neeless observation. Moreover, measured
on an i7-6700 CPU, the DeepMultiband model only takes around 5 seconds to predict the frequency
spectrum for 1000 multiband signals of length 50, which is similar to Deepfeq and PSnet but more than

two orders of magnitude faster than the atomic norm-based method [211] usgn CVX [115].
8.4 Conclusion

In this chapter we solve the contaminated multiband signal identi cation problem via deep learning. A
novel deep architecture, DeepMultiband, is proposed to map the olerved varying-length multiband signal
to a frequency spectrum; a counting model then determines th@umber of bands. Based on the estimated
frequency spectrum and number of bands, the bands' centers can bdanti ed automatically. Our
experiments verify the e ectiveness and robustness of the prop@&sl method, which outperforms other state
of the art deep architectures for line spectral estimation under a rage of noise levels and is more than two

orders of magnitude faster than atomic norm minimization.
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Figure 8.3: The e ect of the length of the observed signal. Figures (a), (; and (e) show the FNR, F1
score, and chamfer error of di erent models for signal lengths uniformy selected in [2550]. (b), (d), and
(f) show the performance for signal lengths uniformly selected in [10@00] without retraining the models.
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Figure 8.4: The e ect of a nonrectangular power spectrum in each band.
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CHAPTER 9
DATA-DRIVEN PARAMETER ESTIMATION OF CONTAMINATED DAMPED EXPONENTIALS

In this chapter, we study the damped exponentials which appear natually in a wide range of
applications including structural health monitoring and electric m achine fault detection. In this chapter,
given nite time-domain samples of composite, contaminated damped expoantials, we propose novel deep
architectures to estimate the number of exponentials and recovertte frequency and damping coe cient of
each exponential. In our architecture, a damped exponential represgation model maps time-domain
samples to a frequency-damping spectrum representation, whila counting model then counts the number
of exponentials. Combining the spectrum representation and the e@ated number of exponentials, the
frequencies and damping coe cients of the exponentials can be resered automatically. Altogether, this
yields an e cient feed-forward method for parameter estimation of contaminated damped exponentials.
Our experiments indicate that the proposed method is very e ective and can robustly handle exponentials

with close or even overlapping frequencies as long as the damping coients are su ciently separated. 2
9.1 Introduction

Advances in deep learning have led to a growing understanding of howo design networks for solving
sparse recovery and estimation problems [77,78,93,193]. Recently, powdrfieep networks [77,78] have
been designed for solving one of the most canonical sparse signal procegsproblems: estimating
sinusoidal frequencies in line spectral estimation. The demons#ited performance is competitive with
traditional methods such as MUSIC [221]. Meanwhile, the problem of estirating the frequencies and
damping coe cients of damped exponentials from nite time-domain samples has wide applications,
including structural health monitoring [133, 222], fault detection [89, 136],and nuclear magnetic resonance
spectroscopy [38,145]. Unfortunately, this problem is more complicated tan line spectral estimation, and
the previous networks [77,78] cannot accommodate the damped signal model.

In this chapter, inspired by [77, 78], we design novel deep architeates to estimate the number of
exponentials and recover the frequency and damping coe cient of edt exponential. Our work adds to the

growing science of deep network design for solving canonical sparse sdjprocessing problems.
9.1.1 Estimation of Contaminated Damped Exponentials

Suppose a system observes a composite signal consisting of a linear camation of M (unknown)

damped exponentials:

12This is a joint work with Michael B. Wakin and Gongguo Tang [95  ].
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yit)y=  Aje itd2Tit+ (1) 9.2)
j=1
where eachA; 2 C is a complex weight incorporating the unknown magnitude and phase of thg-th
exponential, and (t) is additive Gaussian noise of unknown variance. By takingN samples ofy(t) with

sampling interval Ts, we obtain a vectory 2 CN whosen-th entry is

hd

A]e stneiijTsn+ (TSI’])
1

y(n)

9.2)

A]e jneizfin+ (n)
j=1

where, without loss of generality (assuming non-aliased sampling), weake Ts = 1 and restrict the active
frequenciesf; 2 [ 0:5;0:5). In this chapter, we assumeN =50, and we also assume each damping
coecient ; 2 [0;0:1]. Under these assumptions, a maximally damped exponential (= 0:1) will see its
amplitude decay by approximately 100 between its rst and last sample.

Given the sample vectory, our goals are to determine the number of exponential$/ and to recover the

corresponding frequencyf; and damping coe cient ; of each exponential.
9.1.2 Related Work

When all ; =0, our problem reduces to line spectral estimation [79,214]. However, wén damping is
present, line spectrum estimation methods no longer apply. To takedamping into account, several methods
relying on the discrete Fourier transform (DFT) are proposed in [223{226]. These methods, however,
assume either a single sinusoid or multiple sinusoids with welleparated frequencies. Some least square
methods leveraging sparse techniques [2,11,87] are proposed in [227{229], whiteratively re ne the
estimated parameters and system order but are computationally cumbei@me. Alternatively, two e cient
time-domain approaches that allow exponentials with overlapping fregencies but separated damping
coe cients are Prony's method [140], which solves a polynomial whose rots encode the parameters, and
the matrix pencil method [138,230], which constructs a matrix pencil lased on the observed signal and
then solves a generalized eigenvalue problem. However, the polynomiahd matrix pencil methods require
prior knowledge of the system order. And approaches such as Akaike informiain criterion (AIC) [231],
minimum description length (MDL) [232], and second-order statistic of égenvalues (SORTE) [233] are
proposed to estimate the system order.

Deep learning has attracted signi cant interest due to its e cient end-to-end processing and

competitive performance [93,219,234]. Many deep architectures have beg@noposed for sparse recovery of
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di erent signal models [77,78,93,193]. Of particular interest are deep newal networks such as
DeepFreq [77] and PSnet [78] that achieve superior performance for lingoectral estimation. However,
those works assume no damping.

In this chapter, we extend the works of [77,78] by taking damping into acount, and our work shows the
potential for applying deep learning to a more complex sparse signal peessing problem. Speci cally, we
propose a novel damped exponential representation model that maps thebserved signal to a
two-dimensional frequency-damping spectrum, in contrast with the one-dimensional frequency spectrum
in [77,78]. Moreover, to boost the performance in estimating exponendils with very close or overlapping
frequencies but di erent damping coe cients, we propose a nove two-branch structure in the
representation model to extract the frequency and damping informaton. We also propose a counting
model to determine the number of exponentialsM , based on the estimated frequency-damping spectrum.
Finally, the frequencies and damping coe cients can be extractedfrom the M peaks with the largest
magnitudes in the spectrum.

The rest of the chapter is organized as follows. In Section 9.2, we proposbd damped exponential
representation model and counting model for parameter estimation of caiaminated damped exponentials.
In Section 9.3, several experiments are conducted to evaluate the plermance of the proposed networks

and we conclude this chapter in Section 9.4.

9.2 Proposed Methodology

9.2.1 Damped Exponential Representation Model

In applying deep learning to line spectral estimation, [78] shows tat nonparametrically predicting the
frequency spectrum is more e ective than parametrically predicing the frequencies directly. Inspired by
that approach, our damped exponential representation model aims to map tk observed signal to a
nonparametric frequency-damping spectrum (FDS).

More speci cally, the input of our representation model is [y ;y " 2 R2N where ()7 is the transpose
operator. yg andy, are the real and imaginary parts of the observed signay = yg + iy,. Based on the
ground-truth parameters f(f1; 1);(f2; 2);:::;(fm; wm)g of the exponentials contained in an observed

signal, the ground-truth FDS is de ned to be the superposition of M generalized 2D Gaussian kernels,

FDS(f; )= K fii ) 93)

where the kernel has the formK (f; )= e (fP=7+ 2=7) Larger values of the standard deviations ; and

allow for more informative non-zero values backpropagated during calibrabn but at the cost of lower
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resolution. In this chapter, we setN =50, ; =0:9=N,and = 0:45=N. If the observed signal has more
than 50 samples, our network could use the rst 50 samples. An example of #hinput and output of the
representation model is shown in Figure 9.1, in which the discretied FDS is of size 30 100. To account
for periodicity in the frequency parameter f , we use a circular extension of the frequency axis. Since no
such periodicity exists for the damping coe cient, we pad the spectrum with  values smaller than 0 and

greater than 0:1. With this discretization, the resolution of f and are 001 and Q005, respectively.
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(a) The real and imaginary parts of the observed signal.
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Figure 9.1: A noisy observed signal consists of three damped exponentialthose parameters{;; ;) are
( 0:2;0:04), (0:0;0:02), and (0:3; 0:08) respectively. The observed signal's real and imaginary parts are
shown in (a) and its frequency-damping spectrum is shown in (b).We pad the spectrum with damping
coe cient values smaller than 0 and greater than 0:1.

The structure of our representation model, which we term Dank (de@ + damp), is shown in Figure 9.2.
We rst linearly encode the input signal to an intermediate feature space of 60 channels. Then several
convolution neural network (CNN) blocks consisting of a convolution laye with kernel size 6 and circular
padding, a batch normalization layer [59], and a recti ed linear unit (ReLU) layer further process the

features.
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Figure 9.2: The Dank model for damped exponentials. Each convolutional naal network (CNN) block
consists of a convolution layer with kernel size 6 and circular paddig and a batch normalization layer
followed by the recti ed linear unit (ReLU). The linear encoder size, input and output sizes of the model
and each CNN block are marked below the blocks.

Despite the di erences in the size of the feature channel, convolion kernel, and padding, the structure
of the feature encoder and CNN block are inspired by the DeepFreq [7dnd PSnet [78], respectively, which
are designed for line spectrum estimation. [77] nds that the learned éature encoder for undamped
exponential signals implements a Fourier-like transformation and base on that, the localized kernel in the
convolution layer can accurately locate the sinusoid frequencies. heever, the Fourier transform of a
damped exponential is a generalized Dirichlet kernel parameterizEby  [235], which suggests that a xed
size localized convolution kernel is not appropriate. Moreover, to eable the identi cation of exponentials
with overlapping frequencies but separated damping coe cients we introduce a novel two-branch network
structure. In particular, the top branch (see Figure 9.2) implements the convolution vertically as in the
PSnet [78] to locate the frequencies, while the bottom branch implments the convolution horizontally to
estimate the damping coe cients utilizing the information from th e whole feature channel. Finally, the

transposed convolution [220] decoders with kernel size 1 produce thestimated spectrum.
9.2.2 Damped Exponential Counting Model

Based on the predicted FDS, we train a counting model to determinghe number of valid damped
exponentials in the observed signal. Speci cally, the input of the ounting model is the estimated FDS and
the output is a single value to be rounded to the nearest integer. Baskon the estimated system orderM ,
the frequency and damping coe cients are then extracted from theM peaks having the largest magnitudes
in the input spectrum. Since the system order should be invariantto the translation of the peaks in the
FDS, the counting model consists of 20 CNN blocks introduced in S¢ion 9.2.1 followed by a convolution

layer with output channel and kernel size 1 and a fully connected Iger to predict the nal value.
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9.3 Numerical Experiments

9.3.1 Experiment Setup

To validate our approach, we generate simulation data based on (9.2). The traiimg, validation, and
testing datasets consist of 200000, 1000, and 1000 composite signals, respectivélyt each signal,N = 50,
M is uniformly selected from 1 to 5, andA; = (0:1 + jgj)€ , where g follows the standard Gaussian
distribution and is uniformly selected in [ 2 ]. All pairs of frequencies and damping coe cients are
required to satisfy at least one minimum separation condition betweerthe pair of frequencies (4N) or
damping coe cients (0:04). First, the frequency f; and damping coe cient ; are selected uniformly in
the range of [ 0:5;0:5) and [0:0; 0:1], respectively. WhenM 2, the second exponential is generated to
have its frequency close to the frequency of the rst exponential Speci cally, f, = f; + u whereu is
uniformly selected in [ 1=N;1=N]. Thus, the rst and second exponentials have very close or overlappg
frequencies but well-separated damping coe cients (due to theseparation condition). We apply the same
procedure for generating the third and fourth exponentials ifM 4. We train the proposed Dank model
by applying the Adam algorithm [76] for 200 epochs, minimizing the squared, error between the network
estimated FDS and the ground-truth FDS, jjFDSest FDSgijj3. The initial learning rate is 0:0003 which
reduces by half when the loss function does not decrease for 3 constegl epochs on the validation set.
The batch size is 256. During each epoch, we add scaled Gaussian noise be tsignals so that the SNR for
each example is chosen uniformly at random between 0 and 50 dB. The countj model is trained using a
xed-weight representation model to generate the FDS and followingthe same training setup with 100
epochs. Similarly, the counting model's loss function is the sgared ", norm error between the network

output and the ground-truth system order.
9.3.2 Performance of Dank and Counting Models

We rst validate the performance of the Dank representation model in terms of the false negative rate
(FNR) given the ground-truth number of exponentials for each observed gnal. A successful recovery is
counted for a damped exponential when the frequency and damping coecient errors are both smaller than
1=N. In addition, we compare the proposed Dank model to several represeative methods: DeepFreq [77],
PSnet [78], total-least-squares (TLS) matrix pencil [138], TLS Prony's mé¢hod [236], and RELAX [227]
which minimizes a nonlinear least squares problem. Note that becausdn¢ original DeepFreq [77] and
PSnet [78] only concern the frequency spectrum, we modify their nal layers by changing the output
dimension so that they too can predict the FDS. We train these netvorks following the same training setup
as our model. The results are recorded in Figure 9.3 (a). The proposed rdel outperforms other methods

in the low to medium SNR regimes and achieves less than 3% FNR when SNR 35 dB.
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Figure 9.3: Performance of Dank and counting models.

We also examine the system order estimation performance of the proposexmunting model, which
determines the number of exponentials based on the FDS estimated byhe pre-trained Dank model. We
compare with the AIC [231], MDL [232], and SORTE [233] methods which estimatehe system order based
on the signal covariance matrix. Moreover, we train separate counting mdels of the same structure using
the FDS estimated by DeepFreq [77] and PSnet [78] respectively. Theesults are shown in Figure 9.3 (b).
We observe that our counting model outperforms the covariance matrix lased methods except at high

SNR, and the quality of the predicted spectrum has a great impact on the ounting accuracy.
9.3.3 The Overall Performance of The Combined Models

We assess the overall performance of the combined models in terms dfet F1 score and root mean
square error (RMSE). Based on the success recovery criteria in 8@on 9.3.2, we calculate the
PRECISION and RECALL and de ne the F1 score to be 2(PRECISION '+ RECALL 1).
Moreover, for each ground-truth exponential, we calculate the recowy errors of the frequency and
damping coe cient. Then the RMSEs of the frequency and damping cae cient are calculated based on the
recovery errors of all ground-truth exponentials in the testing dataget. We combine the system order
estimation method AIC with the matrix pencil, Prony's method, and R ELAX method and the DeepFreq
and PSnet with their trained counting models for comparison. The resllts are recorded in Figure 9.4. We
see that, in terms of F1 score, the proposed method outperforms otheredp learning methods over the
whole range of SNRs and the traditional methods by a large margin in low to meim SNRs. And in terms
of RMSE, although the traditional methods and proposed method achieve a@mparable performance for

frequency estimation, our method is much more e ective in estimaing the damping coe cients in low to
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medium SNRs. Results show that our method can robustly handle dampa exponentials with close or

overlapping frequencies and well-separated damping coe cients
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Figure 9.4: The overall performance of the combined models.

9.3.4 Without Overlapping Frequencies and Real Data

In this section, we generate a synthetic signal without overlappingfrequencies based on a measured
nuclear magnetic resonance (NMR) signal in [229]. We se¥ =3, (f1;f,;f3) =(0:078 0:196 0:287),
(1, 2; 3)=(0:0150:0230:017), (jA1j;jA2j;jAsj) = (7 :09;2:31;5:98) 10%, and
(\ AV AV Ag)=( 0:102 0:283 0:173) 2 . We add complex Gaussian noise with zero mean and
di erent variances, 2, and we de ne the magnitude-to-noise ratio =10log i, P jM:1 jAjj?= 2 . The
ground-truth system order, 3, is provided for all methods and we recad their accumulated RMSE in
Figure 9.5. The accumulated RMSEs of frequency and damping coe cientare de ned as the sum of the
RMSE of (f1;f,;f3) and ( 1; 2; 3) respectively across 1000 trials. The Craner-Rao Lower Bound

(CRLB) is calculated based on [227]. The 2-D cubic interpolation is appliedo the estimated FDS by Dank
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for better accuracy. We observe that when there are no exponentials th overlapping frequencies, our
method has a comparable performance to traditional methods. In addition measured on a system with
i7-6700 CPU and GTX 1080 GPU, Dank takes around 2.05 seconds to process 1000 signalserfgth 50. In
contrast, matrix pencil, the Prony's method, and RELAX method take 0.87, 0.22, and 11.02 seconds

respectively. Although Dank is e cient in testing, it takes around ei ght hours to train.
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Figure 9.5: Damped exponentials without overlapping frequencies.

Finally, we examine the reconstruction error of di erent methods in a real data experiment.
Speci cally, we hang an iPhone from a 1 centimeter line, release thehone from a 45 degree initial
position, and record its accelerometer data. The recorded data is realalued; we pass Os as the imaginary
part to the input of Dank. Based on the rank of the Hankel matrix formed by th e recorded data [89], we
set the system order to be 5 for all methods. We then attempt to recoastruct the data based on the
parameters estimated by each method. And the average relative reconstction errors among 10 trials for
Dank, matrix pencil, Prony's method, and RELAX method are 12:8%, 105%, 136%, and 83%

respectively. This demonstrates the e ectiveness of Dank on real ata.

9.4 Conclusion

We apply deep learning to the parameter estimation problem for contamimted damped exponentials.
We propose two novel networks, the Dank representation model and theorresponding counting model, to
map the observed signal to an FDS and subsequently determine the nuper of exponentials based on the
estimated spectrum. Experiments show that the proposed approach cahandle composite signals of
damped exponentials with () very close or overlapping frequencies but di erent damping coeients and

(ii) contamination by Gaussian noise at varying noise levels.
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CHAPTER 10
SUPPORT RECOVERY FOR SPARSE SIGNAL WITH NON-STATIONARY MODULATION VIA
PROXIMAL GRADIENT DESCENT INSPIRED DEEP LEARNING

Estimating a sparse signal from its low-dimensional observations arigein many applications including
signal demixing and compression. If each dictionary atom undergoes a disct modulation process, this
problem becomes a sparse recovery and blind demodulation problem tlinon-stationary modulation.
However, in the presence of noise, the sparse signal and modulation paraters cannot be recovered
exactly. And thus in this chapter, we study the support recovery problem for the sparse signal with
non-stationary modulation and propose to solve it via the optimization-inspired deep learning method.
Speci cally, by assuming the modulating signals live in a known conmon subspace and applying the lifting
technique, we can formulate the support recovery problem as recoviag a column-wise sparse matrix from
linear observation, which can be modeled via a block; norm regularized quadratic minimization. By
unfolding the proximal gradient descent for that regularized quadratic minimization and replacing the
proximal operator with a proximal network, we construct a novel recurrent neural network (RNN) to
e ciently solve the support recovery problem. The simulations indicate that the proposed network is very
e cient in solving the support recovery problem, can be adaptive to di erent sensing process without
retraining the network, and is applicable when the matrix of interes is contaminated with system noise

and thus not strictly column-wise sparse.

10.1 Introduction

10.1.1 Support Recovery for Sparse Signal with Non-stationary Modulation

Estimating a sparse signal from its low-dimensional observations arigein many applications like
super-resolution [12] and image compression [2]. Mathematically, after ndulation, the system observes
y = DA c2 RN, wherey 2 RN is the observed signal vectorD 2 RN N is the diagonal modulation
matrix, A 2 RN M (N <M ) is the dictionary matrix, and ¢ 2 R™ is the sparse signal vector of interest.
SinceD performs the element-wise multiplication, which is known as modilation in signal processing, when
A is known, recoveringc and D from the observedy is referred to as the sparse recovery and blind
demodulation [2,9,11].

In this chapter, we further generalize the model by allowing each @tionary atom undergoes a distinct
modulation process as studied in [11,87], which is referred to as theon-stationary modulation. Namely,

the observation has the form
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X
y= ¢Dja 2RV, (10.1)
j=1
where ¢ is the j -th entry of ¢ and a; is the j -th column of the dictionary A. Moreover, we assume that]

of the coe cients ¢ are non-zero and the modulating signals live in a known and common subsge:

D; = diag(Bh;); (10.2)

whereB 2 RN K (N >K ) is the known, orthonormal subspace matrix andh; 2 R¥ is the unknown
coe cient vector. In this case, recovering h;j is equivalent to recoveringD;. A similar subspace assumption
of the modulating signal can be found in the deconvolution and demixingiterature [10, 13].

Using the lifting technique based on Proposition 1 in [86], we can constrct a column-wise sparse

matrix X =[ch; ¢hs cvwhm]12 RX M containing all the unknown parameters. In terms of the
constructed unknown matrix X, the observation (10.1) can be represented ag = vec(X) where
=[ 11 K1 LM km 12 RN KM (10.3)

ij =diag(bi)a; 2 RN ! whereb; is the i-th column of B.

In presence of noise, the observation becomegs= vec(X)+ n wheren 2 RN denotes the noise
vector. In this chapter, we assume each entry ofi follow the Gaussian distribution and denote the
ground-truth matrix as X . Due to the additive noise, we cannot recoverX o exactly. Thus we aim to
recover the indices of the non-zero columns (support) irX o which is equivalent to the support of the
sparse signalc if we assume there is no null modulation,D; = 0. In order to recover the support of X g
from y, [87,88] propose to apply the block'; (",.1) norm regularized quadratic minimization

minimize iy vecGOiE+ Xz (104)
where the “,.; norm is de ned asjjAjj21 = P jle jiajjj2 and the value of for exact support recovery is
derived in [87]. Equivalently, (10.4) can be written as

minimize Ejjy vec(X)jj + X lixiliz (10.5)
X2RK M 2 -
where x; is the i-th column of X.

Proximal gradient descent [83] can be applied to solve (10.5), which corsts of gradient descent and the
proximal operator steps that would run sequentially and iteratively. By unfolding the proximal gradient
descent and replacing the proximal operator with a proximal network with the skip connection, we propose

a novel recurrent neural network (RNN) to e ciently solve the supp ort recovery problem of sparse signal

146



with non-stationary modulation.
10.1.2 Related Work

Most sparse recovery and blind demodulation literature [9,13,18,109,110] assie a common modulation
matrix D; for each dictionary atom. Speci cally, [13] assumes a common modulation maix and its
dictionary consists of complex sinusoids over a continuous frequepaange. [12] generalizes the problem
in [13] to accommodate the non-stationary modulation. However, they make aandom “sign' assumption
on h; which makes it hard to consider the noise. In addition, [9] assumes a camon modulation matrix
and considers the random Gaussian and Fourier dictionaries. In [11, 86], wexend the work of [9] by
introducing the non-stationary modulation with bounded noise. And we study the unbounded Gaussian
noise in [87,88] for the support recovery problem, which is also the prdbm we study in this chapter. In a
contrast, [87,88] analyze and study the support recovery problem from theptimization perspective and
this chapter studies this problem from the optimization-inspired deep learning perspective.

Deep learning has achieved competitive performance in signal procaag [93,219, 234] and patrticularly,
there are many deep networks proposed for the sparse recovery probleffi7,78,93,94,193]. Compared to
them, in this chapter, we take the non-stationary modulation into account. By unfolding the proximal
gradient descent algorithm, we propose a novel recurrent neural netark (RNN) to solve the support
recovery problem for sparse signal with non-stationary modulation. Theunfolding deep learning approach
for signal processing is pioneered in [193] and has been applied to mangsal processing problems
including matrix factorization [196,197] and non-negative sparse recovery9B]. And the unfolding version
of proximal gradient descent are mainly investigated in the imaging inerse problems [237{239].

The rest of the chapter is organized as follows. In Section 10.2, we predesur proposed recurrent
neural network for support recovery of sparse signal with non-stationarymodulation. Numerical
simulations are conducted in Section 10.3 to analyze the performance of ¢hproposed approach and

compare to the optimization method. Finally, we conclude this chapte in Section 10.4.
10.2 Proposed Recurrent Neural Network

The proximal gradient descent [83] for solving (10.4) can be viewed as a twsteps iterative algorithm.
In the rst step, it implements the gradient descent with respect to the data delity, %jjy vec(X)jj3,
and in the second step, it runs a proximal operator to impose the reguldration, jjXjj2.1. Mathematically,
the proximal gradient descent iteration has the form

P vec(X¥) T( vecX®) )
P (I T ) veex)+ Ty

k+1
vec(X ™) (10.6)
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where k is the iteration number, is the gradient descent step size, and
Plvec@Z)] =arg min Zjjvec(X) vec@)jiz+ jiXijiza (10.7)
vec(X) 2

is the proximal operator.

By unfolding the proximal gradient descent and replacing the proximal operator with a proximal
network with the skip connection, we construct the recurrent neual network for support recovery shown in
Figure 10.1. We use Ty as the network initial input. In the data delity gradient descent s tep, the
sensing matrix and observationy are used associated with a learnable step size And the proximal
operator is replaced by a proximal network consisting of convolutional Igers, batch normalization layers,
and Rel.U layers with skip connections. All recurrent blocks share he same weights. Intuitively, the
convolutional layer is responsible for analyzing the signal and combinig with the ReLU layer to impose
the column-wise sparsity prior. The batch normalization layer aims toimprove the stability and
convergence rate of the network. Those network layers are also found Uséin deep architectures for other

signal inverse problems [77,94].

(a) The block diagram of proposed RNN.

(b) The proximal network (ProximalNet).

Figure 10.1: The proposed recurrent neural network (RNN) for support receery. In the proposed RNN, all
recurrent blocks share the same weights. In the proximal network;Conv', 'BatchNorm', and '‘ReLU’ denote
the convolutional layer, batch normalization layer, and the Recti ed Li near Unit (ReLU) layer respectively.
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10.3 Numerical Simulations

We conduct several numerical simulations to evaluate the performancef our proposed RNN for the
support recovery problem. We set the system parameters based on [84uch that the ",.; regularized
guadratic minimization can recover the support exactly with overwhelming probability. Speci cally, we set
J=K =2, M =120, N =100, the mean and standard deviation of the Gaussian noise is 0 and = 0:1
respectively. The entry of A follows the standard normal distribution and we generate a random matrix
following the standard normal distribution and derive its orthonormal b ases to constructB. The J indices
of non-zero columns (support) inX ¢ are uniformly selected fromf1;2; ;120y. The non-zero entry of X o
has the form sign) + x where x follows the standard normal distribution and sign(x) = 1 whenx< 0
and sign(x) = 1 for x > 0. Moreover, we scale theXy such that = m =0:1 to ensure the
support recovery problem is theoretically solvable with overwhéming probability [87], where

p p— .
0= 2 2 Klog(M J)+log(N)] and max =maxi; NjBjj.

Following the process above, we obtairy following (10.1) and generate 16000Y(; X o) pairs for training
and 4000 for testing. All convolution layers in the proximal network have akernel size of 3 with stride 1 and
1 zero padding. The proposed RNN is trained using Adam optimization [76] wih an initial 0.01 learning
rate. And the network is trained with batch size 32 for 200 epochs. Durimg training, we would half the

learning rate if the loss function value, jjvec(X) vec(X o)jj3, does not decrease for 3 consecutive epochs.
10.3.1 Unfolding Di erent Numbers of Iterations

For the proximal gradient descent, it would stop until a pre-set conwergence criterion is satis ed. And
for the proposed recurrent neural network, we would pre x the numbe of iterations for unfolding. To
examine the e ect of the number of unfolding iterations, we train our recurrent neural network with
di erent numbers of unfolding iterations and record their performance in Table 10.1 in terms of the exact
support recovery rate, the average recovery errorjjvec(X) vec(Xo)jj2, and the average processing time
measured on a system with an i7-6700 CPU and GTX 1080 GPU. We use RNK-to denote the network
constructed from k unfolding iterations of proximal gradient descent. An exact support recovery is
achieved when the estimatedX has the same support as the ground-truthX 3. We compare our method to

the “,.1 optimization method proposed in [87].
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Table 10.1: The performance of the proposed recurrent neural network wit di erent numbers of unfolding

iterations. Speci cally, RNN- k denotes that we unfoldk iterations of the proximal gradient descent and
thus RNN-k contains k recurrent blocks.

“2.1 optimization RNN-1 RNN-3 RNN-5 RNN-7
Exact support recovery rate 100.0% 75.6% 97.0% 97.2% 98.7%
Average recovery error 4.69 4.35 2.35 1.79 1.16
Average process time (s) 0:58 0.69 10 # | 1.61 10 4 | 254 10 4 | 3.51 10 ¢

From Table 10.1 we can observe that, when the number of unfolding iteratins is 3, the proposed
network achieves a comparable exact support recovery rate compared tdé ., optimization method.
And the proposed network is much more e cient compared to the “,.; optimization method solved via

CVX [115].
10.3.2 Eect of

In (10.7), we can see that the proximal operator is independent of , which implies that the proximal
network could also be independent of . Namely, for a di erent sensing matrix , our proposed network
can be reused by simply replacing the matrix in the recurrent network and plugging in the pre-trained
proximal network. To verify that, we construct 4000 (y; X o) pairs for di erent sensing matrices s and
record the exact support recovery rate of our proposed recurrent netark in Figure 10.2 without retraining
the network. From the results we can observe that our proposed networkan be easily adaptive to other

systems with a di erent sensing matrix

97.0% 97.6% 96.8%

100% [

80%

60%

40%

Exact support recovery rate

20% [

0%

Figure 10.2: The exact support recovery rate of the proposed RNN-3 with dierent sensing matrices .
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10.3.3 Comparison to A Generic ResNet

Recovering the indices of non-zero columns iiX ¢ is equivalent to recovering the indices of non-zero
entries in vector ¢. Thus, an alternative approach for solving the support recovery problen is to directly
recover a sparse vectoc from the observationy via a generic network without applying the lifting
technique to construct X . To examine this approach, we design a generic ResNet [61] shown in Figud0.3
(a), in which the ResNet block consists of a sequential stack of threendependent ProximalNets whose
structures are shown in Figure 10.1. And the fully connected layers wuld accommodate the data sizes for
the input and output accordingly. Because in our proposed recurrent navork all ProximalNets share the
same weights, the number of learnable weights in RNN-3 is around 78% of the number of learnable
weights in the compared generic ResNet. We record the exact support cevery rate of the RNN-3 and the
generic ResNet in Figure 10.3 (b), from which we can observe that incorpating the optimization
technigue into the network design improves the network performaie signi cantly, even with a smaller

number of learnable weights.

(a) A generic ResNet.

97.0%

100% [

80%

60%

40%

Exact support recovery rate

20%

0%

RNN-3 ResNet

(b) The exact support recovery rate.

Figure 10.3: The comparison between RNN-3 and a generic ResNet who predicthe sparse vectorc
directly for support recovery. (a) The ResNet for comparison, whose R&Net block consists of a sequential
stack of three independent ProximalNets. (b) The exact support reovery rate of the RNN-3 and the
generic ResNet.
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10.3.4 Eectof J

In this section, without retraining the network, we examine the exact support recovery rate of the
proposed network RNN-3 whenX ¢ has di erent numbers, J, of non-zero columns. The result is shown
in Figure 10.4, from which we can observe that although RNN-3 is trained only on dta with J =2, it is
robust to the change ofJ and achieves a comparable support recovery rate of the,.; optimization

method [87].

—OG—RNN-3

% K 1
100% N— 75 - —>— L21 optimization

80% [ AN

60% - ~a

0% | \

20%

Exact support recovery rate

0% . . .
1 2 3 4 5
Jfrom1to5

Figure 10.4: The exact support recovery rate of the proposed RNN-3 with dierent numbers of non-zero
columns in Xq.

10.3.5 Approximately Column-wise Sparse X

Due to the system noise, the matrixX of interest might not be strictly column-wise sparse but
approximately. Mathematically, the system observesy = vec(X)+ n where vecK) = G vec(X o) and
G = | + H. X is the original column-wise sparse matrix,| 2 RKM KM s the identity matrix and
H 2 RKM KM is a random Gaussian matrix whose entries follow the Gaussian distribtion with 0 mean
and ¢ standard deviation. In this section, we set ¢ = 0:01 and record the recovery performance of the
“2:1 optimization method [87] and the re-trained RNN-3 network in Table 10.2. We @n see that even when
the matrix of interest is not strictly column-wise sparse, the proposed network can still be very e ective in

recovering the signal.

Table 10.2: The average recovery error for the approximately column-wis sparse matrix.

“2.1 optimization | RNN-3

Average recovery error 5.40 3.67
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10.4 Conclusion

In this chapter, we study the support recovery problem of the spare signal with non-stationary
modulation via the proximal gradient descent inspired data-driven method. With the common modulating
signal subspace assumption and using the lifting technique, we refmulate the support recovery problem
into a column-wise sparse matrix recovery problem, which can be ectively solved via the *,.; norm
regularized quadratic minimization. By unfolding the proximal gradient descent for the “,.; norm
regularized quadratic minimization, we propose a novel recurrent neral network to solve the original
support recovery problem. Simulation results show that the proposd network is extremely e cient, can be
adaptive to di erent sensing matrix without retraining the networ k, and can be applied to the case when

the matrix of interest is not strictly column-wise sparse.
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CHAPTER 11
CONCLUSION AND POSSIBLE FUTURE DIRECTIONS

Throughout this thesis, we have studied several inverse problemin signal processing and machine
learning. For sparse signal with non-stationary modulation, we develop ne theories and optimization
methods which reveal the su cient number of observation for simultaneous sparse recovery and blind
demodaulation in noiseless and bounded noise cases. And we propose a hewirojzation method in
presence of unbounded Gaussian noise and derive the correspondingcéent conditions for exact support
recovery. For damped signal contaminated with the spike interferege and Gaussian noise, we develop
robust convex and non-convex optimization methods to demix the noisy obervation and recover the
parameters of the damped exponentials. Attracted by the competitiveperformance achieved by
data-driven methods for high-dimensional signals, we examine severalassic neural networks on the 3D
chess pieces recognition and design a novel deep network to solve tBB to 2D correspondences classifying
and clustering problems in computer vision. Furthermore, by leeraging the techniques from optimization
methods, we develop novel optimization-inspired data-driven methods for several inverse problems. We
design novel deep architectures following the atomic norm optimizaibn process for multiband signal
identi cation and parameter estimation of contaminated damped exponentials. By unfolding the iterative
optimization methods, we propose novel neural networks for the non-rgative sparse recovery and the
support recovery for sparse signal with non-stationary modulation. Basd on the experiment results, the
optimization-inspired data-driven methods are very e cient, robu st to noise, and applicable to the
complicated sensing process. However, there are many questionsmrain and worth future exploration.

Compared to the optimization methods, one biggest disadvantage of the data+iven methods is the
lack of theoretical performance guarantee. Therefore, developing analisstechniques and tools [240{242]
for data-driven methods would be a very meaningful future direction And those analysis tools could be
applied to guide the design of a more e ective deep architecture.

Optimization-inspired data-driven methods have demonstrated their competitive performance in terms
of the recovery error and processing time compared to traditional sigal processing and optimization
methods in multiband signal identi cation, sparse recovery problem, etc. Thus, it would be interesting to
apply the optimization-inspired data-driven methods to more inverse problems like the acoustic source
localization and examine the performance of the optimization-inspireddata-driven methods on practical

applications.
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Moreover, recent studies [243, 244] have demonstrated that the buttery factorization deep architecture
inspired by the fast Fourier transform (FFT) can recover common linear transformations like discrete
Fourier transform (DFT) and discrete cosine transform (DCT). They al so report its competitive
performance applied to the image classi cation by replacing networksfully-connected layers with the
butter y network. Compared to the replaced layers, the buttery network has advantages in computation
e ciency and network compression. However, unlike the butter y f actorization in FFT which can be easily
extended to di erent lengths of signals, the existing butter y f actorization deep architecture only allows a
xed size input and output. Therefore, extending the work of the butter y network for varying lengths of
input and output would be an interesting future direction. One potential way to achieve this is by reusing

the pre-trained small butter y matrices.
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