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ABSTRACT

By exploiting and leveraging the intrinsic properties of the observed signal, many signal processing and

machine learning problems can be e�ectively solved by transformingthem into optimization problems,

which constitutes the �rst part of the thesis. The theoretical sample complexity for exact signal recovery

and the recovery error bound with noisy observation can be derived for the optimization methods.

However, it is not e�cient for optimization methods to deal with high- dimensional signals and observation

with the complex noise and non-stationary sensing process. Thus, inthe second part of the thesis, we focus

on applying data-driven methods using deep learning techniques to high-dimensional problems in order to

verify and examine their e�ciency and capability of handling the comp lex noise and complicated sensing

process in real data. Finally, in the third part, we develop optimization-inspired data-driven methods for

several inverse problems in signal processing and machine learning.Experiments show that the proposed

optimization-inspired data-driven methods can achieve a comparable performance of the optimization

methods, are extremely e�cient in handling high-dimensional signals, and are very robust against the noise

and complicated sensing process. This reveals the potential to design data-driven methods, following

traditional optimization approaches, to robustly address challenging problems in signal processing and

machine learning.

Part 1: Optimization Methods. In this part, we apply optimization methods to several inverse problems

in signal processing and machine learning, including the signal and support recovery problems for the

sparse signal with non-stationary modulation and parameter estimation of damped exponentials. For the

inverse problems of sparse signal with non-stationary modulation, we derive the theoretical su�cient

sample complexity for exact recovery and bound the signal recovery error in the noisy case.

Part 2: Data-driven Methods. In this part, we apply data-driven methods to several machine learning

problems, which include recognizing the 3-dimensional (3D) chess pieces and classifying and clustering

inlier correspondences of multiple objects in computer vision. The experiment results demonstrate the

e�ciency and robustness of data-driven methods against complex noise in the high-dimensional real data.

Part 3: Optimization-inspired Data-driven Methods. In this part, we develop data-driven methods

based on the optimization techniques. By unfolding the optimization methods and making the parameters

trainable, we obtain deep architectures that can achieve a fast approximation of the original optimization

approaches and deal with signal models with the complicated sensing process that can not be modeled

properly by optimization methods. We also design deep networks following the atomic norm optimization

process for multiband signal identi�cation and parameter estimation of contaminated damped exponentials.
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CHAPTER 1

INTRODUCTION

In this chapter, we brie
y introduce the background of the optimizat ion and data-driven methods

studied in this thesis. Based on that, we outline the central themeof this thesis and present our

contributions.

1.1 Optimization for Sparse Signal Recovery

The exponentially increasing amount of data results in a growing interest in exploiting the signal

intrinsic properties to extract the desired information. And for a l ot of applications in machine learning,

computer vision, and image processing, the signal that gives rise to theobservation can be modeled by an

approximately sparse signal. For example, the image can be well approximated in the wavelet transform

domain [1] with a sparse coe�cient vector. Thus, there is an immenseinterest in the problem of sparse

signal recovery from limited linear observations, which has been extensively studied in the compressed

sensing (CS) [2{4].

A vector is called sparse when it contains only a small number of non-zero entries compared to its

dimension. In the typical sparse signal recovery problem in compressed sensing, we aim to recover such a

sparse vector from its linear observations. Mathematically, given the observation vector y 2 R N and the

sensing matrix A = [ a1; a2; � � � ; aM ] 2 R N � M , we want to recover a sparse vectorx 2 R M which contains

only J (J < M ) non-zero entries.

y = A x =
MX

i =1

x i a i : (1.1)

In a growing list of applications, the system is under-determinedand N is signi�cant smaller than M . In

this case, there may exist in�nity number of solutions, x̂ , satisfying y = A x̂ . To enforce the sparsity, we

can minimize the number of non-zero entries in the candidatêx while constraining y = A x̂

min
x

jj x jj0 subject to y = A x (1.2)

However, this problem is intractable which requires combinatorial search of J non-zero indices amongM

entries. To make the problem tractable, the most well-known approachis replacing the `0 norm with a

convex `1 norm, which calculates the sum of the absolute value of all entries. This process is known as the

convex relaxation [5,6], which leads to a convex optimization method [7] for sparse signal recovery

min
x

jj x jj1 subject to y = A x : (1.3)

1



In presence of noise, wherey = A x + n and n 2 R N is the additive noise vector, we can apply thè 1 norm

regularized minimization (also known as the lasso problem [8])

min
x

1
2

jjy � A x jj2
2 + � jjx jj1 (1.4)

with a regularization parameter � to exploit the sparsity. If the amount of noise is boundedjjn jj2 � � , we

can apply

min
x

jj x jj1 subject to jjy � A x jj2 � �: (1.5)

1.1.1 Extension to Incorporate Signal Modulation

In order to accommodate more complicated applications like self-calibration [9] and blind

deconvolution [10], several model extensions [9{12] are proposed to incorporate the signal modulation into

the sparse signal recovery problem. Mathematically, the system observes

y = DA x + n =
MX

i =1

x i D a i + n (1.6)

where D 2 R N � N is an unknown diagonal matrix and performs the element-wise multiplication (also

known as modulation in signal processing). Speci�cally, in self-calibration problem for multiple sensors [9],

D contains the unknown gain for each sensor that needs to be calibrated. Inthe super-resolution

imaging [11], D represents the unknown point spread function that needs to be determined. Moreover, in

many applications [9,11{13],D lives in a known K (K < N ) dimensional subspace. Namely,D = diag( B h)

where B 2 R N � K consists of the subspace bases andh 2 R K is the unknown coe�cient vector. In this

case, we aim to recover both the sparse signalx and the modulation matrix D . Note that recovering D is

equivalent to recoveringh. Following (1.4), one may easily formulate the optimization problem

min
h ;x

1
2

jjy � diag(B h)A x jj2
2 + � jjx jj1 (1.7)

to recover x and h. However, (1.7) is non-convex and we might get trapped in a local minimum. To make

the problem well-posed, we can apply the lifting technique [10,11,14] to construct a column-wise sparse

matrix X = hx T 2 R K � M that contains all unknown parameters. Then if the noise is bounded,jjn jj2 � � ,

we can formulate a convex optimization problem [9]

min
X

jjX jj1 subject to jjL (X ) � y jj � � (1.8)

to recover X and bound the recovery error. Here,L denotes the linear sensing process described in (1.6),

L (X ) = DA x .

In Chapter 2 and 3, we further generalize (1.6) to

2



y =
MX

i =1

x i D i a i + n ; (1.9)

where each dictionary atoma i undergoes a distinct modulation process withD i = diag( B h i ), to which we

referred as non-stationary modulation. And we propose the correspondingconvex optimization methods for

recoveringx and D i with bounded and unbounded Gaussian noise in Chapter 2 and 3 respectively.

1.1.2 Overview of Recovery Performance Analysis

After formulating a convex optimization method for the sparse signal recovery problem, a question

arises naturally: how to analyze the recovery performance of the proposed optimization method? And the

answer to the above question is twofold. In the noiseless case, we wantto determine under what conditions,

e.g. the su�cient number of observations, the proposed optimization method can recover the ground-truth

sparse signalx 0 exactly. In the noisy case, we want to bound the recovery error,jj x̂ � x 0jj2, between the

estimated solution x̂ and ground-truth x 0.

For analyzing the exact recovery performance in the noiseless case, we mainly study the null space

property [15] of the sensing matrixA .

Theorem 1.1. [16, Theorem 4.30 ] The vectorx 0 2 R M with support T (indices of non-zero entries and

TC denotes the complementary set) is the unique solution to the optimization problem (1.3) if and only if

�

�
�
�
�
�
�

X

j 2 T

sign(x j )zj

�
�
�
�
�
�
+ jjzT C jj1 > 0 (1.10)

for all z 6= 0 in the null space ofA .

Based on Theorem 1.1, we can derive Theorem 1.2 which constructs a dual vector u 2 R M living in the

range space ofA � . The existence ofu guarantees the uniqueness ofx 0 to problem (1.3).

Theorem 1.2. [16, Theorem 4.32 ] The vectorx 0 2 R M with support T is the unique solution to the

optimization problem (1.3) if there exist � , � , 
 , � � 0, � + ��
 < 1, and a vector u 2 R M in the range

space ofA � such that

jju T � sign(x 0;T )jj2 � 
 and jju T C jj1 � � (1.11)

and the sensing matrixA satis�es ( jj � jj denotes the spectral norm)

jj (A �
T A T ) � 1 jj � � and max

l 2 T C
jjA �

T a l jj2 � �: (1.12)
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We can construct such a dual vectoru via the gol�ng scheme [9,17,18], in which a series of vectors in

the range space ofA � are constructed iteratively. In each iteration step, only some of the measurements

are utilized and the constructed vectors will converge to sign(x 0;T ) on support T while keeping entries on

TC small. During the construction of the dual vector u , we would obtain the su�cient number of

observations for exact sparse recovery. Speci�cally, with the i.i.d (independent and identically distributed)

random entry assumption [19] on the sensing matrixA , literature [2,3,19{21] has shown that the su�cient

number of observations for exact recovery is proportional to the signal sparsity J and the log of the sparse

signal dimension log(M ). In Chapter 2, the equivalent theorems to Theorem 1.1 and 1.2 for noiseless

sparse signal with non-stationary modulation are derived. By constructing the dual certi�cate, we show

that for exact recovery of the sparse signal and modulating signals, the su�cient number of observations N

is proportional to the sparsity J , subspace dimension of the modulating signalK , and the log of the sparse

signal dimension log(M ).

Moreover, in presence of bounded noise,jjn jj2 � � , by solving (1.5), [16, Theorem 4.33 ] bounds the

recovery error in terms of `2 norm, which scales linearly with respect to� . In Chapter 2, we study the

bounded noise for sparse signal with non-stationary modulation and derivethe corresponding recovery

error in terms of the Frobenius norm. In addition, in presence of unbounded Gaussian noise, the sparse

signal cannot be recovered exactly. Instead, people aim to recover the support of the sparse signal

via (1.4). And its exact support recovery conditions on the regularization parameter � and number of

observationsN are derived in [22] via the primal-dual witness method [23]. The support recovery extension

to sparse signal with non-stationary modulation is studied in Chapter 3.

1.1.3 More Structured Signals

Besides the sparsity, there exist other structured signals that can be e�ectively modeled and exploited

via di�erent convex norms.

Block sparsity [24{26] is a generalized sparsity structure where the non-zero entries appear in block.

For multiple measurement vector (MMV) problem [27] that appears in magnetoencephalography [28] and

through-the-wall imaging [29], the signal for recovery is a row-wise sparse matrix, which contains only a

few non-zero rows. In the sparse recovery with common modulation [9,10] introduced in Section 1.1.1 and

with non-stationary modulation that will be presented in Chapter 2 and 3, the lifted matrix

X = [ x 1; x 2; � � � ; x M ] 2 R K � M that contains all unknown parameters is a column-wise sparse matrix.The

row-wise sparsity and column-wise sparsity are interchangeably by atranspose operation. And`2;1 norm

can be applied to exploit this block sparsity structure
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jjX jj2;1 =
MX

i =1

jj x i jj2: (1.13)

We can observe that`1 norm is a special case of thè2;1 norm when the dimension ofx i is one for all i .

Low-rank [30{32] is another important signal property that can be e�ectively exploited by the nuclear

norm [33,34]. We denote thei -th largest singular value of a matrix X 2 R d1 � d2 as � i (X ). Then the

nuclear norm of X is given as

jjX jj � =
min f d1 ;d2 gX

i =1

� i (X ): (1.14)

Since the singular value is non-negative, the nuclear norm can be viewed as imposing the`1 norm on the

matrix's singular value vector which enforces the number of non-zerosingular values ofX to be small. And

the number of non-zero singular values is equivalent to the rank of thematrix. The low rank matrix

appears in applications like imaging recovery [35] and data compression [36]. Moreover, in Chapter 4, we

apply the nuclear norm to extract a low-rank Hankel matrix [37,38] for dampedexponentials recovery.

1.2 Supervised Data-driven Deep Learning Method

Data-driven deep learning methods have attracted much attention due to their breakthrough

performance in image recognition [39], object detection [40,41], speech recognition [42], etc. Compared to

traditional algorithms [43,44] in computer vision and image processing, where the object recognition and

detection heavily rely on hand crafted features like ORB [45] and SIFT[46] to match the area of interest

with an object template, the deep learning approach requires very little engineering by hand in terms of

feature design and extraction. The input of the deep network is usually the raw images and the network

would output a score vector, one entry for each category in object recognition [39]. For object detection,

the network may output a vector consisting of the object location information [40], e.g. the coordinate

information and size of the bounding box. Thus, deep learning methods can be easily applied to di�erent

applications due to their automatic features learning and extraction.

In order to learn di�erent levels of abstract features in the data, a deep learning network normally

consists of multiple computational layers. Each layer contains a considerable amount of trainable weights

that would be updated via the back-propagation algorithm to minimize a designated training loss

measured on the training dataset. However, in order to learn the useful features and reconstruct the

intricate mapping between the input and output, a large amount of traini ng dataset is required to calibrate

the weights of a network. This leads to an overhead cost and a burden on applying deep learning methods
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to applications without a su�cient number of training data. But after t raining, a �xed-weight network can

handle high-dimensional data in real time in a feed-forward manner. Generally, the supervised data-driven

deep learning method [39,47] consists of three steps to run: data acquisition, network training, and

inference. In Chapter 5 and 6, we apply the deep learning methods to3D chess pieces recognition problem

and the 3D to 2D matching points classi�cation and clustering problems in computer vision.

1.2.1 Deep Layers

A deep network is usually a multilayer stack of di�erent simple layers or architectures with weights

subject to learning. The intermediate layers between the inputand output layers are known as the hidden

layers and we call each computational unit a neuron [48,49]. As the highest-level building block in a deep

network, there exist multiple representative deep layers for constructing a deep architecture.

The fully connected layer [50] is one of the most commonly used layers that appears in many deep

networks. As stated by its name, the fully connected layer connectsall neurons from the last layer to every

neuron in the current layer. And each connection between two neurons is associated with a learnable

weight followed by an activation function. There are di�erent kinds of activation functions, like the

recti�ed linear unit (ReLU) f (x) = max(0; x) and the sigmoid function f (x) = 1 =(1 + e� x ). Nevertheless,

the ReLU function is preferable in avoiding the gradient vanishing problem [51] and accelerating the

training process [52,53]. Each fully connected layer can be represented in the form of matrix multiplication

followed by the non-linear activation function. An example of the deep network with three fully connected

layers is shown in Figure 1.1. Usually, a fully connected layer is applied after the input layer and before the

output layer to transform the signal dimension and implement the �nal prediction respectively.

Figure 1.1: A neural network consists of three fully connected layers. The network, denoted asg(y ; W ),
takes the observationy as input and predicts the signal of interestx . Each arrow line is associated with a
weight in W subject to learning.
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The convolutional layer [39,54,55] has been widely applied in the network design for di�erent

image-related applications including face detection [56] and image super-resolution [57]. The convolutional

layer is designed to deal with data in the form of arrays with multiple channels, e.g. the RGB image is a

2D array with 3 channels. Similar to the convolution operation in signal processing, the convolutional layer

performs the spatial convolution between a trainable kernel and the input array across all channels. And

an one channel feature map is produced for each kernel. The ideas behind this convolutional structure are

twofold [47]. First, local values are often correlated. Second, some localfeatures of an image are invariant

to the location. Namely, a feature, like the edge, appears in one place inthe image could appear in other

places in the same image. Note that a convolutional layer can also be converted to the form of matrix

multiplication and then be represented using a fully connected layer [58].

The batch normalization layer [59,60] aims to accelerate the training process of the network. One

challenge in network training is that when we update the weights of a speci�c layer, we assume that the

data distribution of the previous layer does not change. However, during training, all layers are updated

simultaneously which complicates the training process. Therefore, the batch normalization layer

standardizes the input to a layer via y = x � E (x )
� (x ) where E(x) and � (x) are the expected value and the

standard deviation of x for a batch during training. The batch normalization layer would keep running

estimates of the mean and standard deviation during training, which will be used for inference. After

standardization the batch normalization layer could also learn a linear transformation, y = 
y + � .

ResNet and the skip connection [61,62] are initially proposed to address a degradation problem [61]

observed in network training: as the number of layers increases, thenetwork performance saturates and

degrades afterward. Therefore, the skip connection explicitly addsa connection (or an identity mapping)

from the shallower layer to a deeper layer to mitigate this degradation problem caused by the increasing

number of layers. Moreover, the skip connection is also found useful in passing abstract features extracted

from shallower layers to deeper layers for image reconstruction [63] and super-resolution [64].

The recurrent network [65,66] is a special case of the deep network that consists of repeatedly recurrent

blocks which share the same weights. The recurrent network has achieved great success in sequence-related

applications like machine translation [67] and rumors detection [68]. The recurrent network processes the

elements from the input sequence one at a time. And every time afterit takes an input from the sequence,

the network updates its internal state vector consisting of the information from all previous elements from

the sequence and outputs the current prediction. In applications like the spammer classi�cation, only the

output after the whole sequence is processed would be used. To enhance the long-term temporal

dependencies between elements in the sequence, the long short-term memory (LSTM) [69] is proposed and

becomes a commonly applied recurrent structure.
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1.2.2 Network Training

Similar to the optimization method, in network training, we need to f ormulate a loss function which

imposes our prior knowledge regarding the network output. By minimizing the average loss function value

measured on the training data, we can apply back-propagation to calculate thegradient with respect to

each weight and update the weight accordingly. For object classi�cation problem, the network predicts the

score vector, one entry for each category or class and we can apply the cross-entropy loss [70,71]

loss(x̂ ; l ) = �
CX

i =1

l [i ] � log (x̂ [i ]) (1.15)

where x̂ 2 R C is the predicted score vector forC classes,l 2 R C is the true label vector, and x̂ [i ] denotes

the predicted probability that input y belongs to thei -th class. For signal recovery problems, we can use

the squared errorjj x̂ � x 0jj2
2 between the predicted output x̂ and ground-truth x 0 as the loss function to

ask the network output to be close to the ground-truth signal. Moreover, people may design the loss

functions tailored to their applications [72,73]. We can also achieve network pruning [74,75] by adding

di�erent types of regularization on the learnable weights to the loss function and removing neurons with

small weights during training. Due to the large amount of training data, stochastic gradient descent (SGD)

and Adam optimization algorithm [76] with a small batch size are commonly applied for training. The

learning rate controls the step size we update the weights and a large learning rate may lead to an unstable

training process. Thus, we would usually start with a small learning rate for a stable training process and

set a large number of epochs to ensure that we have the su�cient number of iterations for network

calibration. And we should reduce the learning rate on plateau.

1.3 Optimization-inspired Data-driven Method

Advances in deep learning have led to a growing understanding of howto design networks by

incorporating the techniques from the optimization method. One direction designs the output of a deep

network following the optimization method. For example, [77] and [78] design networks for the line spectral

estimation which �nd the frequency component nonparametrically via predicting a pseudo spectrum and

locating the frequency components from the predicted spectrum.To enforce the fact that a close estimate

is more valuable than estimates far from the ground-truth, in the pseudo spectrum, each frequency spike is

convolved with a Gaussian kernel. In this case, when using the squared error loss function, the loss

function value for a close estimate is smaller than an estimate far from the ground-truth. This pseudo

spectrum is inspired by the traditional atomic norm optimization meth ods [4,79,80], where a dual solution

is constructed and a frequency spectrum can be plotted to locate the ground truth frequencies by
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correlating the dual solution against exponential atoms of di�erent frequencies. In Chapter 8 and 9, we

apply this approach to design deep architectures for multiband identi�cation and parameter estimation for

damped exponentials respectively.

Another popular direction is called algorithm approximation or unfolding [ 81,82], where the deep

network is designed by unfolding the iterative optimization algorithm [83{85]. For example, the proximal

gradient descent [83] for solving1
2 jj y � A x jj2

2 + r (x ), where r (x ) is the regularization, has the form

x k+1 = P
�
x k � � A T (A x k � y )

�
= P

�
(I � � A T A )x k + � A T y

�
(1.16)

where I is the identity matrix, � is the step size, andP[�] is the proximal operator

P[z] = arg min
x

1
2

jjx � z jj2
2 + r (x ): (1.17)

By unfolding the proximal gradient descent and replacing the proximal operator with a proximal network,

we obtain the proximal gradient descent inspired deep architecture shown in Figure 1.2. In Chapter 7

and 10, we propose novel deep architectures by unfolding the projected gradient descent and proximal

gradient descent for solving the non-negative sparse recovery problem and support recovery problem for

sparse signal with non-stationary modulation, respectively.

Figure 1.2: The deep architecture inspired by proximal gradient descent. All recurrent blocks share the
same weights.

This unfolding approach is initially proposed to achieve a fast approximation of the original

optimization method. But it can also be applied to deal with the more complicated sensing process where

the original optimization method fails. By unfolding the optimization al gorithm widely applied in signal

processing and machine learning, the inspired deep architecturehas a systematic relation with the unfolded

algorithm which results in a more interpretable network structure. And compared to the generic deep

network, the optimization-inspired deep architecture can sometimes achieve better performance with even

a smaller number of weights by leveraging the knowledge of the sensing process as in the optimization

algorithm. Besides the interpretability, the optimization-inspi red data-driven methods could achieve a

comparable performance of the optimization methods, are extremely e�cient in handling high-dimensional
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signal, and are very robust against the complex system noise and complicated sensing process. This reveals

the potential to design a data-driven method, following the traditi onal optimization methods, to robustly

address more challenging problems in signal processing and machine learning.

1.4 Overview and Contributions

This work aims to solve the problems of signal processing and machine learning using optimization and

data-driven methods. As shown in the �rst part of this work, by using the accumulated optimization

analysis tools from decades of research, we are able to propose e�ective optimization methods and analyze

the statistical performance of the proposed optimization methods. In the second part of this work, we

focus on applying data-driven methods using deep learning techniques to deal with high-dimensional

signals under complex system noise in real data. Speci�cally, we examine the e�ciency of the data-driven

approaches and verify their robustness against the complicated sensing process. Then in the third part of

this work, by following the optimization approaches, we design optimization-inspired data-driven methods,

which own both the e�ciency of data-driven methods and the e�ectiv eness of optimization methods.

Namely, the optimization-inspired data-driven methods are capable of handling observed signal with the

complicated sensing process and are extremely e�cient. This shows the possibility of designing a

data-driven approach, following the optimization process, to own theadvantages of both optimization and

data-driven methods and reveals the potential to apply optimization-inspired data-driven methods to more

complicated problems in signal processing and machine learning.

Next, we outline the contributions of the thesis chapter by chapter.

Part 1: Optimization Methods

Chapter 2. In this chapter, we study the sparse recovery and non-stationary blind demodulation problem

and an optimization method is proposed for solving this problem. Speci�cally, the task of �nding a

sparse signal decomposition in an overcomplete dictionary is made more complicated when the signal

undergoes an unknown modulation (or convolution in the complementary Fourier domain). In this

chapter, we consider a more general sparse recovery and blind demodulation problem in which each

atom comprising the signal undergoes a distinct modulation process.Under the assumption that the

modulating waveforms live in a known common subspace, we employ the lifting technique and recast

this problem as the recovery of a column-wise sparse matrix from structured linear measurements. In

this framework, we accomplish sparse recovery and blind demodulation simultaneously by minimizing

the induced atomic norm, which in this problem corresponds to`2;1 norm minimization. For perfect

recovery in the noiseless case, we derive near optimal sample complexity bounds for Gaussian and

random Fourier overcomplete dictionaries. We also provide bounds on recovering the column-wise
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sparse matrix in the noisy case. Numerical simulations illustrate and support our theoretical results.

Chapter 3. In this chapter, we extend the signal model in Chapter 2 toallow unbounded Gaussian noise.

By applying the lifting technique, under the assumption that the modulating signals live in a

common subspace, we recast this sparse recovery and non-stationary blind demodulation problem as

the recovery of a column-wise sparse matrix from structured linearobservations, and propose to solve

it via block `1 norm regularized quadratic minimization. Due to the observation noise,the sparse

signal and modulation process cannot be recovered exactly. Instead, we aim to recover the sparse

support of the ground truth signal and bound the recovery errors of the signal's non-zero components

and the modulation process. In particular, we derive su�cient conditions on the sample complexity

and regularization parameter for exact support recovery and bound the recovery error on the

support. Numerical simulations verify and support our theoretical �nd ings, and we demonstrate the

e�ectiveness of our model in the application of single molecule imaging.

Chapter 4. In this chapter, we study the parameter estimation of dampedexponentials via the

optimization approach. Parameter estimation of damped exponential signals has wide applications

including fault detection and system parameter identi�cation, etc . However, existing methods for

estimating parameters of damped exponentials are either sensitive to noise or restricted to dealing

with a certain type of noise such as Gaussian noise. In this chapter we aim to estimate parameters of

damped exponentials from contaminated signal, i.e., a mixture of dampedexponentials, random

Gaussian noise, and spike interference. We propose two robust approaches, a convex one solved by

the alternating direction method of multipliers (ADMM) and a non-con vex one solved by coordinate

descent, to recovering a low-rank Hankel matrix of damped exponentials from noisy measurements for

further parameter estimation using the matrix pencil technique. Numerical experiments show that

our proposed methods outperform classical ones in detecting small damped fault signatures from

noisy measurements. While the convex approach is amenable to theoretical analysis and global

convergence guarantees, the non-convex one exhibits more robustness and computational e�ciency.

Part 2: Data-driven Methods

Chapter 5. In this chapter, we implement several representative deep architectures and apply them to the

3D chess pieces classi�cation problem. Moreover, an e�cient 3D pieces recognition approach based

on the oriented chamfer matching is proposed and compared to those deep architectures. During a

real chess game, the pieces might be occluded by other pieces and have varying rotation and scales

with respect to the camera. Furthermore, di�erent pieces share lots of similar texture features which

makes them more di�cult to identify. The experiments show that t he oriented chamfer matching

approach outperforms the convolutional neural networks under severe occlusion and low resolution
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conditions and despite the training process, both approaches have comparative processing time.

Chapter 6. In this chapter, we propose a deep architecture for the 3D to2D matching points classi�cation

and clustering problems in computer vision. Given a set of 3D to 2D putative matches, labeling the

correspondences as inliers or outliers plays a critical role in a wide range of computer vision

applications including the Perspective-n-Point (PnP) and object recognition. In this chapter, we

study a more generalized problem which allows the matches to belong to multiple objects with

distinct poses. We propose a deep architecture to simultaneously label the correspondences as inliers

or outliers and classify the inliers into multiple objects. An e�ci ent RANSAC-based post-processing

algorithm is also proposed to further process the prediction results and detect the objects.

Experiments demonstrate that our method is very e�cient compared t o existing methods and is

capable of simultaneously labeling and classifying the inliers of multiple objects with high precision.

Part 3: Optimization-inspired Data-driven Methods

Chapter 7. In this chapter, we design projected gradient descent inspired deep architectures for the

non-negative sparse recovery problem. Non-negative sparse recovery refers to recovering non-negative

sparse source signals from linear observations. This model arises naturally in many image processing

applications such as super-resolution and image inpainting. In this chapter, we propose two e�cient

neural networks for fast approximation of non-negative sparse recovery.We also derive upper bounds

on network sizes measured by the numbers of layers and neurons to achieve a speci�ed approximation

error. Numerical experiments demonstrate the e�ectiveness and robustness of the proposed networks

and show their potential in solving more complicated signal recovery problems with the

non-stationary transformation process and noisy observation.

Chapter 8. In this chapter, we study the multiband signal identi�cat ion problem via the

optimization-inspired data-driven method. Given limited and vary ing-length time-domain samples of

a contaminated multiband signal, we propose novel deep networks to estimate the number of bands

and locate the bands' centers. A multiband signal representation model, which combines the long

short-term memory (LSTM) and convolutional neural network, is trained t o map varying-length

observed samples to a frequency spectrum representation. A counting model then counts the number

of bands based on the estimated spectrum. Combining the spectrum representation and estimated

number of bands, the bands' centers can be recovered e�ciently andautomatically. Numerical

experiments demonstrate that the proposed method is very e�ective and can leverage extended

samples for better performance. Moreover, it outperforms other deeparchitectures for line spectral

estimation at di�erent noise levels and is much faster than an atomic norm-based method.

12



Chapter 9. In this chapter, we study the damped exponentials recovery problem which appears naturally

in a wide range of applications including structural health monitoring and electric machine fault

detection. Given �nite time-domain samples of composite, contaminated damped exponentials, we

propose novel deep architectures to estimate the number of exponentials and recover the frequency

and damping coe�cient of each exponential. In our architecture, a damped exponential

representation model maps time-domain samples to a frequency-damping spectrum representation,

while a counting model then counts the number of exponentials. Combining the spectrum

representation and the estimated number of exponentials, the frequencies and damping coe�cients of

the exponentials can be recovered automatically. Altogether, this yields an e�cient feed-forward

method for parameter estimation of contaminated damped exponentials. Our experiments indicate

that the proposed method is very e�ective and can robustly handle exponentials with close or even

overlapping frequencies as long as the damping coe�cients are su�ciently separated.

Chapter 10. In this chapter, we study the support recovery problem for the sparse signal with

non-stationary modulation and propose to solve it via the proximal gradient descent inspired deep

learning method. Speci�cally, by assuming the modulating signalslive in a known common subspace

and applying the lifting technique, we can formulate the support recovery problem as recovering a

column-wise sparse matrix from linear observations, which can be modeled via a block `1 norm

regularized quadratic minimization. By unfolding the proximal gradient descent for that regularized

quadratic minimization and replacing the proximal operator with a prox imal network, we construct a

novel recurrent neural network (RNN) to e�ciently solve the suppor t recovery problem. The

simulations indicate that the proposed network is very e�cient in sol ving the support recovery

problem, can be adaptive to di�erent sensing process without retraining the network, and is

applicable when the matrix of interest is contaminated with system noise and thus not strictly

column-wise sparse.
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CHAPTER 2

SIMULTANEOUS SPARSE RECOVERY AND BLIND DEMODULATION

The task of �nding a sparse signal decomposition in an overcomplete dictionary is made more

complicated when the signal undergoes an unknown modulation (or convolution in the complementary

Fourier domain). Such simultaneous sparse recovery and blind demodulation problems appear in many

applications including medical imaging, super resolution, self-calibration, etc. In this chapter, we consider a

more general sparse recovery and blind demodulation problem in whicheach atom comprising the signal

undergoes a distinct modulation process. Under the assumption thatthe modulating waveforms live in a

known common subspace, we employ the lifting technique and recastthis problem as the recovery of a

column-wise sparse matrix from structured linear measurements. In this framework, we accomplish sparse

recovery and blind demodulation simultaneously by minimizing the induced atomic norm, which in this

problem corresponds to`2;1 norm minimization. For perfect recovery in the noiseless case, we derive near

optimal sample complexity bounds for Gaussian and random Fourier overcomplete dictionaries. We also

provide bounds on recovering the column-wise sparse matrix in thenoisy case. Numerical simulations

illustrate and support our theoretical results.1

2.1 Introduction

2.1.1 Overview

In classical sparse recovery and compressive sensing problems, a system observesy = DA c 2 CN where

D , A , and c are the sensing matrix, dictionary matrix, and sparse signal coe�cient vector, respectively.

The goal is to recover the sparse vectorc from the observationsy . Usually D and A are known, but the

whole system is under-determined. This model arises naturally in a wide range of applications such as

medical imaging [96], seismic imaging [97], video coding [98], and networktra�c monitoring [99].

In the special case whereD is diagonal and contains a carrier signal or the Fourier coe�cients of a

known source signal along in its diagonal entries,y can be viewed as a modulated version of the signal

A c [100] or the Fourier transform of the convolution between two source signals[18]. Recoveringc can

thus be viewed as a demodulation (or deconvolution) problem. Unfortunately, in problems like super

resolution [12] and self-calibration [9], the modulation matrix D is unknown a priori, as it incorporates the

unknown point spread functions or calibration parameters. Recovering D and c jointly is a simultaneous

sparse recovery and blind demodulation problem.

1This is a joint work with Michael B. Wakin and Gongguo Tang [11 ,86].
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In this chapter, we consider a more general sparse recovery and blinddemodulation problem in which

each atom comprising the signal undergoes a distinct modulation process. Under the assumption that the

modulating waveforms live in a known common subspace, we employ the lifting technique and recast this

problem as the recovery of a column-wise sparse matrix from structured linear measurements. In this

framework, we recover the sparse coe�cient vectorc and all of the modulating waveforms simultaneously

by minimizing the induced atomic norm [80,101], which in this problem corresponds to the block`1 norm

minimization and we also refer to it as the `2;1 norm minimization.

2.1.2 Setup and Notation

To better illustrate our main contributions and compare to related work , we �rst de�ne our signal

model and the corresponding atomic norm minimization problem.

Throughout this chapter, we use bold uppercase,X , bold lowercase,x , and non-bold letters, x, to

represent matrices, vectors, and scalars. We use��, �H and �T to denote respectively complex conjugate,

matrix Hermitian, and matrix transpose. The symbol C denotes a constant.X T (x T , resp.) is a matrix

(vector, resp.) that zeros out the columns (entries, resp.) not inT. We call T the support of the matrix X

(and vector x ), and we use ~X to denote the sub-matrix after removing the zero rows or columns inX .

sign(x ) = x =jjx jj2 when jjx jj2 6= 0 and 0 otherwise. sign(X ) = [sign( x 1); � � � ; sign(x M )]. We use jj � jj to

indicate the spectral norm, which returns the maximum singular value of a matrix. The `2;1 norm of a

matrix X = [ x 1 � � � x M ], denoted by jjX jj2;1, is de�ned to be
P M

j =1 jj x j jj2. The inner product between

vectors and matrices are de�ned ashx ; y i = y H x and hX ; Y i = Tr
�
Y H X

�
respectively.

2.1.3 Problem Formulation

In this chapter, we study a generalized sparse recovery and blind demodulation problem in which the

coe�cient vector is unknown and each atom (column) of the dictionary undergoes an unknown modulation

process. Speci�cally, we assume the system receives a compositesignal

y =
MX

j =1

cj D j a j 2 CN (2.1)

where cj 2 C is an unknown scalar,D j 2 CN � N is an unknown diagonal modulation matrix, and a j 2 CN

is the j -th atom from a known dictionary A =
�

a1 a2 � � � aM

�
2 CN � M with N < M . Our goal is to

recover both cj and D j for all j from the observation y .

To make this problem well-posed, among theM over-complete atoms, we assume onlyJ < M of them

contribute to the observed signal; that is, at most J coe�cients cj are nonzero. We furthermore assume

that each modulation matrix obeys a subspace constraint:
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D j = diag( B h j ); (2.2)

where B 2 CN � K (N > K ) is a known basis for theK -dimensional subspace of possible modulating

waveforms, andh j 2 CK is an unknown coe�cient vector. Similar subspace assumptions havebeen made

in deconvolution and demixing papers [10,13]. With this assumption, recovering cj and D j equals to

recoveringcj and h j . Sincecj D j a j = cj diag(B h j )a j = ( kcj ) diag(B
�

1
k h j

�
)a j for any k 6= 0, without loss

of generality, we assumeh j has unit norm and cj � 0 with its complex phase and sign absorbed byh j .

De�ne B H = [ b0
1 b0

2 � � � b0
N ] 2 CK � N and note that the n-th entry of the observed signal can be

expressed as

y (n) =
MX

j =1

cj �aH
j en b0H

n h j = Tr

0

@en b0H
n

MX

j =1

cj h j �aH
j

1

A

= h
MX

j =1

cj h j �aH
j ; b0

n eH
n i = hG; b0

n eH
n i ;

(2.3)

where G =
P M

j =1 cj h j �aH
j , and en is the n-th column of the N � N identity matrix. From (2.3), we see that

the measurement vectory depends linearly on the matrix G which encodes all of the unknown parameters

of interest. We denote this linear sensing process asy = L 0(G) and recast the recovery problem as that of

recoveringG (and its components) from the linear measurements.

The unknown matrix G can be viewed as a linear combination ofJ rank-1 matrices from the atomic set

A := f h �aH : �a 2 f �a1; :::; �aM g; jjh jj2 = 1g and thus we propose to recoverG using the corresponding

atomic norm minimization:

minimize
G 2 C K � N

jjG jjA subject to y = L 0(G): (2.4)

The atomic norm appearing in (2.4) is de�ned asjjG jjA := inf f
P

k j~ck j : G =
P

k ~ck gk ; gk 2 Ag . Moreover,

the following result establishes its equivalence with thè 2;1 norm.

Proposition 1. The atomic norm optimization problem (2.4) can be equivalently expressed as the following

`2;1 norm optimization problem

minimize
X 2 C K � M

jjX jj2;1 subject to y = L (X ) (2.5)

where X = [ c1h1 c2h2 � � � cM hM ] 2 CK � M and L represents the following linear sensing process

y (n) = hX ; b0
n eH

n
�A i = b0H

n X a0
n : (2.6)

in which b0
n and a0

n are the n-th column of B H and A T .
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Proof. We �rst note that the atomic norm can be equivalently expressed as

jjG jjA = inf f
P M

j =1 jcj j : G =
P M

j =1 cj h j �aH
j ; jjh j jj2 = 1g. To see this, consider any decomposition ofG of

the form G =
P

k ~ck gk with gk 2 A . De�ne N j = f k : gk = ~h k �aH
j g and write G =

P M
j =1 (

P
k2N j

~ck
~h k ) �aH

j .

This is equivalent to writing G =
P M

j =1 cj h j �aH
j where h j =

P
k 2N j

~ck
~h k

jj
P

k 2N j
~ck

~h k jj 2
and cj = jj

P
k2N j

~ck
~h k jj2.

Finally, note that jcj j �
P

k2N j
j~ck j.

Next, to establish the equivalence with the`2;1 norm, for any cj and h j with jjh j jj2 = 1, de�ne

x j = cj h j and X = [ x1 x2 � � � xM ]. Then

jjG jjA = inf

(
MX

j =1

jcj j : G =
MX

j =1

cj h j �aH
j ; jjh j jj2 = 1

)

= inf

(
MX

j =1

jj x j jj2 : G =
MX

j =1

x j �aH
j

)

= inf
�

jjX jj2;1 : G = X �A H 	
:

(2.7)

Finally, to establish the equivalence of the linear sensing process, (2.3) indicates that for G = X �A H ,

y (n) = hG; b0
n eH

n i = hX ; b0
n eH

n
�A i = b0H

n X a0
n : (2.8)

The above optimization focuses on recovering the structured matrix X from linear measurements. Once

the optimization is solved, the unknown parameters can be easily extracted from the solution X̂ as follows:

cj = jj x̂ j jj2; h j =
x̂ j

jj x̂ j jj2
; and D j = diag( B h j ) (2.9)

for x̂ j 6= 0 and 1 � j � M .

The adjoint of the linear operator L is L � (y ) =
P N

l =1 yl b0
l a

0H
l . The linear operator L also has a

matrix-vector multiplication form. Note that L (X ) = � � vec(X ), where � 2 CN � KM is

� = [ � 1;1 � � � � K; 1 � � � � 1;M � � � � K;M ] (2.10)

in which � i;j = diag( bi )a j 2 CN � 1 and bi is the i -th column of B . Furthermore,

� H = [ � 0
1 � 0

2 � � � � 0
N ] 2 CKM � N (2.11)

where � 0
i = �a0

i 
 b0
i 2 CKM � 1.

Finally, we note that the observed signal could be contaminated with noise. In this case, our

observation model becomes
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y =
MX

j =1

cj D j a j + n (2.12)

for some unknown noise vectorn 2 CN � 1 which we suppose satis�esjjn jj2 � � . In this case, we can write

y = L (X 0) + n , where X 0 is the ground truth solution. As an alternative to equality-constrained `2;1 norm

minimization (2.5), we then consider the following relaxation:

minimize
X 2 C K � M

jjX jj2;1 subject to jjy � L (X )jj2 � �: (2.13)

2.1.4 Applications of The Proposed Signal Model

The proposed signal model encompasses a wide range of applications. We brie
y introduce some of

them as follows.

Direction of arrival estimation for antenna array . We �rst consider the direction of arrival (DOA)

estimation problem in antenna array. Assume we have a linear array antenna consisting ofN elements, and

we want to estimate the DOAs of several sources from a snapshot of the received signal. In addition, we

consider the narrowband scenario and con�ne the array and the far-�eldsources to a common plane as

described in [102]. In this case, the DOA is determined by the azimuth angle, � , of the source, which

ranges from 0 to 180 degrees. Mathematically, after discretizing the azimuth angle into M grids, the

observervation of the array can be represented as [103]

y = DA (� )c + n 2 CN � 1 (2.14)

where D 2 CN � N is the diagonal matrix capturing the unknown calibration of the array elements [9].

Particularly, the calibration issue may arise from gain discrepanciescaused by the change of temperatures

and humidity of the environment [9]. Namely, the channel is not ideal. One can simulate di�erent scenarios

and collect many possible calibration vectors. By applying the singularvalue decomposition (SVD) on the

matrix formed by those calibration vectors, we can then extract the subspace matrix, B , with desired

dimensions to approximate the calibration usingD = diag( B h) where h is the unknown coe�cient vector.

A (� ) 2 CN � M is the known array manifold matrix whose columnsa(� j ) for j 2 f 1; 2; � � � ; M g are the

steering vectors. For uniformly spaced linear array antenna (ULA),

a(� j ) = [1 ; ei 2 �d
� cos(� j ) ; � � � ; ei (N � 1) 2 �d

� cos(� j ) ] where d is the distance between array elements and� is the

radar operating wavelength [104]. Moreover, the entries ofc indicate the strength of the impinging signals

and if there exist J (< M ) sources, onlyJ entries of c are nonzero.n consists of the discretization error,

approximation error, and additive noise.

19



Furthermore, let us consider a more severe while realistic situation, where the calibration is sensitive to

the direction of arrival which implies that the channel responses from di�erent angles are slightly di�erent.

So that the calibration matrix, D , are di�erent for di�erent � j . In this case, we can write

y =
MX

j =1

cj D j a(� j ) + n 2 CN � 1: (2.15)

Super-resolution for single molecule imaging. Another application is the single molecule imaging [105]

via stochastic optical reconstruction microscopy (STORM) [106]. In this application, the cellular structure

of the object of interest is dyed with 
uorophores, and STORM divides the imaging process into thousands

of cycles. Within each cycle or observation, only a portion of the 
uorophores are activated and imaged.

Therefore, a typical observation is a low-resolution frame with its activated 
uorophores convolved with the

non-stationary point spread functions of the microscope, which can be represented as

y = Sample

2

4
MX

j =1

cj (B 0h j ) ~ ej + n 0

3

5 2 R N � 1 (2.16)

where y 2 R N � 1 is a vectorized, imaged frame downsampled from its super-resolutionimage with M (> N )

pixels, cj represents the intensity of the activated 
uorophores, andB 0 is the subspace that the point

spread functions live in. ej 2 R M , which indicates the location of the activated 
urophores, is the j -th

column of the identity matrix and n 0 denotes the noise. Moreover,y can also be represented equivalently as

y = Sample

(

IDF T

2

4
MX

j =1

cj D j a j + n

3

5

)

2 R N � 1; (2.17)

where IDF T [�] is the inverse discrete Fourier transform (DFT) operator, D j = diag( B h j ) with

B = DF T [B 0], and a j s are the DFT of spikes containing the location information. n = DF T [n 0]. The goal

of this application is to recover the super-resolution image from its low-resolution frame y , or

mathematically, locating the nonzero cj .

Other applications that �t into the model investigated in this work include frequency estimation with

damping that appears in nuclear magnetic resonance spectroscopy [37] withdamping signals approximately

living in a common subspace [12] and the CDMA system with spreading sequence sensitive channel as

described in Section 6.4 of [9].
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2.1.5 Main Contributions

Our contributions are twofold. First, we employ `2;1 norm minimization to achieve sparse recovery and

blind demodulation simultaneously given the generalized signal model from equation (2.1). Second, for

perfect recovery of all parameters in the noiseless case, we derive near optimal sample complexity bounds

for the cases whereA is a random Gaussian and a random subsampled Fourier dictionary. Both of bounds

require the number of observationsN to be proportional to the number of degrees of freedom,O(JK ), up

to log factors. We also provide bounds on recovering the column-wisesparse matrix in the noisy case; these

bounds show that the recovery error scales linearly with respect to the strength of the noise.

2.1.6 Related Work

The `2;1 norm has been widely used to promote sparse recovery in multiple measurement vector (MMV)

problems [28,107]. The MMV problem involves a collection of sparse signal vectors that are stacked as the

rows of a matrix X . These signals have a common sparsity pattern, which results in a column-wise sparse

structure for X . The `2;1 norm is used to recoverX from linear measurements of the form

y = � MMV � vec(X T ). However, � MMV has a block diagonal structure where all diagonal sub-matrices are

the same which is the dictionary matrix. This is di�erent from the s tructure of the linear measurements in

our problem; see for example (2.10).

Our work is also closely related to certain recent works in model-based deconvolution, self-calibration,

and demixing. When all D j in (2.1) are the same, our signal model coincides with the self-calibration

problem in [9], although that work employs `1 norm minimization rather than `2;1 norm minimization to

recover X . A more recent paper [108] does apply thè2;1 norm for the self-calibration problem but again

assumes a common modulation matrixD . The paper [10] generalizes the work of [9] and considers a blind

deconvolution and demixing problem which can be interpreted as the self-calibration scenario with multiple

sensors whose calibration parameters might be di�erent. However, thesignal model in that paper is not

directly comparable to our model, and the recovery approach studied in that paper involves nuclear norm

minimization and requires knowledge of the number of sensors. A blind sparse spike deconvolution is

studied in [13], wherein the dictionary consists of sampled complex sinusoids over a continuous frequency

range and all atoms undergo the same modulation. Inspired by [13], [12] generalizes the model to the case

of di�erent modulating waveforms. Like [13], however, [12] also considers a sampled sinusoid dictionary

over a continuous frequency range, and it employs a random sign assumption on the coe�cient vectors h j

which makes it di�cult to derive recovery guarantees with noisy measurements. More works considering a

common modulation process can be found in [18,109,110].
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Our work can be viewed as a generalization of the self-calibration [9] and blind deconvolution

problems [18]. Moreover, our analysis is quite di�erent from the worksconsidering the continuous sinusoid

dictionary [12,13], since the tools in those papers are specialized to the continuous sinusoids dictionary and

we consider discrete Gaussian and random Fourier dictionaries in both noiseless and noisy settings.

The rest of the chapter is organized as follows. In Section 2.2, we present our main theorems regarding

perfect parameter recovery in the noiseless setting and matrix denoising in the noisy setting. Sections 2.3

and 2.4 contain the detailed proofs of the main theorems. Several numerical simulations are provided in

Section 2.5 to illustrate the critical scaling relationships, and weconclude in Section 2.6.

2.2 Main Results

We present our main theorems in this section. In each of the noisless and noisy cases, we consider two

models for the dictionary matrix A . In the �rst model, A 2 R N � M is a real-valued random Gaussian

matrix, with each entry sampled independently from the standard normal distribution. In the second

model, A 2 CN � M is a complex-valued random Fourier matrix, with each of its N (< M ) rows chosen

uniformly with replacement from the M � M discrete Fourier transform matrix F where FH F = M I M .

Our �rst theorem concerns perfect parameter recovery in the noiseless setting.

Theorem 2.3. (Noiseless case) Consider the observation model in equation (2.1), assume that at most

J (< M ) coe�cients cj are nonzero, and furthermore assume that the nonzero coe�cientscj are real-valued

and positive. Suppose that each modulation matrixD j satis�es the subspace constraint(2.2), where

B H B = I K and eachh j has unit norm.

Then the solution X̂ to problem (2.5) is the ground truth solution X 0|which means that cj , h j , and

D j can all be successfully recovered for eachj using (2.9)|with probability at least 1 � O(N � � +1 )

1. if A 2 R N � M is a random Gaussian matrix and

N

log2 N
� C� � 2

max KJ (log(M � J ) + log( N )) : (2.18)

2. if A 2 CN � M is a random Fourier matrix and

N � C� � 2
max KJ log(4

p
2J
 ) � (log(M � J ) + log( K + 1) + log( N )) (2.19)

where 
 =
p

2M log(2KM ) + 2 M + 1 .

In both cases,C� is a constant de�ned for � > 1 and the coherence parameter

� max = max
i;j

p
N jB ij j: (2.20)

22



We note that both of the sample complexity bounds in Theorem 2.3 requirethe number of

measurementsN to be proportional to the number of degrees of freedom,O(KJ ), up to log factors. We

also note that the sample complexity bounds scale with the square of thecoherence parameter

� max = max i;j
p

N jB ij j. Under the assumption B H B = I K which requires the columns ofB to be

orthonormal, � max 2 [1;
p

N ]. Speci�cally, given the system parameters with large enoughN , (2.18) is

satis�ed when 1 � � max �
q

N
C � log 2 (N )KJ (log( M � J )+log( N )) . The valid range of � max for (2.19) and the

noisy case can be easily derived in the same manner. And� max is minimized when the energy of each

column of B is not concentrated on a few entries but spread across the whole column.

Our second theorem provides bounds on recovering the column-wisesparse matrix in the noisy case;

these bounds show that the recovery error scales linearly with respect to the strength of the noise.

Theorem 2.4. (Noisy case) Consider the observation model in equation(2.12), assume that at mostJ (< M )

coe�cients cj are nonzero, and furthermore assume that the norm of the noise is bounded,jjn jj2 � � .

Suppose also that each modulation matrixD j satis�es the subspace constraint(2.2), where B H B = I K .

Then with probability at least 1 � O(N � � +1 ), the solution X̂ to problem (2.13) satis�es

1. if A 2 R N � M is a random Gaussian matrix,

jj X̂ � X 0jjF �
�

C1 + C2

p
J

�
� (2.21)

when

N

log2 N
� C� � 2

max KJ
�

log(C� max

p
KJ )C + 1

�
� (log(M � J ) + log( MK ) + log( N )) (2.22)

where C is a constant.

2. if A 2 CN � M is a random Fourier matrix,

jj X̂ � X 0jjF �
�

C1 + C2

p
P J

�
� (2.23)

when

N � C� � 2
max KJ log(4

p
2J
 ) � (log(M � J ) + log( MK ) + log( N )) (2.24)

where 
 =
p

2M log(2KM ) + 2 M + 1 and P � log(4
p

2J
 )=log 2.

In both cases,C� is de�ned for � > 1. C1 and C2 are constant.

Although Theorem 2.4 focuses exclusively on bounding the recovery error of the matrix X 0, one can

also attempt to estimate the parameterscj , h j , and D j from X̂ using (2.9). And according to Theorem 2.4,

for any x̂ j = ĉj ĥ j and x 0;j = c0;j h0;j where x̂ j and x 0;j are the j -th columns of the solution X̂ and the
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ground truth X 0 respectively, we would havejj ĉj D̂ j � c0;j D 0;j jjF = jj ĉj ĥ j � c0;j h0;j jj2 �
�

C1 + C2
p

J
�

�

with random Gaussian dictionary and jj ĉj D̂ j � c0;j D 0;j jjF = jj ĉj ĥ j � c0;j h0;j jj2 �
�

C1 + C2
p

P J
�

� for

random Fourier dictionary. In addition, as results on structured matri x recovery from (possibly noisy)

linear measurements, we believe that Theorems 2.3 and 2.4 may be of independent interest outside of the

sparse recovery and blind demodulation problem.

2.3 Proof of Theorem 2.3

To begin our proof of the main theorem in the noiseless case, we �rst derive su�cient conditions for

exact recovery.

2.3.1 Su�cient Conditions for Exact Recovery

Su�cient conditions for exact recovery are the null space property and an alternative su�cient

condition derived from the null space property. Similar su�cient c onditions with complete proofs are

available for minimization problems using other types of norms [9,16,111,112].However, since we cannot

�nd su�cient conditions that suit our purpose and in order to be self- contained, we provide a short proof

for the ones speci�c to the `2;1 norm minimization problem in this section.

Proposition 2. (The null space property) The matrix X 0 = [ c1h1 c2h2 :::: cM hM ] 2 CK � M with

support T is the unique solution to the inverse problem (2.5) if

�jh H T ; sign(X 0)ij + jjH T C jj2;1 > 0 (2.25)

for any H 6= 0 in the nullspace ofL .

Proof. Let X̂ = X 0 + H be a solution to problem (2.5), with L (H ) = 0. To prove X 0 is the unique

solution, it is su�cient to show that jj X̂ jj2;1 > jjX 0jj2;1 if H 6= 0. We start by observing that

jjX 0 + H jj2;1 = jjX 0;T + H T jj2;1 + jjH T C jj2;1

� jh X 0;T + H T ; sign(X 0;T )ij + jjH T C jj2;1

= jhX 0;T ; sign(X 0;T )i + hH T ; sign(X 0;T )ij + jjH T C jj2;1

� jj X 0;T jj2;1 � jh H T ; sign(X 0;T )ij + jjH T C jj2;1

(2.26)

where sign(X 0;T ) = sign( X 0) and the �rst inequality comes from the fact that

jjX 0;T + H T jj2;1 =
X

i 2 T

jj x 0;i + h i jj2jj sign(x 0;i )jj2

�
X

i 2 T

jhx 0;i + h i ; sign(x 0;i )ij � jh X 0;T + H T ; sign(X 0;T ij :
(2.27)

Therefore, as long as�jh H T ; sign(X 0)ij + jjH T C jj2;1 > 0 for any H 6= 0 in the nullspace ofL , X 0 is the

unique solution.
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Proposition 3. The matrix X 0 2 CK � M with support T is the unique solution to the inverse problem(2.5)

if there exist 
 > 0 and a matrix Y in the range space ofL � such that

jjY T � sign(X 0;T )jjF �
1

4
p

2

and jjY T C jj2;1 �

1
2

(2.28)

and the operator L satis�es (L T (X ) = f b0H
n X a0

n;T gN
n =1 )

jjL �
T L T � I T jj �

1
2

and jjLjj � 
: (2.29)

Proof. Proposition 2 shows that it is su�cient to prove that �jh H T ; sign(X 0)ij + jjH T C jj2;1 > 0 for any

H 6= 0 in the nullspace ofL to establish uniqueness. Note that

� jh H T ; sign(X 0)ij + jjH T C jj2;1

= �jh H T ; sign(X 0) � Y T i + hH T ; Y T ij + jjH T C jj2;1

� �jh H T ; sign(X 0) � Y T ij � jh H T C ; Y T C ij + jjH T C jj2;1

(2.30)

sincehH T ; Y T i = �h H T C ; Y T C i . By applying the H•older inequality, we get a stronger condition

� jj sign(X 0) � Y T jjF jjH T jjF + (1 � jj Y T C jj2;1 )jjH T C jj2;1 > 0: (2.31)

SincejjL �
T L T � I T jj � 1

2 and jjLjj � 
 , we havejjL (H T )jjF � 1p
2
jjH T jjF , jjL (H T C )jjF � 
 jjH T C jjF and

1
p

2
jjH T jjF � jjL (H T )jjF = jjL (H T C )jjF � 
 jjH T C jjF � 
 jjH T C jj2;1: (2.32)

Plugging (2.32) into the stronger condition above yields

�
1 � jj Y T C jj2;1 �

p
2
 jj sign(X 0) � Y T jjF

�
jjH T C jj2;1 > 0: (2.33)

Therefore, if jjY T � sign(X 0;T )jjF � 1
4

p
2


, jjY T C jj2;1 � 1
2 , and H T C 6= 0, the left hand side is positive. On

the other hand, if H T C = 0, from (2.32), H T = 0 and H = 0.

2.3.2 Bounding The Isometry Constant and Operator Norm

In this section, we bound the isometry constant and operator norm
 appearing in (2.29) based on the

randomness in the matrix A . The isometry bound for the linear operator L can found in Lemma 4.3 in [9].

Lemma 2.1. [9, Lemma 4.3] (Isometry) For the linear operator L de�ned in (2.5),

jj � H
T � T � I T jj = jjL �

T L T � I T jj � � (2.34)
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with probability at least 1 � N � � +1 where I T is the identity operator on the supportT such that

I T (X ) = X T ,

1. if A is a random Gaussian matrix andN � C� � 2
max KJ maxf log(N )=� 2; log2(N )=� g.

2. if A is a random Fourier matrix and N � C� � 2
max KJ log(N )=� 2.

Here C� is a constant that grows linearly with � > 1.

L T (X ) = � T � vec(X ) and � T can be viewed as� constructed usingA T following (2.10). Therefore,

� T 2 CN � KM has many zero columns and removing those zero columns results in~� T 2 CN � KJ . If

jj � H
T � T � I T jj = jj ~� H

T
~� T � ~I T jj � � < 1, ~� H

T
~� T is invertible and jj ( ~� H

T
~� T ) � 1jj � (1 � � ) � 1 according to

Lemma A.12 in [16]. This property will be applied in (2.38) and Theorem 2.5. Tobound the operator

norm of L , we use results from [18] and [9].

Lemma 2.2. [9,18] For operator theL de�ned in (2.5) and � � 1,

1. if A is a random Gaussian matrix,

jjLjj �
p

M log(MN=2) + � log(N ) (2.35)

with probability at least 1 � N � � .

2. if A is a random Fourier matrix,

jjLjj �
p

2M log(2KM ) + 2 M + 1 (2.36)

with probability at least 1 � N � � when N � �� 2
max K log(N ).

2.3.3 Constructing The Dual Certi�cate for The Gaussian Case

In the case whereA is a random Gaussian matrix, we construct a certi�cate matrix Y that satis�es the

conditions in Proposition 3. When jj � H
T � T � I T jj � 1

2 , we can set

vec(Y ) = � H p = vec(L � (p)) 2 CKM � 1; (2.37)

where

p = ~� T ( ~� H
T

~� T ) � 1vec(sign(~X 0;T )) 2 CN � 1: (2.38)

By construction, Y T = sign( X 0;T ), and we need only to verify that jjY T C jj2;1 � 1=2.

Theorem 2.5. If jj � H
T � T � I T jj � 1

2 , there existsY in the range space ofL � such that

26



Y T = sign( X 0;T ) and jjY T C jj2;1 �
1
2

(2.39)

with probability at least 1 � (M � J )e� � when N � 40�� 2
max KJ for � � log(M � J ).

Proof. To simplify the notation, without loss of generality, we assume the support of X 0 is the �rst J

columns. Let Y be the dual certi�cate matrix de�ned in (2.37). After removing the col umns of Y on

support T, we obtain vec(~Y T C ) 2 CK (M � J ) � 1 which takes the form

vec(~Y T C ) = ~� H
T C p = [ � H

1;J +1 p; � � � ; � H
K;M p]T (2.40)

The columns of ~� T C are independent ofp sincep is constructed with a i (i 2 T). Equivalently,

~Y T C =

2

6
6
6
6
4

aH
J +1 diag(�b1)p � � � aH

M diag(�b1)p

aH
J +1 diag(�b2)p � � � aH

M diag(�b2)p
...

. . .
...

aH
J +1 diag(�bK )p � � � aH

M diag(�bK )p

3

7
7
7
7
5

: (2.41)

Thus jjY T C ;j jj2 = jjPa j jj2 (j > J ) where a j is real and

P =

2

6
6
6
6
4

pT diag(�b1)

pT diag(�b2)
...

pT diag(�bK )

3

7
7
7
7
5

2 CK � N : (2.42)

We set � = P H P 2 CN � N and have

Tr ( � ) = jjP jj2
F �

2� 2
max KJ

N
(2.43)

since each row ofP can be bounded by

jjpT diag(�bk )jj2
2 �

� 2
max

N
jjpjj2

2

=
� 2

max

N
vec(sign(~X 0;T ))H ( ~� H

T
~� T ) � 1vec(sign(~X 0;T ))

�
2� 2

max

N
jj sign(~X 0;T )jj2

F =
2� 2

max J
N

(2.44)

since we assumejj � H
T � T � I T jj � 1

2 which implies jj ( ~� H
T

~� T ) � 1jj � 2. By generalizing Proposition 1

in [113] to our case, one can easily get

Pr
�

jjPa j jj2
2 > Tr ( � ) + 2

p
Tr ( � 2)� + 2 jj � jj �

�
� e� � : (2.45)
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Since� is positive semi-de�nite whose eigenvalues are� 0, Tr ( � 2) =
P N

i =1 � 2
i � (

P N
i =1 � i )2 = Tr ( � )2

where � i is the i -th eigenvalue of � . jj � jj = � max �
P N

i =1 � i = Tr ( � ) where � max is the maximum

singular value of � . Therefore, for � > 1, we obtain

Tr ( � ) + 2
p

Tr ( � 2)� + 2 jj � jj � � Tr ( � ) + 2 Tr ( � )� + 2 Tr ( � )� �
2� 2

max KJ
N

(1 + 4 � ): (2.46)

If we pick N � 40�� 2
max KJ , jjPa j jj2 > 1=2 with probability at most e� � . Taking the union over all

(M � J ) non-zero columns ofY T C gives

Pr( jjY T C jj2;1 > 1=2) � (M � J )e� � : (2.47)

Therefore, jjY T C jj2;1 � 1=2 with probability at least 1 � (M � J )e� � when N � 40�� 2
max KJ . To make

the probability meaningful, � should be greater than log(M � J ).

2.3.4 Proof of Theorem 2.3 for Random Gaussian Dictionary

In this section, we assemble the pieces to complete the proof of Theorem 2.3 in the Gaussian case. To

do so, we ensure that all su�cient conditions in Proposition 3 are met. First, if we take � = 1=2 and set

� 1 > 1 in Lemma 2.1, we have

jjL �
T L T � I T jj �

1
2

(2.48)

when N � C� 1 � 2
max KJ log2(N ) with probability at least 1 � N � � 1 +1 . Then, applying the same� 1 in

Lemma 2.2 and setting
 =
p

M log(MN=2) + � 1 log(N ), we have that jjLjj � 
 with probability at least

1 � N � � 1 � 1 � N � � 1 +1 . In Theorem 2.5, we have proved thatY T = sign( X 0;T ) and jjY T C jj2;1 � 1
2 when

N � 40� 2� 2
max KJ with probability at least 1 � (M � J )e� � 2 and � 2 � log(M � J ).

Note that if � 2 � (� 1 � 1) log(N ) + log( M � J ), we have (M � J )e� � 2 � N � � 1 +1 . Combining the

above requirements onN , all conditions in Proposition 3 are satis�ed with probability at least

1 � 3N � � 1 +1 when N � maxf C� 1 ; 40g(( � 1 � 1) log(N ) + log( M � J )) � 2
max KJ log2(N ). Furthermore,

maxf C� 1 ; 40g(( � 1 � 1) log(N ) + log( M � J )) � � 2
max KJ log2(N )

� C� (log(N ) + log( M � J )) � 2
max KJ log2(N )

(2.49)

if we set C� = max f C� 1 ; 40g � � 1 and � = � 1 > 1, which yields the Theorem 2.3 whenA is a random

Gaussian matrix.
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2.3.5 Constructing The Dual Certi�cate for The Fourier Case

In this section, we construct a certi�cate Y that satis�es the inexact duality condition in Proposition 3

when A is a random Fourier matrix. Speci�cally, we construct the dual certi �cate using the gol�ng

scheme [17] which has been widely applied in compressive sensing [18,111]. In the gol�ng scheme, a series

of matrices in the range ofL � are constructed iteratively. In each iteration step, only some of the

observations are utilized to ensure independence between iterations. And the constructed matrices will

converge to sign(X 0;T ) on support T while entries on TC are small. The goal is to �nd the conditions

under which the �nal constructed matrix can serve as the certi�cate matrix.

According to Section (4.2.1) in [9], there exists a partition of theN observations into P disjoint subsets

such that each subset, �p, contains Q elements and

max
1� p� P

jjB p �
Q
N

I K jj <
Q

4N
; (2.50)

where B p =
P

l 2 � p b0
l b

0H
l and Q > C� 2

max K log(N ). So

max
1� p� P

jjB p jj �
5Q
4N

: (2.51)

De�ne L p(X ) = f b0H
l X a0

l gl 2 � p and 0 on entriesl =2 � p. L �
p(x ) =

P
l 2 � p

x l b0
l a

0H
l . The gol�ng scheme

iterates through

Y p = Y p� 1 �
N
Q

L �
pL p(Y p� 1;T � sign(X 0;T )) ; Y 0 = 0 : (2.52)

Theorem 2.6. If X 0 is the ground truth solution to problem (2.5), there exists a matrix Y 2 L � such that

jjY T � sign(X 0;T )jjF �
1

4
p

2

and jjY T C jj2;1 �

1
2

(2.53)

with probability at least 1 � 2N � � +1 for � > 1 when

N = P Q; P �
log(4

p
2J
 )

log 2
(2.54)

and

Q � C� � 2
max KJ (log(M � J ) + log( K + 1) + log( N )) (2.55)

where C� a constant determined by� .

Proof. If we de�ne W p = Y p;T � sign(X 0;T ), (2.52) gives
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W p =
N
Q

�
Q
N

� L �
p;T L p;T

�
(W p� 1); (2.56)

where L p;T (X ) = f b0H
l X a0

l;T gl 2 � p with 0 on entries l =2 � p and L �
p;T (x ) =

P
l 2 � p

x l b0
l a

0H
l;T which are used to

generate the sequenceY p;T . And we can obtain

jjW p jjF � jj
N
Q

(
Q
N

� L �
p;T L p;T )jj � jj W p� 1jjF �

1
2

jjW p� 1jjF (2.57)

with probability at least 1 � N � � +1 when Q � C�; 1� 2
max KJ log(N ) with � > 1 applying Lemma 4.6 in [9].

Therefore,

jjW P jjF � 2� P jjW 0jjF = 2 � P jj sign(X 0;T )jjF = 2 � P
p

J: (2.58)

To ensure that jjW P jjF = jjY P;T � sign(X 0;T )jjF � 1
4

p
2


where Y P = Y is the �nal constructed dual

certi�cate after P iterations, we need

P �
log(4

p
2J
 )

log 2
: (2.59)

We now turn to �nd the conditions such that jjY T C jj2;1 � 1
2 . Note that substituting W p into equation

(2.52) yields

Y = �
N
Q

PX

p=1

L �
pL p(W p� 1): (2.60)

It is su�cient to show jj � T C (L �
pL pW p� 1)jj2;1 � 2� p� 1 Q

N , where � T C is the projection operator which

projects a matrix on the support TC , to make jjY T C jj2;1 � 1
2 because

jjY T C jj2;1 = jj �
N
Q

PX

p=1

� T C (L �
pL p(W p� 1)) jj2;1

�
N
Q

PX

p=1

jj � T C (L �
pL p(W p� 1)) jj2;1 �

N
Q

PX

p=1

�
2� p� 1 Q

N

�

=
PX

p=1

2� p� 1 =
1
2

(1 � 2� P ) <
1
2

:

(2.61)
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De�ning � p to be � with non-zero rows indexed by �p and zero otherwise, we haveL p(X ) = � p � vec(X )

and for a vector w = vec(W ) 2 CKM � 1 where W 2 CK � M has support T,

jj � T C (L �
pL p(W )) jj2;1 = max

i 2 T C
























2

6
6
6
6
6
4

h� H
p � pw; eK ( i � 1)+1 i

h� H
p � pw; eK ( i � 1)+2 i

...

h� H
p � pw; eK ( i � 1)+ K i

3

7
7
7
7
7
5
























2

(2.62)

where i is the column index andej is the j -th column of the identity matrix I KM . In addition,
2

6
6
6
6
6
4

h� H
p � pw; eK ( i � 1)+1 i

h� H
p � pw; eK ( i � 1)+2 i

...

h� H
p � pw; eK ( i � 1)+ K i

3

7
7
7
7
7
5

=
X

l 2 � p

2

6
6
6
6
6
4

h� 0
l �

0H
l w; eK ( i � 1)+1 i

h� 0
l �

0H
l w; eK ( i � 1)+2 i

...

h� 0
l �

0H
l w; eK ( i � 1)+ K i

3

7
7
7
7
7
5

=
X

l 2 � p

z l;i : (2.63)

Furthermore, we haveE(z l;i ) = 0 because

E(z l;i ) = E

0

B
B
B
B
B
@

2

6
6
6
6
6
4

h�a0
l 
 b0

l � �a0H
l 
 b0H

l � w ; eK ( i � 1)+1 i

h�a0
l 
 b0

l � �a0H
l 
 b0H

l � w ; eK ( i � 1)+2 i
...

h�a0
l 
 b0

l � �a0H
l 
 b0H

l � w ; eK ( i � 1)+ K i

3

7
7
7
7
7
5

1

C
C
C
C
C
A

=

2

6
6
6
6
6
4

h(I M 
 b0
l b

0H
l )w ; eK ( i � 1)+1 i

h(I M 
 b0
l b

0H
l )w ; eK ( i � 1)+2 i

...

h(I M 
 b0
l b

0H
l )w ; eK ( i � 1)+ K i

3

7
7
7
7
7
5

=

2

6
6
6
6
6
4

hvec(b0
l b

0H
l W ); eK ( i � 1)+1 i

hvec(b0
l b

0H
l W ); eK ( i � 1)+2 i

...

hvec(b0
l b

0H
l W ); eK ( i � 1)+ K i

3

7
7
7
7
7
5

= 0

(2.64)

following E( �a0
l �a

0H
l ) = I M sincea0

l 2 CM � 1 is the transpose of a random row of theM � M DFT matrix

and b0
l b

0H
l W has support T and 0 on TC . Therefore, for i 2 TC , E(z l;i ) = 0. Moreover,

jjz l;i jj2 �

vu
u
t K �

 
� 2

max

p
KJ jjw jj2

N

! 2

=
� 2

max K
p

J jjw jj2

N
: (2.65)

Because each entry ofz l;i can be bounded by

jh� 0
l �

0H
l w; eK ( i � 1)+ j ij = jeH

K ( i � 1)+ j � 0
l �

0H
l wj

= jjeH
K ( i � 1)+ j � 0

l jj2jj ( �a0
l 
 b0

l )
H wjj2

= jjeH
K ( i � 1)+ j � 0

l jj2jj ( �a0
l;T 
 b0

l )
H wjj2

�
� maxp

N
jj �a0H

l;T 
 b0H
l jj2jjw jj2 �

� 2
max

p
KJ jjw jj2

N

(2.66)
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where the third equality holds becausew = vec(W ) and W has support T. The variance ofz l;i is also

bounded:

max

8
<

:
jj

X

l 2 � p

E(z l;i zH
l;i )jj ; jj

X

l 2 � p

E(zH
l;i z l;i )jj

9
=

;
�

X

l 2 � p

E(jjz l;i jj2
2) �

5� 2
max KQ jjw jj2

2

4N 2 (2.67)

because for each element ofjjz l;i jj2
2, we have

E
�
jh� 0

l �
0H
l w; eK ( i � 1)+ j ij 2�

= E
�

jjeH
K ( i � 1)+ i �

0
l �

0H
l wjj2

2

�

�
� 2

max

N
E

�
jj � 0H

l wjj2
2

�
=

� 2
max

N
w H (I M 
 b0

l b
0H
l )w

(2.68)

and therefore

E(jjz l;i jj2
2) �

� 2
max K
N

w H (I M 
 b0
l b

0H
l )w : (2.69)

Furthermore,

X

l 2 � p

E(jjz l;i jj2
2) �

X

l 2 � p

� 2
max K
N

w H (I M 
 b0
l b

0H
l )w

=
� 2

max K
N

w H (I M 
 B p)w �
5� 2

max KQ jjw jj2
2

4N 2 :

(2.70)

The second inequality in (2.70) applies the inequality (2.51) andjj I M 
 B p jj = jj I M jj � jj B p jj . We then

apply the matrix Bernstein inequality from Theorem 1.6 in [114]. If we set w = vec(W p� 1) and we know

from (2.58) that jjw jj2 = jjW p� 1jjF � 2� p+1
p

J , we obtain

Pr

0

@jj
X

l 2 � p

z l;i jj2 � t

1

A � (K + 1) exp

 
� 3t2

30� 2
max KQ jj w jj 2

2
4N 2 + 2� 2

max K
p

J jj w jj 2 t
N

!

� (K + 1) exp
�

� 3Q
128� 2

max KJ

�
(2.71)

where t = 2 � p� 1 Q
N , for a particular i 2 TC and p. We then take the union over all i 2 TC and get

Pr
�

jj � T C (L �
pL p(W p� 1)) jj2;1 � 2� p� 1 Q

N

�
� (M � J )(K + 1) exp

�
� 3Q

128� 2
max KJ

�
: (2.72)

To ensure jj � T C (L �
pL p(W p� 1)) jj2;1 � 2� p� 1 Q

N for all p, we obtain

Pr
�

jj � T C (L �
pL p(W p� 1)) jj2;1 � 2� p� 1 Q

N
; 81 � p � P

�

> 1 � P(M � J )(K + 1) exp
�

� 3Q
128� 2

max KJ

�
� 1 � P N � � � 1 � N � � +1

(2.73)

when Q � 128� 2
max KJ�

3 (log(M � J ) + log( K + 1) + log( N )) using the same� as in deriving equation (2.57).

Setting C� = max f C; C�; 1; 128
3 � g, where C is a constant comes from equation (2.51), gives us Theorem

2.6.
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2.3.6 Proof of Theorem 2.3 for Random Fourier Dictionary

We now complete the proof of Theorem 2.3 in the case whenA is a random Fourier matrix. First,

combining the conditions and probabilities from Lemma 2.1 and 2.2, we knowthat the operator L satis�es

the inequalities jjL �
T L T � I T jj � 1

2 and jjLjj � 
 =
p

2M log(2KM ) + 2 M + 1 with probability at least

1 � (N + 1) N � � � 1 � 2N � � +1 when N � C�; 1� 2
max KJ log(N ) for some constant,C�; 1, that grows

linearly with � > 1.

Applying the same � in Theorem 2.6, the desired dual matrix exists with probability at least

1 � 2N � � +1 when N � C�; 2� 2
max KJ log(4

p
2J
 )(log(M � J ) + log( K + 1) + log( N )). Merging the

requirement on N by setting C� = max f C�; 1; C�; 2g and combining the probabilities, we complete the proof

by applying Proposition 3.

2.4 Proof of Theorem 2.4

To derive our recovery guarantee in the presence of measurement noise, the main ingredient of the proof

is Theorem 2.7 which is a variation of the Theorem 4.33 in [16] from the in�nity norm optimization to `2;1

norm optimization problem.

Theorem 2.7. De�ne � 2 CN � KM and � � vec(X ) = L (X ). Suppose the ground truthX 0 to (2.13) has J

non-zero columns with supportT and the observation vectory = L (X 0) + n with jjn jj2 � � . For

�; �; �; 
; � > 0 and � < 1, assume that

max
i 2 T C

jj � H
T [� K ( i � 1)+1 � � � � K ( i � 1)+ K ]jj � �; (2.74)

jj � H
T � T � I T jj � � (2.75)

and that there exists a matrixY = L � (p) 2 CK � M such that

jjY T � sign(X 0;T )jjF �
1

4
p

2

; jjY T C jj2;1 � �; and jjpjj2 � �

p
J: (2.76)

If � := � + �
4

p
2
 (1 � � )

< 1, then the minimizer, X̂ , to (2.13) satis�es

jj X̂ � X 0jjF �
�

C1 + C2

p
J

�
� (2.77)

where C1 and C2 are two constants depending on�; �; �; 
; � .

Proof. Due to our assumption on the noise,X 0 is a feasible solution. Assume the �nal minimizer to (2.13)

is X̂ = X 0 + H , which implies

jjX 0jj2;1 � jj X 0 + H jj2;1 = jjX 0;T + H T jj2;1 + jjH T C jj2;1

� jh X 0;T + H T ; sign(X 0;T )ij + jjH T C jj2;1

� jj X 0jj2;1 � jh H T ; sign(X 0;T )ij + jjH T C jj2;1

(2.78)
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where the second inequality comes from equation (2.27). Thus

jjH T C jj2;1 � jh H T ; sign(X 0;T )ij

� jh H T ; sign(X 0;T ) � Y T ij + jhH T ; Y T ij

�
1

4
p

2

jjH T jjF + jhH ; Y ij + jhH T C ; Y T C ij

�
1

4
p

2

jjH T jjF + 2 � �

p
J + � jjH T C jj2;1:

(2.79)

The last inequality comes from the H•older inequality and our assumption jjn jj � � , which tells us

jjL (H )jj2 = jjL (X̂ � X 0)jj2 = jjL (X̂ ) � L (X 0)jj2 � jjL (X̂ ) � y jj2 + jjy � L (X 0)jj2 � 2� (2.80)

and

jhH ; Y ij = jhH ; L � (p)ij = jhL(H ); pij � �
p

J jjL (H )jj2 � 2� �
p

J: (2.81)

Moreover, jjH T jjF can also be bounded as follows.

jjH T jjF = jj ( ~� H
T

~� T ) � 1 ~� H
T

~� T � vec(~H T )jj2

�
1

1 � �
jj ~� H

T
~� T � vec(~H T )jj2 =

1
1 � �

jj � H
T � T � vec(H T )jj2

=
1

1 � �
jj � H

T (� � vec(H ) � � T C � vec(H T C )) jj2

�
1

1 � �
jj � H

T � � vec(H )jj2 +
1

1 � �
jj � H

T � T C � vec(H T C )jj2

=
1

1 � �
jj � H

T L (H )jj2 +
1

1 � �
jj � H

T � T C � vec(H T C )jj2

�
2�

p
1 + �

1 � �
+

�
1 � �

jjH T C jj2;1

(2.82)

becausejj � H
T � T � I T jj � � ensures that jj ( ~� H

T
~� T ) � 1jj � 1

1� � and jj � H
T jj �

p
1 + � according to Lemma

A.12 and Proposition A.15 in [16] respectively. Furthermore,

jj � H
T � T C � vec(H T C )jj2

= jj
X

i 2 T C

� H
T [� K ( i � 1)+1 � � � � K ( i � 1)+ K ]h i jj2

�
X

i 2 T C

jj � H
T [� K ( i � 1)+1 � � � � K ( i � 1)+ K ]jj � jj h i jj2

�
X

i 2 T C

� jjh i jj2 = � jjH T C jj2;1

(2.83)

in which h i is the i -th column of H . By setting � = � + �
4

p
2
 (1 � � )

, � =
p

1+ �
1� � and substituting the

inequality (2.82) into (2.79), we obtain

jjH T C jj2;1 �
��

2
p

2
 (1 � � )
+

2� �
p

J
1 � �

: (2.84)

Substituting inequality (2.84) into (2.82) yields
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jjH T jjF � 2�� +
�

1 � �

 
��

2
p

2
 (1 � � )
+

2� �
p

J
1 � �

!

: (2.85)

Combining the above two inequalities, we obtain

jjH jjF � jj H T jjF + jjH T C jjF � jj H T jjF + jjH T C jj2;1

�
�

2� +
�

2
p

2
 (1 � � )
+

��

2
p

2
 (1 � � )(1 � � )

+
�

2�
1 � �

+
2��

(1 � � )(1 � � )

� p
J

�
�

=
�

C1 + C2

p
J

�
�:

(2.86)

Next, we specify the values of the variables� , � , � and � when A is a random Gaussian and Fourier

matrix. The Orlicz-1 norm [18] and associated matrix Bernstein inequality are needed for determining the

value of � when A is Gaussian. Speci�cally, the Orlicz-1 norm is de�ned as [18]

jjZjj  1 = inf
u� 0

f E[exp(jjZjj=u)] � 2g: (2.87)

Its associated matrix Bernstein inequality is provided in Proposition 3 in [18] which can be rewritten as

Proposition 4. Let Z1; :::; ZN be independentM � M random matrices with E(Z j ) = 0 . Suppose

max
1� j � N

jjZ j jj  1 � R (2.88)

and de�ne

� 2 = max

(

jj
NX

j =1

E(Z j ZH
j )jj ; jj

NX

j =1

E(ZH
j Z j )jj

)

: (2.89)

Then there exists a constantC such that for t > 0

Pr

0

@jj
NX

j =1

Z j jj > t

1

A � 2M exp

0

@�
1
C

t2

� 2 + log
� p

NR
�

�
Rt

1

A : (2.90)

The following theorem utilizes the Proposition 4 and depicts the conditions under which � = 1.

Theorem 2.8. For � de�ned in (2.10) and L (X ) = � vec(X ),

max
i 2 T C

jj � H
T [� K ( i � 1)+1 � � � � K ( i � 1)+ K ]jj � 1 (2.91)
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with probability at least 1 � N � � +1

1. if A is a random Gaussian matrix and

N � C� � 2
max KJ

�
log(C� max

p
KJ )C + 1

�
�

(log(KM ) + log( M � J ) + log( N )) ;
(2.92)

2. if A is a random Fourier matrix and

N � C� � 2
max KJ (log(KM ) + log( M � J ) + log( N )) ; (2.93)

where C� is a constant that grows linearly with � > 1 and C is a constant.

Proof. We �rst prove the Gaussian case; the Fourier case is very similar. Notethat for an arbitrary i 2 TC

jj � H
T [� K ( i � 1)+1 � � � � K ( i � 1)+ K ]jj

= jj � H
T � i jj = jj

NX

j =1

�
�a0

j;T 
 b0
j

�
�
�
�a0H

j;i 
 b0H
j

�
jj

= jj
NX

j =1

�
�a0

j;T �a0H
j;i ) 
 (b0

j b0H
j

�
jj = jj

NX

j =1

Z j jj

(2.94)

where � i 2 CN � KM is � but only contains values in the (K (i � 1) + 1)-th to ( K (i � 1) + K )-th columns

and is zero otherwise.� i can also be viewed as an extension of [� T C ;K ( i � 1)+1 � � � � T C ;K ( i � 1)+ K ] by

padding zero columns. Moreover,�a0
j;i is the conjugate of thej -th column of A T who has only one non-zero

value in the i -th entry. In addition, E(Z j ) = E( �a0
j;T �a0H

j;i 
 b0
j b0H

j ) = E( �a0
j;T �a0H

j;i ) 
 b0
j b0H

j = 0 for i 2 TC . By

applying the property of the Kronecker product, we estimate the spectral norm of Z j which can be used to

determine its Orlicz-1 norm:

jjZ j jj = jj �a0
j;T �a0H

j;i 
 b0
j b0H

j jj = jjb0
j b0H

j jj � jj �a0
j;T �a0H

j;i jj

= jb0H
j b0

j j � jj �a0
j;T �a0H

j;i jj �
� 2

max K
N

jj �a0
j;T �a0H

j;i jj

=
� 2

max K
N

jj �a0
j;T jj2jj �a0

j;i jj2

�
� 2

max K
N

�
jj �a0

j;T jj2
2 + jj �a0

j;i jj2
2

2
=

� 2
max K
2N

jj �a0
j; f T;i g jj2

2

(2.95)

in which �a0
j; f T;i g contains non-zero values in the entries indexed byf T; ig. Therefore, jj �a0

j; f T;i g jj2
2 follows

the Chi-squared distribution with J + 1 degrees of freedom which implies that

jjZ j jj  1 � C� 2
max K (J +1)

2N � C� 2
max K �2J

2N = C� 2
max KJ

N = R for some constantC according to the proof of
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Lemma 4.7 in [9] and the de�nition of Orlicz-1 norm in (2.87). Moreover,

jj
NX

j =1

E(ZH
j Z j )jj = jj

NX

j =1

E
�
( �a0

j;i �a0H
j;T ) 
 (b0

j b0H
j ) � ( �a0

j;T �a0H
j;i ) 
 (b0

j b0H
j )

�
jj

= jj
NX

j =1

E
�
�a0

j;i �a0H
j;T �a0

j;T �a0H
j;i

�

 (b0

j b0H
j b0

j b0H
j )jj

= jjJ I M;i 


0

@
NX

j =1

jjb0
j jj2

2 � b0
j b0H

j

1

A jj

�
� 2

max KJ
N

jj I M;i jj � jj
NX

j =1

b0
j b0H

j jj =
� 2

max KJ
N

(2.96)

following from the fact that E
�
�a0

j;i �a0H
j;T �a0

j;T �a0H
j;i

�
= J I M;i for all j and

P N
j =1 b0

j b0H
j = I K from the

assumption. On the other hand,

jj
NX

j =1

E(Z j ZH
j )jj = jj

NX

j =1

E
�
�a0

j;T �a0H
j;i �a0

j;i �a0H
j;T

�

 b0

j b0H
j b0

j b0H
j jj

= jj I M;T 


0

@
NX

j =1

jjb0
j jj2

2 � b0
j b0H

j

1

A jj

�
� 2

max K
N

jj I M;T jj � jj
NX

j =1

b0
j b0H

j jj =
� 2

max K
N

:

(2.97)

Therefore, maxfjj
P N

j =1 E(Z j ZH
j )jj ; jj

P N
j =1 E(ZH

j Z j )jjg = � 2
max KJ

N = � 2. Substituting the variables R and

� 2 into Proposition 4 and taking the union bound over all i 2 TC results in

Pr
�

max
i 2 T C

jj � H
T [� T C ;K ( i � 1)+1 � � � � T C ;K ( i � 1)+ K ]jj > 1

�

� 2(M � J )KM exp

 

�
1

C0
�

N

� 2
max KJ + log

�
C� max

p
KJ

�
C� 2

max KJ

!

:
(2.98)

De�ne a variable � > 1 and set

N � C� � 2
max KJ

�
log(C� max

p
KJ )C + 1

�
� (log(KM ) + log( M � J ) + log( N ))

� C0� 2
max KJ

�
log(C� max

p
KJ )C + 1

�
� (log(KM ) + log( M � J ) + � log(N )) ;

(2.99)

where C� = C0� . Simplifying the probability term gives

Pr
�

max
i 2 T C

jj � H
T [� T C ;K ( i � 1)+1 � � � � T C ;K ( i � 1)+ K ]jj � 1

�

> 1 � 2N � � � 1 � N � N � � = 1 � N � � +1 :
(2.100)

Following the same procedures, whenA is a random Fourier matrix and for any i 2 TC , we have

E(Z j ) = E( �a0
j;T �a0H

j;i ) 
 b0
j b0H

j = 0, jjZ j jj = � 2
max K

N jj �a0
j;T jj2jj �a0

j;i jj2 = � 2
max K

p
J

N = R and � 2 = � 2
max KJ

N . The
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matrix Bernstein inequality implies

Pr
�

max
i 2 T C

jj � H
T [� T C ;K ( i � 1)+1 � � � � T C ;K ( i � 1)+ K ]jj > 1

�

� 2(M � J )KM exp
�

�
N

2� 2
max KJ + 2=3� 2

max K
p

J

�
:

(2.101)

Similarly, if we de�ne a variable � > 1 and let

N � C� � 2
max KJ (log(KM ) + log( M � J ) + log( N ))

� (2� 2
max KJ +

2
3

� 2
max K

p
J )(log(KM ) + log( M � J ) + � log(N )) ;

(2.102)

by setting C� = 8
3 � , simplifying the probability gives us

Pr
�

max
i 2 T C

jj � H
T [� T C ;K ( i � 1)+1 � � � � T C ;K ( i � 1)+ K ]jj � 1

�

> 1 � 2N � � � 1 � N � N � � = 1 � N � � +1 :
(2.103)

2.4.1 Proof of Theorem 2.4 for Random Gaussian Dictionary

Based on Section 2.3.4,jj � H
T � T � I T jj � 1

2 = � , 
 =
p

M log(MN=2) + � log(N ), and

jjY T C jj2;1 � 1
2 = � with probability at least 1 � 3N � � +1 if N

log 2 N � C�; 1� 2
max KJ (log(N ) + log( M � J )).

Moreover, in Theorem 2.5, where we construct the dual certi�cate matrix when A is a random Gaussian

matrix, we de�ne p = ~� T ( ~� H
T

~� T ) � 1vec(sign(~X 0;T )) 2 CN � 1 and jj � H
T � T � I T jj � 1

2 leads to

jj ( ~� H
T

~� T ) � 1jj � 2. So

jjpjj2 =
q

vec(sign(~X 0;T ))H ( ~� H
T

~� T ) � 1vec(sign(~X 0;T ))

�
q

2jjvec(sign(~X 0;T )) jj2
2 =

p
2J

(2.104)

which implies � =
p

2. If we use the same� in Theorem 2.8, we have� = 1 with probability at least

1 � N � � +1 when

N � C�; 2� 2
max KJ

�
log(C� max

p
KJ )C + 1

�
� (log(MK ) + log( M � J ) + log( N )) : (2.105)

Combining the requirement on N and setting C� = max f C�; 1; C�; 2g yield

N

log2 N
� C� � 2

max KJ
�

log(C� max

p
KJ )C + 1

�
� (log(M � J ) + log( MK ) + log( N )) : (2.106)

Therefore, the conditions in Theorem 2.7 are satis�ed with probability at least 1 � 4N � +1 when N is as

de�ned in equation (2.106). After substituting the parameters � = � + �
4

p
2
 (1 � � )

= 1
2 + 1

2
p

2

< 1 and

� =
p

1+ �
1� � =

p
6 into (2.86), 2� + �

2
p

2
 (1 � � )
+ ��

2
p

2
 (1 � � )(1 � � )
= 2

p
6 + 3

p
6p

2
 � 1
� 5

p
6 = C1 and

2�
1� � + 2��

(1 � � )(1 � � ) = 24
p
2
 � 1

� 24 = C2.
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2.4.2 Proof of Theorem 2.4 for Random Fourier Dictionary

In the proof of Theorem 2.6, we have derivedY = � N
Q

P P
p=1 L �

pL p(W p� 1). Since the sets �p are

disjoint, the indices of non-zero entries ofL p(W p� 1) for di�erent p are disjoint and

Y = L � (� N
Q

P P
p=1 L p(W p� 1)) = L � (p). Moreover, W p� 1 has support T from its de�nition in (2.56) which

gives us

jjpjj2
2 �

N 2

Q2

PX

p=1

jjL p(W p� 1)jj2
2 =

N 2

Q2

PX

p=1

jjL p;T (W p� 1)jj2
2

=
N 2

Q2

PX

p=1

vec(W p� 1)H � H
p;T � p;T vec(W p� 1)

�
N 2

Q2

PX

p=1

jj � H
p;T � p;T jj � jj W p� 1jj2

F �
N 2

Q2

PX

p=1

3Q
2N

4� p+1 J

�
2NJ

Q
= 2P J

(2.107)

becausejj � H
p;T � p;T jj � 3Q

2N and jjW p� 1jj2
F � 4� p+1 J following from Lemma 4.6 in [9] and equation (2.58)

respectively. � p;T is � constructed with A T and only rows indexed by � p are non-zero. Therefore,

jjpjj2 �
p

2P J and � =
p

2P with P � log(4
p

2J
 )=log 2 de�ned in equation (2.59). In addition, from

Section 2.3.6 and Theorem 2.3, we have� = 1
2 , � = 1

2 and 
 =
p

2M log(2KM ) + 2 M + 1 with probability

at least 1 � 4N � � +1 when

N � C�; 1� 2
max KJ log(4

p
2J
 ) � (log(M � J ) + log( K + 1) + log( N )) : (2.108)

Applying the same � to Theorem 2.8, whenN � C�; 2� 2
max KJ (log(KM ) + log( M � J ) + log( N )), � = 1

with probability at least 1 � N � � +1 . One can easily examine that� = � + �
4

p
2
 (1 � � )

= 1
2 + 1

2
p

2

< 1.

If we set C� = max f C�; 1; C�; 2g and merge the requirements onN , we obtain

N � C� � 2
max KJ log(4

p
2J
 ) � (log(M � J ) + log( MK ) + log( N )) : (2.109)

Thus, the conditions in Theorem 2.7 are satis�ed with probability at le ast 1 � 5N � � +1 when N satis�es

(2.109). Moreover, since� =
p

1+ �
1� � , 2� + �

2
p

2
 (1 � � )
+ ��

2
p

2
 (1 � � )(1 � � )
= 2

p
6 + 3

p
6p

2
 � 1
� 5

p
6 = C1 and

2�
1� � + 2��

(1 � � )(1 � � ) = 24

p

Pp
2
 � 1

� 24
p

P = C2
p

P with P � log(4
p

2J
 )=log 2.

2.5 Numerical Simulations

Here we present numerical simulations that illustrate and support ourtheoretical results. We set

B 2 CM � K to be the �rst K columns of the normalized DFT matrix 1p
M

F 2 CM � M . The ground truth

parameterscj and h j are generated by sampling independently from the standard normal distribution, and

the J non-zero columns of the ground truth solutionX 0 = [ cj h j � � � cM hM ] are selected uniformly. 40
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simulations are run for each setting, based on which we compute the percentage of successful recovery.

Both the dictionary, A , and the ground truth solution, X 0, including the support and its content, are

sampled independently for each simulation. We solve problems (2.5) and(2.13) via CVX [115], and in the

noiseless case if the relative error between the solution̂X and the ground truth X 0 is smaller than 10� 5,

jj X̂ � X 0 jj F

jj X 0 jj F
� 10� 5, we count it as a successful recovery.

2.5.1 The Su�cient Number of Measurement

In the �rst noiseless simulation, we examine the recovery rate with respect to the parametersK and J .

We �x M = 200 and N = 100 and let K and J range from 1 to 20. The results are summarized in the

phase transition plots of Figure 2.1 for the random Gaussian dictionary and Figure 2.2 for the random

Fourier dictionary. The results for the two dictionaries are similar. The reciprocal nature of the phase

transition boundary supports the linear scaling with KJ in equations (2.18) and (2.19). Roughly when

KJ � 60, the recovery success rate is satisfactory.
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Figure 2.1: The relation between the subspace dimension of the sensing matrix, K , and the number of
committed atoms, J , in terms of the success recovery rate whenA is a random Gaussian matrix.

To further illustrate the linear scaling of the required number of observationsN with respect to K and

J , we �x M = 200 and K = 5, and let N and J range from 30 to 100 and 1 to 20, respectively. The results

are recorded in Figure 2.3 and Figure 2.4 for the random Gaussian and Fourier dictionaries, respectively.

The same simulation but switching the roles ofK and J is also implemented, and the results are shown in

Figure 2.5 and Figure 2.6. These results support the linear scaling of Theorem 2.3.

40



2 4 6 8 10 12 14 16 18 20

J from 1 to 20

2

4

6

8

10

12

14

16

18

20

K
 fr

om
 1

 to
 2

0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

ov
er

y 
ra

te

Figure 2.2: The relation between the subspace dimension of the sensing matrix, K , and the number of
committed atoms, J , in terms of the success recovery rate whenA is a random Fourier matrix.

2.5.2 The Recovery Error Bound with Noisy Measurement

To test the noisy case, we setM = 200, K = J = 5, and N = 100, and we let y = L (X 0) + n with

jjn jj2 � � . Theorem 2.4 gives a recovery guarantee of the formjj X̂ � X 0jjF � C � � for a constant C .

Therefore, after dividing both sides by jjX 0jjF , setting jjn jj2 = � and changing the units to decibels (dB),

we obtain

20 log10

 
jj X̂ � X 0jjF

jjX 0jjF

!

� 20 log10

�
jjn jj2

jjX 0jjF

�
+ 20 log10(C): (2.110)

We call 20 log10

�
jj X̂ � X 0 jj F

jj X 0 jj F

�
the relative error in dB and 20 log10

�
jj n jj 2

jj X 0 jj F

�
the noise-to-signal ratio in dB.

To examine the linear relation between the relative error and the noise-to-signal ratio in equation (2.110),

we sample the real and complex components of the noise vectorn independently from a standard Gaussian

distribution and scale jjn jj2 to attain di�erent noise-to-signal ratios. Similar to the previous pl ots, 40

independent simulations are run for each noise-to-signal ratio and the range of the standard deviation and

mean (computed before transforming to dB) of the relative error in dB are recorded in Figure 2.7 and

Figure 2.8. The dashed lines show the theoretical error bound from Theorem 2.4 by substituting the

parameters into equations (2.21) and (2.23), and the slope of each dashed line are 1. We observe that when

noise-to-signal ratio is smaller than 0 dB, the relative error scales linearly with respect to the

noise-to-signal ratio with slope 1 for both random Gaussian and Fourier dictionaries. This con�rms that

jj X̂ � X 0jjF grows linearly with respect to � in Theorem 2.4. Moreover, if the noise dominates the observed

signal, solving the problem (2.13) results inX̂ = 0 and the relative error becomes 0 dB.
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Figure 2.3: The nearly linear relation between the dimension of the observed signal, N , and the number of
committed atoms, J , in terms of the success recovery rate whenA is a random Gaussian matrix.

2.5.3 Direction of Arrival Estimation

In this section, we apply the proposed signal model to the direction ofarrival estimation problem

introduced in Section 2.1.4. Note that there exist thousands of di�erent subspaces that the complex

calibration could live in. To give a concrete example and compare to the related work, we adopt the setting

from [9] where the calibration subspaceB 2 CN � K is modeled by the �rst K columns of the normalized

DFT matrix 1p
N

F 2 CN � N . The entries of h j are sampled independently from the standard normal

distribution and h j is normalized to have unit norm. Moreover, we setM = 181 and discretize the

direction of arrival into � j = f 0; 1; � � � ; 180g degrees. When the distance between array elements is half of

the operating wavelength, we can obtainA by substituting d = �
2 and � j into a(� j ) de�ned in Section

2.1.4. Furthermore, we setN = 50 and K = J = 5 where the directions of arrival of the 5 sources are

f 67; 75; 92; 127; 133g degrees and the signal magnitudes are sampled independently from the uniform

distribution on [0 ; 1]. The real and imaginary parts of the noise vector are independent random Gaussian

vectors with 0 mean and identity covariance matrix. SNR = 30 dB. By solving the `2;1 norm minimization

problem in (2.13), the index of the nonzero column in the solutionX̂ indicates the direction of arrival and

the norm of the nonzero column indicates the signal strength. The result is recorded in Figure 2.9 (a). As

a comparison, we also apply the Sparselift method proposed in [9] to this problem, which assumesD j for

all j are the same and solves aǹ1 norm minimization problem. The result is recorded in Figure 2.9 (b).
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Figure 2.4: The nearly linear relation between the dimension of the observed signal, N , and the number of
committed atoms, J , in terms of the success recovery rate whenA is a random Fourier matrix.

2.5.4 Single Molecule Imaging

Furthermore, we apply the proposed signal model to the single molecule imaging described in Section

2.1.4. All data comes from the Single-Molecule Localization Microscopy grandchallenge organized by ISBI2

which contains 12,000 low-resolution frames. Each low-resolution frame is 64 pixel � 64 pixel with pixel

size 100 nm� 100 nm, so that N = 64 � 64 = 4096. A typical, observed frame is shown in Figure 2.10 (a).

Superimposing all the observed frames leads to the low-resolution structure in Figure 2.10 (b). The target

of this experiment is to recover the high resolution image of size 320 pixel � 320 pixel, which implies that

M = 320 � 320 = 102400, whose pixel is of size 20 nm� 20 nm. In addition, according to the statistic of

the dataset, the number of activated 
uorophores in each frame is less orequal to J = 17 and we use the

Gaussian point spread functions to approximate the point spread functions of the microscope. By

implementing the SVD on the Gaussian point spread functions with di�erent variances, we obtain aK = 3

dimension subspace that point spread functions live in. Then by solving an `2;1 norm regularized least

square minimization problem on each low-resolution frame, we get totally12,000 high resolution images

and superimposing all high resolution images results in the super-resolution output in Figure 2.10 (c).

2.6 Conclusion

In this chapter, we introduce the generalized sparse recovery andblind demodulation model and achieve

sparse recovery and blind demodulation simultaneously. Under the assumption that the modulating

waveforms live in a known common subspace, we employ the lifting technique and recast this problem as

the recovery of a column-wise sparse matrix from structured linearmeasurements.

2EPFL Biomedical Imaging Group, Single-Molecule Localizat ion Microscopy: http://bigwww.ep
.ch/smlm/
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Figure 2.5: The nearly linear relation between the dimension of the observed signal, N , and the subspace
dimension, K , in terms of the success recovery rate whenA is a random Gaussian matrix.

In this framework, we accomplish sparse recovery and blind demodulation simultaneously by

minimizing the induced atomic norm, which in this problem corresponds to `2;1 norm minimization. In the

noiseless case, we derive near optimal sampling complexity that is proportional to the number of degrees of

freedom, and in the noisy case we bound the recovery error of the structured matrix. Numerical

simulations support our theoretical results. In addition to extending the class of dictionaries we have

considered, an interesting future direction would be to relax theconstraint that each D j is diagonal while

preserving the low-dimensional subspace assumption.
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Figure 2.6: The nearly linear relation between the dimension of the observed signal, N , and the subspace
dimension, K , in terms of the success recovery rate whenA is a random Fourier matrix.
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Figure 2.7: The relation between the relative error (dB) and noise-to-signal ratio (dB) when A is a random
Gaussian matrix. The blue horizontal sticks and red plus sign indicatethe range of the standard deviation
and the mean of the relative error (dB) respectively given a speci�cnoise-to-signal ratio (dB). The dashed
line is the theoretical error bound from Theorem 2.4.
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Figure 2.8: The relation between the relative error (dB) and noise-to-signal ratio (dB) when A is a random
Fourier matrix. The blue horizontal sticks and red plus sign indicate the range of the standard deviation
and the mean of the relative error (dB) respectively given a speci�cnoise-to-signal ratio (dB). The dashed
line is the theoretical error bound from Theorem 2.4.
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(a) The proposed method.
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(b) The Sparselift method using `1 minimization [9].

Figure 2.9: The direction of arrival (DOA) estimation. (a) The estimated d irections of arrival by solving the
`2;1 norm minimization in (2.13). (b) The result by applying the Sparselif t method using `1 minimization.

46



(a) An observed frame.

(b) The low-resolution structure. (c) The super-resolution output.

Figure 2.10: The single molecule imaging. (a) The size of observed frame is 64pixel� 64 pixel and each
pixel is of size 100 nm� 100 nm. (b) Superposition of all observed frames. (d) Superposition of allrecovered
super-resolution images. The recovered image is of size 320 pixel� 320 pixel with pixel size 20 nm� 20 nm.
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CHAPTER 3

SUPPORT RECOVERY FOR SPARSE SIGNALS WITH UNKNOWN NON-STATIONARY

MODULATION

The problem of estimating a sparse signal from low dimensional noisy observations arises in many

applications, including super resolution, signal deconvolution, and radar imaging. In this chapter, we

consider a sparse signal model with non-stationary modulations, in which each dictionary atom

contributing to the observations undergoes an unknown, distinct modulation. By applying the lifting

technique, under the assumption that the modulating signals live in a common subspace, we recast this

sparse recovery and non-stationary blind demodulation problem as the recovery of a column-wise sparse

matrix from structured linear observations, and propose to solve it viablock `1 norm regularized quadratic

minimization. Due to observation noise, the sparse signal and modulationprocess cannot be recovered

exactly. Instead, we aim to recover the sparse support of the ground truth signal and bound the recovery

errors of the signal's non-zero components and the modulation process.In particular, we derive su�cient

conditions on the sample complexity and regularization parameter for exactsupport recovery and bound

the recovery error on the support. Numerical simulations verify and support our theoretical �ndings, and

we demonstrate the e�ectiveness of our model in the application of single molecule imaging.3

3.1 Introduction

3.1.1 Overview

The problem of recovering a high-dimensional sparse signal from its low dimension observations using a

�xed sensing mechanism arises naturally in a wide range of applications, including radar autofocus [116],

magnetic resonance imaging [117], and video acquisition [118]. Typically, the system receives a low

dimensional signaly = DA c 2 CN , where c 2 CM (M > N ) is an unknown high-dimensional signal, and

D and A are known sensing matrices. Although the sensing process is under-determined, one can solve for

c by leveraging its sparsity; this sparse recovery problem has been studied extensively by the compressive

sensing community [2,80,111].

When D 2 CN � N is a diagonal matrix containing a sampled carrier signal along its diagonal, it

describes a modulation process, and thus recovery with unknowndiagonal D is sometimes referred to as

simultaneous sparse recovery and blind demodulation [11]. Scenarios where D is unknown arise in certain

self-calibration [9] and blind deconvolution problems [18].

3This is a joint work with Michael B. Wakin and Gongguo Tang [87 ,88].
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In this chapter, we further generalize this model, allowing each atom in the dictionary matrix A to

undergo a distinct modulation process, rather than multiplication by the same matrix D . We refer to this

generalized scenario as non-stationary modulation. Moreover, we suppose that the observation is

contaminated with random noise. Although we no longer expect to recover the sparse vectorc and

modulating signals (which we denote asD j ) exactly due to the existence of noise, we focus on recovering

the sparse support ofc and on bounding the recovery error ofc and D j . By employing the lifting technique

and under the assumption that the modulating signals live in a known,common subspace, we recast our

problem as the recovery of a column-wise sparse matrix from structured linear observations. Under this

formulation, there are no unknown parameters in the lifted linear operator. We solve the support recovery

problem by solving a block ` l norm (`2;1 norm) regularized quadratic minimization problem, which is also

known as the group lasso in the statistics literature [119,120]. The generalized model encompasses a wide

range of applications, including direction of arrival (DOA) estimation for an antenna array with DOA

sensitive channel responses [103], frequency estimation with damping in nuclear magnetic resonance

spectroscopy [12], and CDMA communication with a spreading sequencesensitive channel [9]. To give a

concrete example, we apply the proposed model to single molecule imaging [105] in Section 3.4.4.

3.1.2 Setup and Notation

Throughout the chapter, we represent matrices, vectors, and scalars asbold uppercase,X , bold lower

case,x , and non-bold letters, x, respectively. We use the symbolC to denote numerical constants that

might vary from line to line. Given a support set T, the notation X T represents the restriction ofX to the

columns indexed byT, and the notation x T represents the restriction ofx to the entries indexed by T.

Moreover, we usejj � jj to denote the spectral norm, which returns the maximum singular value of a matrix,

and jj � jj F to denote the Frobenius norm. For a matrix X = [ x 1; x 2; � � � ; x M ] 2 CK � M , we de�ne

jjX jj2;1 =
P M

j =1 jj x j jj2 and jjX jj2;1 = max j jj x j jj2. In addition, later in the chapter we will have the

vectorized subgradient,s 2 CKM � 1, of a function with respect to its matrix input X 2 CK � M , and we

de�ne jjsjj2;1 = max j jj sj jj2 where sj is the subgradient with respect to x j .

3.1.3 Problem Formulation

In this chapter, we consider the following generalized signal modelwith an unknown coe�cient vector

and non-stationary modulation process. Speci�cally, the observationsconsist of a contaminated composite

signal

y =
MX

j =1

cj D j a j + n 2 CN : (3.1)
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Here cj 2 C is an unknown scalar,D j 2 CN � N is an unknown modulation matrix which is non-stationary

as it depends onj , a j is a dictionary atom coming from a dictionary matrix A = [ a1; � � � ; aM ] 2 CN � M ,

and n 2 CN � 1 is additive random Gaussian noise whose real and imaginary entries follow the i.i.d

Gaussian distribution with mean 0 and variance� 2.

Since there are more unknown parameters than the number of observations in the model (3.1), to make

the recovery problem well-posed, we assume that at mostJ (< M ) of the coe�cients cj are non-zero and

that the diagonal modulation matrices, D j , live in a common K -dimension subspace

D j = diag( B h j ) (3.2)

where B 2 CN � K (N > K ) is a known basis for the subspace with orthonormal columns, andh j 2 CK � 1

are unknown coe�cient vectors. Similar subspace assumptions can befound in the deconvolution and

demixing literature [10,13]. Recoveringcj and h j from y is a bilinear inverse problem [121,122].

To combat the di�culties resulting from the bilinearity, we apply the lifting trick [10,11,14], which

collects the unknown parameters into a matrix X = [ c1h1 c2h2 � � � cM hM ] 2 CK � M . By using

Proposition 1 in [86] we can show that, whenn = 0, the observation model (3.1) takes the following

equivalent form:

y (n) = b0H
n X a0

n ; n = 1 ; : : : ; N: (3.3)

where b0
n and a0

n are the n-th column of B H and A T respectively. We write (3.3) succinctly asy = L (X )

with L being a properly de�ned linear operator. And the adjoint of the linear operator L is

L � (y ) =
P N

l =1 yl b0
l a

0H
l . The matrix X incorporates the unknown sparse signal and modulation process with

at most J (< M ) non-zero columns. The support recovery problem we study in thischapter aims to

determine the indices,j , of the non-zero columns inX from the observation vector y . We also aim to

bound the recovery error ofX in terms of the `2;1 norm. If we assume there is no trivial null modulation,

namely all D j 6= 0, �nding the indices of the non-zero columns of X is equivalent to recovering the support

of c. Moreover, note that due to the scaling ambiguity betweencj and h j , the recovery error bound is

expressed with respect to their multiplication cj h j .

A natural way to recover the ground truth X 0 from y is to exploit its sparse property and solve the

following `2;1 norm regularized quadratic minimization problem

minimize
X 2 C K � M

1
2

jjy � L (X )jj2
2 + � jjX jj2;1: (3.4)
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Alternatively, we can write (3.4) equivalently as

minimize
X 2 C K � M

1
2

jjy � � � vec(X )jj2
2 + �

MX

i =1

jj x i jj2: (3.5)

Here L (X ) = � � vec(X ) with

� = [ � 1;1 � � � � K; 1 � � � � 1;M � � � � K;M ] 2 CN � KM (3.6)

and � i;j = diag( bi )a j 2 CN � 1, where bi is the i -th column of B . Moreover, we denote the set containing

the indices of the non-zero columns of the ground-truth matrixX 0 as T := T(X 0) with jT j = J and its

complement asTC . Due to the special block structure of� , when using the subscript notation � T we refer

to the N � KJ sub-matrix of � containing the K (j � 1) + 1 to K (j � 1) + K -th columns for all j 2 T.

3.1.4 Main Contributions

Our contributions are twofold. First, we propose to apply `2;1 norm regularized quadratic minimization

to recover the support of the generalized signal model in (3.1). Second, we derive su�cient conditions

under which, with overwhelming probability, the support of the r ecovered signal is a subset of the support

of the ground truth. More precisely, we show that the required number of observations,N , is proportional

to the number of degrees of freedom,O(JK ), up to logarithmic factors. Moreover, the regularization

parameter, � , should be chosen to be proportional to the� of the noise. We also bound the error in

recovering the non-zero columns of the ground truth as measured in the `2;1 norm. With an additional

assumption on the ground truth signal, all conditions lead to exact supportrecovery.

3.1.5 Related Work

The `2;1 norm constrained quadratic minimization problem, also known as the grouplasso in statistics

literature [119,120,123], has been widely studied. However, under our particular signal model (3.1), the

linear operator � contains randomness and has a special block structure as presented in(3.6), which

distinguishes our work from other group lasso research. For example, [120] assumes each block of� ,

[� 1;j ; :::; � K;j ], to be orthonormal. [124] considers the adaptive group lasso and derives su�cient support

recovery conditions using the block coherence of a deterministic � . [125] allows varying block sizes but still

assumes a deterministic� . [126] assumes that� has independent sub-exponential rows which is not

consistent with our formulation, and they bound the recovery error in terms of `2 norm instead of `2;1

norm as in our theorem. Moreover, [112,127] provide a general recovery analysis for regression problems

regularized with partly smooth functions relative to a manifold de�n ed in [112], which encompasses thè2;1

norm. However, the precise bounds on the regularization parameter and sample complexity for exact

support recovery with � de�ned in (3.6) are not derived, and that work bounds the error in terms of `2
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norm instead of the `2;1 norm.

As for the signal model itself, the model we study is closely relatedto certain works in self-calibration

and blind deconvolution [9,18]. The work in [13] considers a similar modelexcept that the dictionary

therein consists of all sampled sinusoids over a continuous frequency range, and its modulating waveforms,

D j , are all the same. As an extension, [12] allows non-stationary modulating waveforms but still concerns

the sinusoid dictionary. The fact that [12] considers a more general signalmodel than [13] actually

facilitates the derivation of a near optimal result on the su�cient samp le complexity. Our work in this

chapter similarly bene�ts from expanding the signal model of [9]. Speci�cally, our model �ts into the

self-calibration problem [9] when allD j are the same. However, in the noisy case, [9] does not aim to

recover the support and only bounds the error in terms of thè 2 norm. [10] generalizes the model in [9] and

can be interpreted as the self-calibration with multiple sensors,while allowing varying calibration

parameters. However, [10] studies a constrained nuclear norm minimization problem with bounded noise

and requires knowing the number of sensors. Additional related models for di�erent applications, all

requiring the same modulation matrix, are available in [18,108{110].

We have also previously studied the sparse recovery and blind demodulation problem [11,86] and

numerically compared the support recovery performance of the SparseLift method [9] and the `2;1 norm

minimization method for direction of arrival estimation in [11]. In those works, however, we assume either

zero or bounded additive noise, whereas we consider random Gaussian noise in this chapter. Moreover,

in [11,86] we solve a constrained̀2;1 norm minimization problem due to the consideration of bounded

noise. The regularized formulation used in this chapter is a natural choice when considering unbounded

noise [128] and is more convenient for support recovery analysis. Finally, in those papers, we derive the

recovery error bound in terms of the`2 norm and do not study the question of exact support recovery

when noise is involved.

The rest of this chapter is organized as follows. In Section 3.2, we present our main theorem regarding

the support recovery problem. The detailed proof of the main theoremis shown in Section 3.3. Several

simulations and an experiment are conducted in Section 3.4 to demonstrate the important scaling

relationships and the e�ectiveness of our model in practical application. Finally, we conclude this chapter

in Section 3.5.

3.2 Main Result

In this section, we present our main theorem, which presents the support recovery conditions and

recovery error bound for solving (3.4) (or equivalently (3.5)). In this result, we assume that the dictionary

matrix A is a random Gaussian matrix, by which we mean a matrix whose entries follow the i.i.d standard
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normal distribution.

Theorem 3.9. Consider the observation model in equation (3.1), assume that A 2 R N � M (N < M ) is a

random Gaussian matrix, at most J (< M ) coe�cients cj are nonzero, and the real and imaginary parts of

each entry of the noise vectorn 2 CN � 1 follow the i.i.d Gaussian distribution with 0 mean and� 2

variance. Suppose also that each modulation matrixD j satis�es the subspace constraint(3.2), where

B H B = I K . If the number of observations

N � C�; 1� 2
max JK

�
log(M � J ) + log 2(N )

�
(3.7)

and the regularization parameter

� �
q

C�; 2� 2� 2
max K [log(M � J ) + log( N )] (3.8)

where C�; 1 and C�; 2 are constants that grow linearly with � > 1 and the coherence parameter

� max = max
i;j

p
N jB ij j; (3.9)

then the following properties hold with probability at least1 � O(N � � +1 ):

1. Problem (3.5) has a unique solutionX̂ 2 CK � M with its support, the set of indices of the non-zero

columns in X̂ , contained within the support T of the ground truth solution, X 0.

2. The recovery error between the solution,X̂ , and the ground truth, X 0, satis�es

jj X̂ � X 0jj2;1 �
p

C� � 2� 2
max JK [log(J ) + log( N )] + 4

p
J� (3.10)

where C� is a constant that grows linearly with � . If in addition the non-zero columns of X 0 are

bounded below

min
j 2 T

jj x 0;j jj2 >
p

C� � 2� 2
max JK [log(J ) + log( N )] + 4

p
J�; (3.11)

then X̂ and X 0 have exactly the same support which implies exact support recovery.

According to (3.10), we can derive that for any x̂ j = ĉj ĥ j and x 0;j = c0;j h0;j which are the j -th

columns of the solution X̂ and the ground truth X 0 respectively,

jj ĉj D̂ j � c0;j D 0;j jjF = jj ĉj ĥ j � c0;j h0;j jj2 �
p

C� � 2� 2
max JK [log(J ) + log( N )] + 4

p
J�: (3.12)

Moreover, since the columns ofB are orthonormal, � max 2 [1;
p

N ]. Given the system parameters and a

large enoughN , (3.7) is satis�ed when 1 � � max and � max �
q

N
C �; 1 KJ [log( M � J )+log 2 (N )] . In addition, since

we solve the column-wise sparse matrix support recovery problem via the group lasso and bound the
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recovery error in terms of `2;1 norm, Theorem 3.9 may be of interest outside the support recovery problem

and shed light on the performance of the group lasso with random block structured linear operators.

3.3 Proof of Theorem 3.9

We present proof of the main theorem in this section. We �rst derive the optimality and uniqueness

conditions of the solution to (3.5) and then apply the primal-dual witness method [22] to construct a

solution and �nd the conditions regarding the regularization parameter � and number of observationsN

such that the optimality and uniqueness conditions are satis�ed.

3.3.1 Optimality and Uniqueness Conditions

Lemma 3.3.

1. A matrix X̂ 2 CK � M is an optimal solution to (3.5) if and only if there exists a subgradient vector

s =

2

6
6
6
6
6
4

s1

...

sM

3

7
7
7
7
7
5

2 vec
�

@jj X̂ jj2;1

�
, such that

� H � � vec(X̂ ) � � H y + � �

2

6
6
4

s1

...

sM

3

7
7
5 = 0 (3.13)

which is equivalent to

� H � �
�

vec(X̂ ) � vec(X 0)
�

� � H n + � s = 0 (3.14)

where si 2 CK is the subgradient ofjj � jj 2 at x̂ i de�ned as

si =

(
x̂ i

jj x̂ i jj 2
if jj x̂ i jj2 6= 0;

f z : jjz jj2 � 1g if jj x̂ i jj2 = 0 :
(3.15)

2. If the subgradient vectors of the optimal solutionX̂ satisfy jjsi jj2 < 1 for all i =2 T(X̂ ), then any

optimal solution, �X , to (3.5) satis�es �x i = 0 for all i =2 T(X̂ ).

3. When conditions in (2) are satis�ed, if in addition � H
T (X̂ )

� T (X̂ ) 2 CKJ � KJ is invertible, then X̂ is

the unique solution to (3.5).

Proof.

1. Since problem (3.5) is convex, any optimal solution,X̂ , must satisfy the �rst-order condition (3.14).

2. We �rst argue that when � is �xed, for two arbitrary di�erent optimal solutions X̂ 1 and X̂ 2 to (3.5),

we have� � vec(X̂ 1) = � � vec(X̂ 2). This can be proved by contradiction as follows.
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Assume� � vec(X̂ 1) 6= � � vec(X̂ 2) for two arbitrary optimal solutions X̂ 1 6= X̂ 2 to (3.5). By

constructing X̂ 3 = 1
2 (X̂ 1 + X̂ 2), a little linear algebra yields

1
2

jjy � L (X̂ 3)jj2
2 + � jj X̂ 3jj2;1 <

1
2

jjy �L (X̂ k )jj2
2 + � jj X̂ k jj2;1 (3.16)

for k 2 f 1; 2g, due to the strict convexity of the function f (x ) = 1
2 jj y � x jj2

2 and the optimality of X̂ 1

and X̂ 2. Thus, X̂ 1 and X̂ 2 are not optimal. By contradiction, � � vec(X̂ 1) = � � vec(X̂ 2). Then from

(3.14), we can derive thats for di�erent optimal solutions are the same. Therefore, assume we have

an optimal solution X̂ such that jjsi jj2 < 1 for all i =2 T(X̂ ), any other optimal solution, �X , would

have subgradient vectorsjj �si jj2 = jjsi jj2 < 1 for all i =2 T(X̂ ) which implies �x i = 0 according to (3.15).

3. If conditions in (2) are satis�ed and � H
T (X̂ )

� T (X̂ ) 2 CKJ � KJ is invertible, the solution of the support

restricted problem 1
2 jj y � � T (X̂ ) � vec(X )jj2

2 + � jjX jj2;1 is unique by solving the restricted �rst order

condition.

3.3.2 Primal-Dual Witness Construction

The method we apply to �nd the conditions regarding the regularization parameter � and number of

observationsN for satisfying optimality and uniqueness conditions is the primal-dual witness method [22]

which constructs the solution matrix, X̂ , and subgradient vector, s, through the following steps.

1. Conditioned on � H
T � T 2 CKJ � KJ is invertible, we �rst obtain X̂ T 2 CK � J by solving the support

restricted problem

X̂ T = arg min
X 2 C K � J

�
1
2

jjy � � T � vec(X )jj2
2 + � jjX jj2;1

�
: (3.17)

The solution X̂ T is unique under the invertibility condition on � H
T � T . And we set

X̂ T C 2 CK � (M � J ) = 0. Thus, X̂ has support contained within the support T of the ground truth

solution X 0.

2. We calculate the subgradient vectorsT 2 C JK based onX̂ T , where sT is a sub-vector ofs consisting

of sj for all j 2 T.

3. We solve for a vectorsT C 2 C (M � J )K satisfying (3.14) and check whetherjjsi jj2 < 1 for all i =2 T.

If � H
T � T is invertible and jjsi jj2 < 1 for all i 2 TC , X̂ constructed via the primal-dual witness method

is the unique optimal solution to (3.5) with its support contained with in the support of the ground truth

solution X 0. And note that the primal-dual witness construction succeeds only ifthe problem (3.5) has a

unique solution whose support is contained within the support of the ground truth. The challenges of the

construction lie in characterizing the regularization parameter � and the number of observationsN such

that jjsi jj2 < 1 for all i 2 TC .
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To simplify the notation, without loss of generality, we assume the support of X 0 is the �rst J columns

and T = f 1; 2; :::; J g throughout the proof. Therefore, rewriting (3.14) into matrix multip lication form

results in
"

� H
T � T � H

T � T C

� H
T C � T � H

T C � T C

# "
vec(X̂ T ) � vec(X 0;T )

0

#

�

"
� H

T

� H
T C

#

n + �

"
sT

sT C

#

= 0 : (3.18)

When � H
T � T is invertible, from (3.18) we can derive that

�( X ) = vec( X̂ T ) � vec(X 0;T ) = ( � H
T � T ) � 1 �

� H
T n � � sT

�
(3.19)

and

sT C =
1
�

�
� H

T C n � � H
T C � T �( X )

�
: (3.20)

Substituting the full expression of �( X ) into (3.20) results in

sT C = � H
T C

�
I N � � T (� H

T � T ) � 1� H
T

� n
�

+ � H
T C � T (� H

T � T ) � 1sT : (3.21)

3.3.3 Important Lemmas

In this section, we introduce some important lemmas and propositions that will be applied during the

proof of Theorem 3.9. First is the isometry bound for the linear operatorL de�ned in (3.3) (and � de�ned

in (3.6)) which can be found in Lemma 4.3 in [9].

Lemma 3.4. [9, Lemma 4.3] (Isometry) For the linear operator L de�ned in (3.3) with B H B = I K and

� > 0,

jj � H
T � T � I T jj = jjL �

T L T � I T jj � � (3.22)

with probability at least 1 � N � � +1 where I T is the identity operator on the supportT such that

I T (X ) = X T , if A is a random Gaussian matrix andN � C� � 2
max KJ maxf log(N )=� 2; log2(N )=� g. Here

C� is a constant that grows linearly with � > 1.

According to Lemma A.12 in [16], if jj � H
T � T � I T jj � � < 1, � H

T � T is invertible and

jj (� H
T � T ) � 1jj � (1 � � ) � 1. In addition, we have the following quadratic Gaussian tail bound proposition,

developed from Theorem 1 in [113].

Proposition 5. Let H 2 CK � N and � = H H H . Let a 2 CN whose real and imaginary entries follow the

i.i.d normal distribution with 0 mean and � 2 variance. For all � > 0,
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Pr
�

jjH ajj2
2 > � 2

h
2 Tr ( � ) + 2

p
2 Tr ( � 2)� + 2 jj � jj �

i�
� e� � : (3.23)

If a 2 R N only contains the real part, for all � > 0,

Pr
�

jjH ajj2
2 > � 2

h
Tr ( � ) + 2

p
Tr ( � 2)� + 2 jj � jj �

i�
� e� � : (3.24)

Proof. When H and a are a complex matrix and vector, we can writeH = H R + iH I and a = aR + ia I

where H R , H I , aR and a I are all real and the entries ofaR and a I are i.i.d Gaussian random variables

with 0 mean and � 2 variance. We then have

jjH ajj2
2 = jj (H R + iH I )(aR + ia I )jj2

2

= jj (H R aR � H I a I ) + i (H R a I + H I aR )jj2
2

= jjH R aR � H I a I jj2
2 + jjH R a I + H I aR jj2

2

=

�
�
�
�
�

�
�
�
�
�

"
H R � H I

H I H R

# "
aR

a I

#�
�
�
�
�

�
�
�
�
�

2

2

:

(3.25)

De�ne H o =

2

6
4

H R � H I

H I H R

3

7
5 and � o = H T

o H o. � o has the form

� o =

"
H T

R H T
I

� H T
I H T

R

# "
H R � H I

H I H R

#

=

"
H T

R H R + H T
I H I � H T

R H I + H T
I H R

� H T
I H R + H T

R H I H T
I H I + H T

R H R

#

=

"
H 1 � H 2

H 2 H 1

#

(3.26)

where we de�neH 1 = H T
R H R + H T

I H I and H 2 = � H T
I H R + H T

R H I . Applying Theorem 1 in [113], we get

Pr
�

jjH ajj2
2 > � 2

h
Tr ( � o) + 2

p
Tr ( � 2

o)� + 2 jj � ojj �
i�

� e� � : (3.27)

If we further de�ne

� = H H H = ( H R + iH I )H (H R + iH I )

= ( H T
R � iH T

I )(H R + iH I )

= ( H T
R H R + H T

I H I ) + i (� H T
I H R + H T

R H I )

= H 1 + iH 2;

(3.28)
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by comparing (3.26) and (3.28), one can check that Tr (� o) = 2 Tr ( H 1) = 2 Tr ( � ) since Tr (H 2) = 0,

Tr ( � 2
o) = jj � ojj2

F = 2( jjH 1jj2
F + jjH 2jj2

F ) = 2 jj � jj2
F = 2 Tr ( � 2), and

jj � ojj =

�
�
�
�
�

�
�
�
�
�

"
H 1 � H 2

H 2 H 1

#�
�
�
�
�

�
�
�
�
�

= max�
�
�
�
�
�
�

�
�
�
�
�
�
�

2

6
4
x 1

x 2

3

7
5

�
�
�
�
�
�
�

�
�
�
�
�
�
�

2

=1

�
�
�
�
�

�
�
�
�
�

"
H 1 � H 2

H 2 H 1

# "
x 1

x 2

#�
�
�
�
�

�
�
�
�
�
2

= max�
�
�
�
�
�
�

�
�
�
�
�
�
�

2

6
4
x 1

x 2

3

7
5

�
�
�
�
�
�
�

�
�
�
�
�
�
�

2

=1

q
jjH 1x 1 � H 2x 2jj2

2 + jjH 2x 1 + H 1x2jj2
2

= max
jj x 1 jj 2

2 + jj x 2 jj 2
2 =1

q
jj (H 1x 1 � H 2x 2) + i (H 2x 1 + H 1x 2)jj2

2

= max
jj x 1 jj 2

2 + jj x 2 jj 2
2 =1

q
jj (H 1 + iH 2)(x 1 + ix 2)jj2

2

= max
jj x 1 jj 2

2 + jj x 2 jj 2
2 =1

jj � (x 1 + ix 2)jj2 = jj � jj

(3.29)

where x 1 and x 2 2 R N since� o is a real matrix, so that the vector corresponding to its largest singular

value is also real. Therefore, we have

Pr
�

jjH ajj2
2 > � 2

h
2 Tr ( � ) + 2

p
2 Tr ( � 2)� + 2 jj � jj �

i�
� e� � : (3.30)

Similarly, when a only contains the real part

jjH ajj2
2 =

�
�
�
�
�

�
�
�
�
�

"
H R

H I

#

aR

�
�
�
�
�

�
�
�
�
�

2

2

; (3.31)

� still follows (3.28) and

� o = [ H T
R H R + H T

I H I ] = H 1: (3.32)

In this case, Tr (� o) = Tr ( � ), Tr ( � 2
o) � Tr ( � 2) and since� o is real, we have

jj � ojj = max
jj x jj 2 =1 ;x 2 R N

q
jjH 1x jj2

2

� max
jj x jj 2 =1 ;x 2 R N

q
jjH 1x jj2

2 + jjH 2x jj2
2

= max
jj x jj 2 =1 ;x 2 R N

q
jjH 1x + iH 2x jj2

2

� max
jj x jj 2 =1 ;x 2 C N

q
jj (H 1 + iH 2)x jj2

2

= max
jj x jj 2 =1 ;x 2 C N

jj � x jj2 = jj � jj :

(3.33)
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So we have, for� > 0,

Tr ( � ) + 2
p

Tr ( � 2)� + 2 jj � jj � � Tr ( � o) + 2
p

Tr ( � 2
o)� + 2 jj � ojj � (3.34)

which results in

Pr
�

jjH ajj2
2 > � 2

h
Tr ( � ) + 2

p
Tr ( � 2)� + 2 jj � jj �

i�
� e� � : (3.35)

Proposition 6. Let H 2 CK � N and � = H H H . Let a 2 CN whose real and imaginary entries follow the

i.i.d normal distribution with 0 mean and � 2 variance. For all � > 1,

Pr
�

jjH ajj2
2 > � 2

h
2 + (2

p
2 + 2) �

i
Tr ( � )

�
� e� � : (3.36)

If a 2 R N only contains the real part, for all � > 1,

Pr
�
jjH ajj2

2 > � 2 (1 + 4 � ) Tr ( � )
�

� e� � : (3.37)

Proof. Since� is a positive semi-de�nite and hermitian matrix, all its eigenvalues, � i , are non-negative.

Thus, Tr ( � 2) =
P N

i =1 � 2
i � (

P N
i =1 � i )2 = Tr ( � )2 and jj � jj = � max �

P N
i =1 � i = Tr ( � ). As a result, for

� > 1,

� 2
h
2 + (2

p
2 + 2) �

i
Tr ( � ) � � 2

h
2 Tr ( � ) + 2

p
2 Tr ( � 2)� + 2 jj � jj �

i
(3.38)

and

� 2 (1 + 4 � ) Tr ( � ) � � 2
h
Tr ( � ) + 2

p
Tr ( � 2)� + 2 jj � jj �

i
: (3.39)

Then applying Proposition 5 yields Proposition 6.

3.3.4 Bounding jjsT C jj2;1

Recalling (3.21), to prove that jjsi jj2 < 1 for all i 2 TC which is equivalent to jjsT C jj2;1 < 1, where the

`2;1 norm of the subgradient vector is de�ned in Section 3.1.2, we only need toshow that for a constant


 2 (0; 1),

jj � H
T C

�
I N � � T (� H

T � T ) � 1� H
T

� n
�

jj2;1 �


2

(3.40)

and

jj � H
T C � T (� H

T � T ) � 1sT jj2;1 �


2

: (3.41)

Then by the triangle inequality, jjsT C jj2;1 � 
 < 1.
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Lemma 3.5. Conditioned on � H
T � T being invertible, we have

jj � H
T C

�
I N � � T (� H

T � T ) � 1� H
T

� n
�

jj2;1 �


2

(3.42)

for 
 2 (0; 1) with probability at least 1 � N � � +1 when

� �

s
C� � 2� 2

max K [log(M � J ) + log( N )]

 2 (3.43)

and

N � 10 log(M � J ) + 10 � log(N ) (3.44)

where C� is a constant that grows linearly with � > 1.

Proof. jj � H
T C

�
I N � � T (� H

T � T ) � 1� H
T

�
n
� jj2;1 � 


2 for 
 2 (0; 1) is equivalent to

max
i 2 T C

jj � H
i

�
I N � � T (� H

T � T ) � 1� H
T

�
n jj2

2 �
� 2
 2

4
(3.45)

where � i (i 2 TC ) is the sub-matrix containing the [K (i � 1) + 1] to [ K (i � 1) + K ]-th columns of � . If we

de�ne H i = � H
i

�
I N � � T (� H

T � T ) � 1� H
T

�
, the projection matrix P =

�
I N � � T (� H

T � T ) � 1� H
T

�
, and

� = H H
i H i , we get

Tr ( � ) = jjH i jj2
F = jj � H

i � P jj2
F = jjB H diag(a i )H � P jj2

F

= jjP diag(a i )B jj2
F

= jjP [diag(b1)a i ; diag(b2)a i ; � � � ; diag(bK )a i ] jj2
F

=
KX

k=1

jjP diag(bk )a i jj2
2 �

KX

k=1

jjP jj2 � 2
max

N
jja i jj2

2

�
� 2

max K
N

jja i jj2
2:

(3.46)

Sincen is the additive Gaussian noise vector, applying Proposition 6 gives us,for � 1 > 1

Pr
�

jjH i n jj2
2 >

� 2
 2

4
� � 2

h
2 + (2

p
2 + 2) � 1

i
Tr ( � )

�
� e� � 1 ; (3.47)

in which we need

� �

s
� 2

�
8 + (8

p
2 + 8) � 1

�
� 2

max K jja i jj2
2


 2N

�

s
� 2

�
8 + (8

p
2 + 8) � 1

�
Tr ( � )


 2 :

(3.48)

To control the term jja i jj2
2, we de�ne an event E = f maxi 2 T C jja i jj2

2 < 2N g. Because each entry of

a i 2 R N follows the standard normal distribution, jja i jj2
2 is a � 2

N random variable. According to Lemma 1
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in [129], for � 2 > 0

Pr( jja i jj2
2 � 2

p
� 2N + 2 � 2 + N ) � e� � 2 : (3.49)

By solving 2N � 2
p

� 2N + 2 � 2 + N , we require � 2 � ( 2
p

3� 2
4 )2N � 0:1340N . So for 0< � 2 � N

10 , we have

Pr( jja i jj2
2 � 2N ) � e� � 2 : (3.50)

Taking the union over all i 2 TC gives us

Pr(E C ) � (M � J )e� � 2 (3.51)

which is meaningful when log(M � J ) � � 2 � N
10 .

In addition, if we de�ne another event F = f maxi 2 T C jjH i n jj2
2 > � 2 
 2

4 g, conditioned on E and with

� �

s
� 2

�
16 + (16

p
2 + 16)� 1

�
� 2

max K

 2 ; (3.52)

by taking the union of (3.47) over all i 2 TC , we obtain

Pr(F j E ) � (M � J )e� � 1 : (3.53)

Therefore,

Pr(F j E ) + Pr( E C ) � (M � J )e� � 1 + ( M � J )e� � 2

= 2N � � � N � � +1
(3.54)

for � > 1 by setting � 1 = � 2 = log( M � J ) + � log(N ). Substituting � 1 into (3.52) and some simpli�cation

yields

� �

s
C� � 2� 2

max K [log(M � J ) + log( N )]

 2

(3.55)

where C� = (16
p

2 + 16)� + 16 is a constant that grows linearly with � > 1. Moreover,

log(M � J ) � � 2 = log( M � J ) + � log(N ) � N
10 requiresN � 10 log(M � J ) + 10 � log(N ). Finally, the law

of probability implies

Pr(max
i 2 T C

jj � H
i

�
I N � � T (� H

T � T ) � 1� H
T

�
n jj2

2 �
� 2
 2

4
)

= Pr( F C ) � Pr(F C \ E ) = 1 � [Pr(E C ) + Pr( F \ E)]

� 1 � [Pr(E C ) + Pr( F jE )] � 1 � N � � +1 :

(3.56)

Lemma 3.6. Conditioned on � H
T � T being invertible andjj (� H

T � T ) � 1jj � 2, we have
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jj � H
T C � T (� H

T � T ) � 1sT jj2;1 �


2

(3.57)

for 
 2 (0; 1) with probability at least 1 � N � � when

N � C�
� 2

max KJ

 2 [log(M � J ) + log( N )]; (3.58)

where C� is a constant that grows linearly with � > 1.

Proof. jj � H
T C � T (� H

T � T ) � 1sT jj2;1 � 

2 for 
 2 (0; 1) can be reformulated as

max
i 2 T C

jj � H
i � T (� H

T � T ) � 1sT jj2
2

= max
i 2 T C

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

2

6
6
6
6
6
4

aH
i diag(b1)H

aH
i diag(b2)H

...

aH
i diag(bK )H

3

7
7
7
7
7
5

� v

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

2

2

= max
i 2 T C

jj vH [diag(b1)a i ; diag(b2)a i ; � � � ; diag(bK )a i ]jj2
2

= max
i 2 T C

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

2

6
6
6
6
4

vH diag(b1)

vH diag(b2)
...

vH diag(bK )

3

7
7
7
7
5

a i

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

2

2

= max
i 2 T C

jjH a i jj2
2 �


 2

4

(3.59)

where we de�nev = � T (� H
T � T ) � 1sT 2 CN and

H =

2

6
6
6
6
4

vH diag(b1)

vH diag(b2)
...

vH diag(bK )

3

7
7
7
7
5

2 CK � N : (3.60)

Therefore, for � = H H H , we have

Tr ( � ) =

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

2

6
6
6
6
4

vH diag(b1)

vH diag(b2)
...

vH diag(bK )

3

7
7
7
7
5

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

2

F

�
� 2

max K
N

jjv jj2
2 �

2� 2
max KJ

N
(3.61)

since

jjv jj2
2 = jvH vj = jsH

T (� H
T � T ) � 1� H

T � T (� H
T � T ) � 1sT j

= jsH
T (� H

T � T ) � 1sT j � jj (� H
T � T ) � 1jj � jj sT jj2

2 � 2J:
(3.62)

Becausea i 2 R N for i 2 TC is independent of� T and a i 's entries follow the i.i.d standard normal

distribution, Proposition 6 implies, for � 1 > 1
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Pr
�
jjH a i jj2

2 > (1 + 4 � 1) Tr ( � )
�

� e� � 1 : (3.63)

To ensure that 
 2

4 � (1 + 4 � 1) Tr ( � ) , we need

N �
(8 + 32� 1)� 2

max KJ

 2 : (3.64)

By taking the union over all i 2 TC , we get

Pr
�

max
i 2 T C

jj � H
i � T (� H

T � T ) � 1sT jj2
2 >


 2

4

�
� (M � J )e� � 1 = N � � (3.65)

if we set � 1 = log( M � J ) + � log(N ) for � > 1. Substituting the full expression of � 1 into (3.64) and some

simpli�cation yields

N � C�
� 2

max KJ

 2 [log(M � J ) + log( N )] (3.66)

where C� = 32� + 8 is a constant that grows linearly with � > 1.

3.3.5 Bounding jj X̂ T � X 0;T jj2;1

When the support of the unique optimal solution X̂ is contained within the support of the ground truth

solution X 0, the recovery error jj X̂ � X 0jj2;1 = jj X̂ T � X 0;T jj2;1 . And because the optimal solution on the

support, X̂ T 2 CK � J (we assumeX̂ T 6= X 0;T , otherwise jjX 0;T � X̂ T jj2;1 = 0) is attained by solving the

support-restricted regularized least square problem (3.17) whose objective function

f (vec(X )) = 1
2 jj y � � T � vec(X )jj2

2 + � jjX jj2;1 is strongly convex, since1
2 jj y � � T � vec(X )jj2

2 is strongly

convex conditioned on� H
T � T being positive de�nite and � jjX jj2;1 is convex, by the property of the

strongly convex function, we have

f (vec(X̂ T )) � f (vec(X 0;T )) + Re
n

g(vec(X 0;T ))H �
h
vec(X̂ T ) � vec(X 0;T )

i o
+

m
2

jj X̂ T � X 0;T jj2
F (3.67)

where g(vec(X 0;T )) is the subgradient of f (vec(X 0;T )). In addition, if we set � = 1
2 in Lemma 3.4, we have

jj (� H
T � T ) � 1jj � 2 according to Lemma A.12 in [16], which implies� H

T � T � 1
2 I . As a result, m = 1

2 . Then

by the H•older inequality,

f (vec(X̂ T )) � f (vec(X 0;T )) + Re
n

g(vec(X 0;T ))H �
h
vec(X̂ T ) � vec(X 0;T )

i o
+

1
4

jj X̂ T � X 0;T jj2
F

� f (vec(X 0;T )) � jj g(vec(X 0;T )) jj2;1 jj X̂ T � X 0;T jj2;1 +
1

4
p

J
jj X̂ T � X 0;T jj2;1 jj X̂ T � X 0;T jj2;1

(3.68)
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where the `2;1 norm of the subgradient vector is de�ned in Section 3.1.2, and the second inequality comes

from the fact that jj X jj 2
F

jj X jj 2; 1 jj X jj 2; 1
� 1p

J
. Because ifjjX jj2

F = L, one can check thatjjX jj2;1 �
p

L and

jjX jj2;1 �
p

LJ where the equality is achieved when the 2-norm of allJ columns are the same.

Therefore, sinceX̂ T 6= X 0;T and X̂ T is the optimal solution, f (vec(X̂ T )) � f (vec(X 0;T )), (3.68) yields

jj X̂ T � X 0;T jj2;1 � 4
p

J jjg(vec(X 0;T )) jj2;1

= 4
p

J jj � H
T [� T vec(X 0;T ) � y ] + � s0;T jj2;1

= 4
p

J jj � � H
T n + � s0;T jj2;1

� 4
p

J
�
jj � H

T n jj2;1 + jj � s0;T jj2;1
�

= 4
p

J
�
jj � H

T n jj2;1 + �
�

(3.69)

where we have usedy = � T vec(X 0;T ) + n and jjs0;T jj2;1 = 1. Now we turn to bound the term jj � H
T n jj2;1

applying the following lemma.

Lemma 3.7. Conditioned on � H
T � T being invertible, we have

jj � H
T n jj2;1 �

p
C� � 2� 2

max K [log(J ) + log( N )] (3.70)

with probability at least 1 � N � � +1 when

N � 10 log(J ) + 10 � log(N ) (3.71)

where C� is a constant that grows linearly with � > 1.

Proof. If we de�ne � j (j 2 T) to be the [K (j � 1) + 1] to [ K (j � 1) + K ]-th columns of � , we have

jj � H
T n jj2;1 = max j 2 T jj � H

j n jj2. For an arbitrary j 2 T, let � = � j � H
j ,

Tr ( � ) = Tr ( � j � H
j ) = Tr ( � H

j � j )

= jj � j jj2
F = jj [diag(b1)a j ; � � � ; diag(bK )a j ] jj2

F

=
KX

k=1

jj diag(bk )a j jj2
2 �

� 2
max K
N

jja j jj2
2:

(3.72)

If we de�ne an event E = f maxj 2 T jja j jj2
2 < 2N g, in the proof of Lemma 3.5 we have shown that for

0 < � 1 � N
10

Pr( jja i jj2
2 � 2N ) � e� � 1 : (3.73)

Taking the union over all j 2 T results in

Pr(E C ) � Je� � 1 (3.74)
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which is meaningful when log(J ) � � 1 � N
10 . Therefore, conditioned onE, Tr ( � ) < 2� 2

max K . Applying

Proposition 6 gives us, for� 2 > 1

Pr( jj � H
j n jj2

2 >
h
4 + (4

p
2 + 4) � 2

i
� 2� 2

max K j E) � e� � 2 : (3.75)

Taking the union over all j 2 T yields

Pr(max
j 2 T

jj � H
j n jj2

2 >
h
4 + (4

p
2 + 4) � 2

i
� 2� 2

max K j E) � Je� � 2 : (3.76)

Therefore,

Pr(max
j 2 T

jj � H
j n jj2

2 >
h
4 + (4

p
2 + 4) � 2

i
� 2� 2

max K j E) + Pr( E C ) � Je� � 2 + Je� � 1 = 2N � � � N � � +1

(3.77)

if we set � 1 = � 2 = log( J ) + � log(N ) for � > 1. Moreover, log(J ) � � 1 = log( J ) + � log(N ) � N
10 requires

that N � 10 log(J ) + 10 � log(N ). Substituting � 2 = log( J ) + � log(N ) into (3.76) and some simpli�cation

yields that, for an event

F =
n

max
j 2 T

jj � H
j n jj2 >

p
C� � 2� 2

max K [log(J ) + log( N )]
o

(3.78)

where C� = (4
p

2 + 4) � + 4, we have Pr(F j E ) + Pr( E C ) � N � � +1 . Therefore,

Pr
�

jj � H
T n jj2;1 �

p
C� � 2� 2

max K [log(J ) + log( N )]
�

= Pr( F C ) � Pr(F C \ E ) = 1 � [Pr(E C ) + Pr( F \ E)]

� 1 � [Pr(E C ) + Pr( F jE )] � 1 � N � � +1 :

(3.79)

3.3.6 Proof of Theorem 3.9

We now sum up the related lemmas to derive the �nal results in Theorem 3.9. By setting � = 1
2 ,

Lemma 3.4 shows that� H
T � T is invertible and jj (� H

T � T ) � 1jj � 2 with probability at least 1 � N � � +1

when N � C�; 0� 2
max KJ log2(N ) for � > 1.

By applying the same � to Lemma 3.5 and 3.6 and setting
 = 1
2 , we can get that, conditioned on

� H
T � T being invertible and jj (� H

T � T ) � 1jj � 2, jjsT C jj2;1 � 1
2 which implies that the support of the unique

optimal solution X̂ to (3.5) is contained within the support of the ground truth solution X 0, with

probability at least 1 � 2N � � +1 , when

� �
q

C�; 2� 2� 2
max K [log(M � J ) + log( N )] (3.80)

and
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N � C�; 3� 2
max JK [log(M � J ) + log( N )]: (3.81)

As for the recovery error, we apply the same� to Lemma 3.7 and substitute (3.70) into (3.69). As a

result, conditioned on � H
T � T being invertible and the support of the unique optimal solution X̂ being

contained within the support of X 0,

jj X̂ � X 0jj2;1 � 4
p

J
�
jj � H

T n jj2;1 + �
�

�
p

C� � 2� 2
max JK [log(J ) + log( N )] + 4

p
J� (3.82)

where C� is a constant that grows linearly with � , with probability at least 1 � N � � +1 when

N � 10 log(J ) + 10 � log(N ).

Therefore, after combining the probability and the requirement on N and � , we can conclude that, with

probability at least 1 � 4N � � +1 , (3.5) has a unique optimal solution X̂ with its support contained within

the support of the ground truth solution X 0 and the recovery error in terms of`2;1 norm satis�es (3.82)

when � satis�es (3.80) and N � C�; 1� 2
max JK [log(M � J ) + log 2(N )] where C�; 1 = max f C�; 0; C�; 3g for

� > 1.

3.4 Numerical Simulations

In this section, we present several numerical simulations to demonstrate and support the theoretical

results in Theorem 3.9. In these simulations, each entry of the dictionary A 2 R N � M is sampled

independently from the standard normal distribution and B 2 CN � K contains the �rst K columns of the

normalized N � N DFT matrix. The real and imaginary components of cj 2 C and h j 2 CK � 1 follow the

i.i.d standard normal distribution and the support, T with jT j = J , of the ground truth solution

X 0 = [ c1h1; � � � ; cM hM ] 2 CK � M is selected uniformly at random. Problem (3.5) is solved via CVX [115].

3.4.1 Range of � for Exact Support Recovery

In the �rst simulation, we determine the e�ective range of � for exact support recovery. Theoretically,

(3.8) provides a lower bound for� such that Theorem 3.9 holds and (3.11) gives an upper bound to achieve

exact support recovery. To verify the bounds of� , we de�ne 
 0 =
p

� 2� 2
max K [log(M � J ) + log( N )] and


 = 
 0
min j 2 T jj x 0;j jj 2

. (3.8) implies that we could set � = k
 0 for somek > 0. In addition, according to (3.8)

and (3.11) in Theorem 3.9, when all system parameters except� are �xed, to achieve exact support

recovery, � should satisfy

C1
 0 � � = k
 0 <
min j 2 T jj x 0;j jj2 � C2

C3
(3.83)
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which is equivalent to

C1 � k <
C4



� C5 (3.84)

where C4 = 1
C3

and C5 = C2
C3 
 0

. To examine this relation, we �x � = 0 :1, J = K = 3, N = 100, and

M = 150, and we vary k and 
 . 50 trials are run for each (k; 
 ) pair and we record the exact support

recovery rate in Figure 3.1, from which we do observe thatk should be larger than a constant which is

approximately 1:2 under this setting and that k has a reciprocal relation with 
 .
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Figure 3.1: The relation betweenk and 
 in terms of the exact support recovery rate where� = k
 0 and

 = 
 0

min j 2 T jj x 0;j jj 2
.

3.4.2 Number of Observations N for Exact Support Recovery

Equation (3.7) in Theorem 3.9 indicates that the su�cient number of observations, N , scales nearly

linearly with respect to the subspace dimensionK and the sparsity J . To verify that, in the second

simulation, we set M = 150, k = 3, and 
 = 0 :02 to make sure that � is in an appropriate range for exact

support recovery. We vary N and K (with �xed J = 3) and record the exact support recovery rate in

Figure 3.2. The result of a similar simulation but varying N and J (with �xed K = 3) is shown in

Figure 3.3. 50 simulations are run for each setting. We observe that linear scaling of the number of

observationsN with the subspace dimensionK and the sparsity J is su�cient for exact support recovery.
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Figure 3.2: The nearly linear relation between the number of observations, N , and the subspace dimension,
K , to achieve exact support recovery.
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Figure 3.3: The nearly linear relation between the number of observations, N , and the sparsity, J , to
achieve exact support recovery.

3.4.3 Recovery Error Bound

Next we turn to verify the recovery error bound in (3.10), which scales linearly with respect to � and

nearly linearly with respect to
p

J . We set K = 3, N = 100, M = 150, and 
 = 0 :02. In Figure 3.4, we use

� = k
 0 (with �xed J = 3) and vary k within the proper range for exact support recovery based on

Figure 3.1. 100 trials are run for eachk and we calculate the mean and standard deviation of the recovery

error jj X̂ � X 0jj2;1 . Note that the recovery error is counted only when the exact support recovery is

achieved. In this �gure, we do observe linear scaling of the error with � .
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Similarly, we vary J (with �xed � = 3 
 0) within the proper range for exact support recovery based on

Figure 3.3 and record the squared recovery errorjj X̂ � X 0jj2
2;1 in Figure 3.5. Again, the squared recovery

error is counted only when the exact support recovery is achieved. In this �gure, we can observe nearly

linear scaling of the squared error withJ .
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Figure 3.4: The linear relation between the recovery error,jj X̂ � X 0jj2;1 , and the regularization parameter
� = k
 0. The red plus signs and the blue horizontal sticks indicates the meanand standard deviation of
the recovery error.
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Figure 3.5: The nearly linear relation between the squared recovery error, jj X̂ � X 0jj2
2;1 , and the sparsity

J . The red plus signs and the blue horizontal sticks indicates the meanand standard deviation of the
squared recovery error.

3.4.4 Single Molecule Imaging

In this experiment, we apply our signal model (3.1) to the single molecule imaging problem and achieve

super-resolution by solving (3.5). In molecule imaging via stochastic optical reconstruction microscopy

(STORM) [106], the sub-cellular structures are dyed using 
uorophores, and during each observation only
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a small portion of the 
uorophores are activated. Moreover, 
uorophores at di�erent depths will undergo

di�erent degrees of blurring.

Consequently, each observed image frame consists of a few activated 
uorophores convolved with the

non-stationary Gaussian point spread functions of the microscope as shownin Figure 3.6 (a). Speci�cally,

the observed low resolution frame is of size 64� 64 pixels and each pixel corresponds to a region of size

100� 100 nm. The goal is to construct a target image with 320� 320 pixels with each pixel corresponding

to a region of size 20� 20 nm.

If we vectorize the frames, each observed low resolution frame can be represented as

y = Sample

2

4
MX

j =1

cj (B 0h j ) ~ ej + n 0

3

5 2 R N � 1 (3.85)

where Sample[�] denotes the sub-sampling operator,N = 64 � 64 = 4096 andM = 320 � 320 = 102400.

Moreover, cj is the unknown 
uorophore intensity at the j -th position, B 0 models the subspace containing

the non-stationary Gaussian point spread functions (with unknown coe�cient vector h j for the j -th

position), ej 2 R M is the j -th column of the identity matrix, and n 0 is the unknown additive noise. All

observed frames,y , come from the Single-Molecule Localization Microscopy grand challenge organized by

ISBI4. The dataset contains 12000 low resolution frames, and the maximum number ofactivated


uorophores in each frame is 18 which implies that at mostJ = 18 coe�cients cj are non-zero for eachy .

To apply our model, we must construct the subspace,B 0, to capture the non-stationary point spread

functions. By changing the variances (widths), we generate nine di�erent Gaussian point spread functions;

four examples are shown in Figure 3.6 (b). We then apply the singular value decomposition (SVD) to a

matrix of the vectorized point spread functions and record their singular values in Figure 3.6 (c). From this

we see that the point spread functions approximately live in a 3-dimensional subspace. Therefore, we set

K = 3 and let B 0 contain the singular vectors corresponding to the 3 largest singular values. We display

the corresponding singular vectors in Figure 3.6 (d).

To better illustrate the connection between the single molecule imaging problem and the signal model

we study, (3.85) can be equivalently represented as

y = Sample

(

IDF T

2

4
MX

j =1

cj D j a j + n

3

5

)

2 R N � 1 (3.86)

where IDF T [�] denotes the inverse discrete Fourier transform operator,a j s are the DFTs of spikes at all

possible spatial locations,D j = diag( B h j ) where B = DF T [B 0], and n = DF T [n 0].

4EPFL Biomedical Imaging Group, Single-Molecule Localizat ion Microscopy: http://bigwww.ep
.ch/smlm/
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(a) An observed frame. (b) Point spread functions.

(c) The singular values. (d) The singular vectors.

Figure 3.6: The analysis of point spread functions. (a) A typical observedframe is of size 64� 64 pixels
with each pixel corresponding to a region of size 100� 100 nm. (b) Four examples of the non-stationary
point spread functions. (c) The singular values of the point spread functions. (d) The singular vectors
corresponding to the three largest singular values.

In this case, if we representy = L (X ) with X = [ c1h1; � � � ; cM hM ], the linear operator L incorporates

additional inverse Fourier transform and sub-sample operators, andA is a Fourier dictionary instead of

random Gaussian. The noisen , h j , and cj for all j are unknown, and the indices of the non-zero columns

in X indicate the locations of the activated 
uorophores in the high resolution image.

We pre-process each low resolution frame by subtracting the averageintensity of the data set, and

superimposing all the frame results in the low resolution image in Figure 3.7 (a). Moreover, we solve (3.5)

for each observed low resolution frame via SpaRSA [130]. By superimposing all the high resolution images

that we get, we obtain the super-resolution result in Figure 3.7 (b). Although the dictionary is not

Gaussian in this application, the superior super-resolution resultveri�es the e�ectiveness of the proposed

signal model and minimization problem.
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(a) Low resolution input. (b) Super-resolution result.

Figure 3.7: The single molecule imaging experiment. The image in (a) is ofsize 64� 64 pixels with each
pixel corresponding to a region of size 100� 100 nm. (b) shows the super-resolution result, which has size
320� 320 pixels with each pixel corresponding to a region of size 20� 20 nm.

Finally, when K = 1, (3.5) degenerates to the classical̀ 1 norm constrained lasso problem which has

been comprehensively studied. However, by choosingK = 1, the model sacri�ces its ability to capture

non-stationary modulation, which is signi�cant in this problem when t he point spread functions have

several comparable singular values. Although in our case, we happen to haveone dominant singular value

as shown in Figure 3.6 (c), which implies that super-resolution can be attempted with K = 1, we see that a

larger K still bene�ts the super-resolution process. To demonstrate this, we run the single molecule

imaging experiments again usingK = 3 and K = 1. Three super-resolution examples are shown in

Figure 3.8, from which we can �nd that although K = 3 and K = 1 achieve similar performance, some

activated 
uorophores can be more accurately represented using the 3-dimensional subspace (K = 3), and

that leads to a more clear and accurate super-resolution result.

3.5 Conclusion

In this chapter, we consider the problem of recovering a sparse signal with unbounded noise and

non-stationary blind modulation. Using the lifting technique and wi th a subspace assumption on the

modulating signals, we recast this problem as the recovery of a column-wise sparse matrix from structured

linear observations. We apply`2;1 norm regularized quadratic minimization, also known as the group lasso,

to solve this problem and derive su�cient conditions on the sample complexity and regularization

parameter for exact support recovery. We also bound the recovery error in terms of the `2;1 norm.

Numerical simulations are consistent with our predictions and supportthe theoretical results. Moreover,

we apply our model to single molecule imaging and achieve promising super-resolution results.
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(a) Input frame. (b) Result for K = 3. (c) Result for K = 1.

(d) Input frame. (e) Result for K = 3. (f) Result for K = 1.

(g) Input frame. (h) Result for K = 3. (i) Result for K = 1.

Figure 3.8: Comparison between the super-resolution results forK = 3 and K = 1. (a), (d), and (g) are
three low-resolution input frames. (b), (e), and (h) show the super-resolution results for K = 3. (c), (f),
and (i) show the super-resolution results forK = 1. The area of interest is highlighted using the red
rectangle. The input frames are of size 64� 64 pixels and the outputs are 320� 320 pixels.
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CHAPTER 4

ROBUST PARAMETER ESTIMATION OF CONTAMINATED DAMPED EXPONENTIALS

Parameter estimation of damped exponential signals has wide applications including fault detection and

system parameter identi�cation, etc. However, existing methodsfor estimating parameters of damped

exponentials are either sensitive to noise or restricted to dealing with a certain type of noise such as

Gaussian noise. In this chapter we aim to estimate parameters of damped exponentials from contaminated

signal, i.e., a mixture of damped exponentials, random Gaussian noise, and spike interference. We propose

two robust approaches, a convex one solved by the alternating directionmethod of multipliers (ADMM)

and a non-convex one solved by coordinate descent, to recovering a low-rank Hankel matrix of damped

exponentials from noisy measurements for further parameter estimation using the matrix pencil technique.

Numerical experiments show that our proposed methods outperform classical ones in detecting small

damped fault signatures from noisy measurements. While the convex approach is amenable to theoretical

analysis and global convergence guarantees, the non-convex one exhibits more robustness and

computational e�ciency. 5

4.1 Introduction

The model of damped exponentials occurs naturally in a wide range of applications including fault

detection [131,132], structural health monitoring [133], and system identi�cation [134], etc.

4.1.1 Parameter Estimation of Damped Exponentials

Mathematically, the system observes a time-domain signal

y(t) =
MX

j =1

A j e� j t ei (2 �f j t + � j ) + � (t) (4.1)

where y(t) is composed ofM damped exponentials but contaminated by noise� (t). Parameters A j > 0,

� j � 0, f j > 0 and � j 2 R represent the corresponding amplitude, the damping coe�cient,the frequency,

and the phase of thej th (j = 1 ; :::; M ) damped exponential component, respectively. In many practical

applications, e.g., signal analysis of electric circuits [135] and fault detection of induction machines [136],

these parameters as well as the numberM are typically unknown and to be identi�ed for either analyzing

the system status or evaluating the machine fault severity,etc. Furthermore, the noise � (t) may include not

only white Gaussian noise but also spike interference, which is caused by external interference such as

5This is a joint work with Dehong Liu, Hassan Mansour, and Petr os T. Boufounos [89].
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switching operations or internal defects such as mechanical faults. Therefore, it is of great interest to

identify damped exponentials as well as spikes from contaminated measurements.

The goal of this chapter is to provide robust solutions to decompose a mixture signal of damped

exponentials, spikes, and random Gaussian noise, and further to estimate all unknown parameters of the

exponentials.

4.1.2 Related Work

Parameter estimation of damped exponentials has been extensively studied in the noiseless

setting [137,138]. Well-established methods for solving this probleminclude Prony's method [139,140],

which contains a polynomial root-�nding operation, and the matrix penci l method [141], which forms a

matrix pencil based on the input signal and solves a generalized eigenvalue problem. According

to [142,143], the matrix pencil method is computationally more e�cient and has better statistical

properties compared to the Prony's method. However, both methods are very sensitive to noise.

To combat noise, data pre-processing methods based on singular value decomposition (SVD) have been

proposed for the matrix pencil method, and demonstrated very e�ective for Gaussian noise [138,144]. For

example, the total-least square matrix pencil (TMP) [138] truncates the singular values of a Hankel matrix

constructed from the noisy observation. The underlying principle is that the true noise-free Hankel matrix

of damped exponentials is low-rank [37,145]. However, in the presence of ubiquitous spike

interference [80,135], a few grossly corrupted entries severely a�ect the result of SVD [31], resulting poor

performance in parameter estimation. Although one may use robust principle component analysis

(RPCA) [31] to e�ectively extract a low-rank matrix despite of spike interference, this low-rank matrix

typically cannot preserve the Hankel structure required for further parameter estimation.

In this chapter, we propose two robust approaches,i.e., a convex one which we refer to as Convex

Robust Parameter Estimation (CRPE) and a non-convex one which we referto as Non-convex Robust

Parameter Estimation (NRPE). Both methods take into consideration the low-rank property and the

structure of Hankel matrices, as well as the sparse property of spike interference. We solve the former

problem using the alternating direction method of multipliers (AD MM) [85], and the latter one using

coordinate descent. By solving these problems, we can robustly decompose the Hankel matrix constructed

from the noisy observations into a low-rank noise-free Hankel matrix of damped exponentials, a sparse

matrix of spike interference, and a residual matrix of Gaussian noise.It is then straightforward to estimate

parameters of damped exponentials from the recovered low-rank Hankel matrix by applying the classical

matrix pencil algorithm [138,141]. Our numerical experiments show thatboth approaches outperform

classical ones in recovering small fault signatures, at similar computational cost. While the convexity of
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CRPE makes it amenable to theoretical analysis and global convergence guarantees, NRPE exhibits better

robustness and computational e�ciency.

This chapter is organized as follows. In Section 4.2 we propose two approaches to decomposing the

Hankel matrix of noisy measurements. We then develop two optimization algorithms respectively in

Section 4.3. Details of our numerical experiments are described in Section 4.4 with conclusion drawn in

Section 4.5.

4.2 Convex and Non-convex Robust Parameter Estimation

Without loss of generality, we de�ne a Hankel matrix H p(x ) 2 C (N � p) � (p+1) of a sampled signal

x 2 CN as

H p(x ) =

2

6
6
6
6
4

x (1) x (2) ::: x (p + 1)

x (2) x (3) ::: x (p + 2)
...

...
...

x (N � p) x (N � p + 1) ::: x (N )

3

7
7
7
7
5

: (4.2)

If the sampled signalx 2 CN is a sum ofM (M << N ) damped exponentials, by choosingp 2 [M; N � M ],

the Hankel matrix is proved to be a rank M (M � p) matrix [37,145], or a low-rank matrix if M << p . In

the noiseless case, the matrix pencil algorithm exploits this low-rank property to accurately estimate

parameters of the exponentials by eigen analysis. Following this idea,in this chapter we aim to extract

such a low-rank Hankel matrix, H p(x ), where x is the estimated sum of damped exponentials, using the

Hankel matrix of noisy observation Y = H p(y ) 2 C (N � p) � (p+1) , where y 2 CN is the sampled noisy

observation. Sincep is �xed during the optimization process, we simplify the notation of Hankel matrix as

H (x ) by dropping the subscript p.

4.2.1 CRPE Optimization Problem

Inspired by the success of the robust principal component analysis [31] and the blind signal

decomposition work in the compressive sensing community [11,86,116], we formulate the Hankel matrix

demixing problem as a convex optimization problem

min
x ;S

1
2

jjY � H (x ) � Sjj2
2 + � 1jjH (x )jj � + � 2jjSjj1; (4.3)

where we apply the nuclear normjj � jj � to relax the low-rank constraint on H (x ), use the `1 norm to

impose sparsity on matrix S caused by spike interference, and assume the residual is Gaussian noise.
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4.2.2 NRPE Optimization Problem

Alternatively, we can also perform a non-convex optimization by replacing the nuclear norm

regularization in (4.3) with an explicit constraint on the rank of H (x ) as follows

min
x ;S

1
2

jjY � H (x ) � Sjj2
2 + � 2jjSjj1; s.t. Rank(H (x )) � r; (4.4)

where r denotes the maximum number of damped exponentials we expect to recover. In practice, r can be

set according to an initial estimate of r or a prior knowledge based on the nature of the practical

application. The main advantage of this non-convex method is that the constraint on rank is more intuitive

and relatively easier to set than the convex one in (4.3). However, due to its non-convexity, the

optimization algorithm could get trapped in local minima.

4.3 Optimization Algorithm

4.3.1 ADMM for CRPE

To solve the CRPE optimization problem (4.3), we introduce an auxiliary variable Z with constraint

Z = H (x ). Then the augmented Lagrangian function of (4.3) can be expressed as

L � (x ; S; Z; V ) =
1
2

jjY � H (x ) � Sjj2
2 + � 1jjZjj � + � 2jjSjj1 + hH (x ) � Z; V i R +

�
2

jjH (x ) � Zjj2
2; (4.5)

where V 2 C (N � p) � (p+1) is the Lagrange multiplier matrix, � is the penalty parameter associated with the

augmented term, andhA ; B i R = Re(Tr( B H A )). The update steps of ADMM [85] are summarized in

Algorithm 1, where the symbols are explained as follows. The Reverse Diagonal Mean operator

(RevDM : C (N � p) � (p+1) 7�! CN ) is de�ned as

RevDM(A ) =

2

6
6
6
6
6
6
6
4

A (1; 1)
1
2 [A (2; 1) + A (1; 2)]

1
3 [A (3; 1) + A (2; 2) + A (1; 3)]

...

A (N � p; p+ 1)

3

7
7
7
7
7
7
7
5

; (4.6)

for A 2 C (N � p) � (p+1) and A (i; j ) is the entry of A in i th row and j th column.

S� (A ) = sign( A ) maxfj A j � �; 0g is the complex element-wise soft thresholding operator with threshold

� [146], where sign(A ) = A =jA j for the non-zero entry and 0 otherwise. maxf� ; �g is the element-wise

maximum operator. Moreover, D� (A ) = U diag(maxf � � �; 0g)W H is the singular value soft thresholding

operator [85] with threshold � , where the singular value decomposition ofA = U diag(� )W H . f CRP E is

the objective function of the CRPE optimization problem de�ned in (4. 3).
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Algorithm 1 Solving CRPE via ADMM

Input: y , � 1, � 2, p, � , tol, MaxIter
1: Initialization: Y = H p(y ), x 0 = 0, S0 = Z0 = V 0 = 0, Loss0 = 0

2: for k = 0 ; 1 � � � ; MaxIter do
3: Update x :
4: x k+1 = 1

1+ � RevDM(Y � Sk + � Zk � V k )
5: Update Z:
6: Zk+1 = D� 1 � � 1

�
H p(x k+1 ) + � � 1V k

�

7: Update S:
8: Sk+1 = S� 2 (Y � H p(x k+1 ))
9: Update V :

10: V k+1 = V k + � [H p(x k+1 ) � Zk+1 ]
11: Calculate the Loss:
12: Lossk+1 = f CRP E (x k+1 ; Sk+1 )
13:

14: if jLossk+1 � Lossk j=jLossk+1 j � tol then
15: Break
Output: x k+1 , Sk+1

Algorithm 2 Solving NRPE via coordinate descent

Input: y , � 2, p, r , tol, MaxIter
1: Initialization: Y = H p(y ), x 0 = x̂ 0 = 0, S0 = L 0 = 0, Loss0 = 0

2: for k = 0 ; 1 � � � ; MaxIter do
3: Update x̂ :
4: x̂ k+1 = RevDM( Y � Sk )
5: Project H p(x̂ k+1 ) onto the low-rank space:
6: L k+1 = Tr (H p(x̂ k+1 ))
7: Update x by projecting L k + 1 onto the Hankel space:
8: x k+1 = RevDM( L k + 1 )
9: Update S:

10: Sk+1 = S� 2 (Y � H p(x k+1 ))
11: Calculate the Loss:
12: Lossk+1 = f NRP E (x k+1 ; Sk+1 )
13:

14: if jLossk+1 � Lossk j=jLossk+1 j � tol then
15: Break
Output: x k+1 , Sk+1 ; L k+1

4.3.2 Coordinate Descent for NRPE

We solve the NRPE optimization problem (4.4) by coordinate descent withprojection. The details of

this solver are summarized in Algorithm 2, whereTr (A ) is the singular value truncation operator, which

implements the singular value decomposition on the input matrix A and returns the matrix constructed

using A 's r largest singular values.f NRP E is the objective function of the NRPE optimization problem

in (4.4).
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4.4 Numerical Experiments

4.4.1 Robust Parameter Estimation in Fault Detection

In the �rst experiment, we consider the bearing fault detection problem of induction machines [136],

where the machine current includes a 60Hz operating signal and a 90Hz sideband wave related to its

rotational frequency component in the presence of Gaussian noise and spike interference. When a bearing

fault or defect occurs, a damped frequency component in the current will be generated with parameters

related to the fault location and the bearing size. For example, in our case a 73Hz frequency component is

caused by the cage defect of an outer ring. The magnitude of this defect frequency component is typically

very small compared to the 60Hz operating current signal, making bearing fault detection a very

challenging problem. Still, its parameters, and sometimes the spike interference, are useful to evaluate the

fault severity and operating condition of the machine.

To evaluate our approaches in this application, we simulate a noisy fault observation as follows

y(t) = e0t 1:0 cos(2� � 60t + 1 :3) + e� 4:2t 0:1 cos(2� � 73t + 0 :2)

+ e� 1:3t 0:3 cos(2� � 90t + 1 :7) + g(t) + s(t):
(4.7)

We collect 1 second of current signaly with N = 1000 samples. The signal to Gaussian noiseg(t) ratio is

25 dB and spike interferences(t) has 1% cardinality whose non-zero entries are randomly selected with

magnitudes uniformly sampled in [0:5; 1:5], as shown in Figure 4.1 (a). By �xing p = 167 � (N=6), � 1 = 4,

and � = 10 for CRPE, r = 10 for NRPE, and �ne tuning � 2, we obtain the demixing results of CRPE and

NRPE recorded in Figure 4.1 (b) and (c). We observe that both CRPE and NRPE can demix y into the

sum of damped exponentials, Gaussian noise, and spikes accurately. Theconsequent parameter estimation

results are shown in Figure 4.2. For comparison, we also plot the resultsof RPCA [31] and TMP [138],

where the objective function of RPCA is

min
X ;S

jjX jj � + � jjSjj1; s.t. X + S = Y ; (4.8)

with � selected based on [31]. From Figure 4.2 we note that all the parameters are precisely recovered by

CRPE and NRPE except that the damping coe�cient � of the fault signature component is a little smaller

than the ground truth. Although RPCA and TMP also succeed in recovering the parameters of 60Hz and

90Hz components, both methods fail to identify the fault signature component for detection purpose.
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(a) The demixing ground truth.
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(b) The demixing result of CRPE.
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(c) The demixing result of NRPE.

Figure 4.1: The demixing results of CRPE and NRPE methods.
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(a) Fourier spectrum of noisy observation.
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(b) Estimation using CRPE.

0 50 100 150 200
Frequency (Hz)

-50

-40

-30

-20

-10

0

10

M
ag

ni
tu

de
 (

dB
)

: -1.2
:  1.7

: -5.2
:  0.2

:  0.0
:  1.3

(c) Estimation using NRPE.
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(d) Estimation using RPCA [31].
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(e) Estimation using TMP [138].

Figure 4.2: Comparison of frequency spectra using di�erent methods. � denotes the damping coe�cient
and � denotes the phase.

To further investigate the performance of di�erent approaches underdi�erent noise conditions, we

generate noisy observations using the same exponentials as the �rst experiment but with only 25dB random
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Gaussian noise or 1% cardinality spike interference whose magnitudes are uniformly sampled in [1; 3].

Results are recorded in Figure 4.3 and Figure 4.4 respectively. We observe that both CRPE and NRPE

recover all exponentials and related parameters accurately, no matterwith only Gaussian noise or with

only spike interference, exhibiting robust performance. In bothcases, the relative error of any estimated

parameter with respect to the ground truth is less than 7:1%. In contrast, RPCA failed to identify the

weak exponential with the existence of Gaussian noise, because RPCA is not capable of preserving the

Hankel structure when recovering a low rank matrix. TMP failed in t he spike interference case because

those grossly corrupted non-Gaussian entries distort the result of SVD, the most critical operation in TMP.

As regarding to computational time, it takes 2.5 seconds and 0.7 second for CRPE and NRPE,

respectively, to �nish parameter estimation on an i7-6700 CPU, comparable to 2.0 seconds and 0.1 second

for RPCA and TMP, respectively.
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Figure 4.3: Estimation results with random Gaussian noise only.
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Figure 4.4: Estimation results with spike interference only.
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4.4.2 The E�ect of Sparse Constraint

To examine the e�ect of hyper-parameter � 2 which controls the sparse constraint, we randomly

generate a mixture of 6 complex damped exponentials ofN = 300 samples in 0.3 second, with their

frequencies, magnitudes, phases, and damping coe�cients uniformly random chosen in [60; 180] with 10Hz

separation, [1; 2], [1; 2], and [� 5; � 1] respectively. The signal to complex Gaussian noise ratio is 30dB and

the complex spike interference has 10% cardinality and for each spike the real and imaginary parts are

uniformly sampled in [� 1; 1]. Fixing p = 50, � 1 = 1, and � = 10 for CRPE, and r = 10 for NRPE, we

record in Figure 4.5 (a) the average relative error of damped exponentialsjj ~x � x 0 jj 2

jj x 0 jj 2
(over 100 trials) versus

di�erent values of � 2, where ~x is the estimated sum of damped exponentials andx 0 is the ground-truth.

We also record the recovery success rate of parameters, as depicted in Figure 4.5 (b), where a success is

counted when the di�erence between the estimated frequency andthe corresponding ground-truth is

smaller than 1Hz and at the same time the relative errors of all other associated parameters are no larger

than 15%. We observe that to achieve the same success rate, the NRPE method has a much wider range of

� 2 for selection than CRPE does, meaning much less sensitive to the adjustment of � 2.
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(a) The relative error of exponentials.
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(b) The recovery success rate.

Figure 4.5: E�ect of the sparse constraint for CRPE and NRPE.

4.4.3 The E�ect of Low-rank Constraint

We run the same experiment but with �xed � 2 = 0 :095 for CRPE and � 2 = 10 � 3 for NRPE based on

Figure 4.5 and varying � 1 and r for CRPE and NRPE respectively. The relative error of the damped

exponentials and the recovery success rate of the exponentials parameters are recorded in Figure 4.6. To

achieve above 90% recovery success rate,� 1 should be set within [0:8; 1:7] for CRPE and r can be set in
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the range of [6; 30] for NRPE. Note that 6 is the true number of exponentials. Similarly, wecan observe

that NRPE is less sensitive to the adjustment of its hyper-parameter of the low-rank constraint than

CRPE in terms of the relative range of parameters.
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(a) The CRPE method.
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(b) The NRPE method.

Figure 4.6: E�ect of the low-rank constraint for CRPE and NRPE.

4.5 Conclusion

In this chapter, we propose two novel approaches, named CRPE and NRPE, to decomposing damped

exponentials contaminated by Gaussian noise and spike interference,considering the low-rank property of

the Hankel matrix as well as the sparsity of spike interference. Numerical experiments demonstrate that

our proposed approaches outperform classical ones in detecting small fault signatures, exhibiting robust

performance in di�erent noise situations. While the CRPE method is amenable to theoretical analysis and

global convergence guarantees, the NRPE method is less sensitive to hyper-parameters and

computationally more e�cient.
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CHAPTER 5

CHESS PIECE RECOGNITION USING ORIENTED CHAMFER MATCHING WITH A COMPARI SON

TO CNN

Recognizing three dimensional chess pieces using computer visionis needed for an augmented reality

chess assistant. This chapter proposes an e�cient 3D pieces recognition approach based on oriented

chamfer matching. During a real game, the pieces might be occluded byother pieces and have varying

rotation and scales with respect to the camera. Furthermore, di�erent pieces share lots of similar texture

features which makes them more di�cult to identify. Our approach add resses the above problems and is

capable of identifying the pieces with di�erent scales, rotation andviewing angles. After marking the

possible chessboard squares that contain pieces, the oriented chamfer scores are calculated for alternative

templates and the recognized pieces are indicated on the input image accordingly. Our approach shows

high recognition accuracy and e�ciency in experiments and the recognition process can be easily

generalized to other pattern recognition applications with 3D templates. Our approach outperforms the

convolutional neural networks under severe occlusion and low resolution conditions and has comparative

processing time while avoids the time consuming training process.6

5.1 Introduction

Augmented reality (AR) can greatly improve the e�ectiveness of peoplein work and play. It can

automatically recognize objects using computer vision techniques anddisplay graphical augmentation

registered to the object, to provide guidance and instruction. AR hasbeen widely applied in

education [147], industrial design and medical treatment [148]. AR can also help people learn the game of

chess, a popular intellectual and entertaining game all over the world. For example, the system could

display allowable moves as an overlay on an image of the board, using either a hand-held or a

head-mounted display. In order to do this, a chess AR system must �rst recognize the chessboard and the

chess pieces, from a mobile hand-held or head-mounted camera, and locate the pieces on the board. The

task can be challenging if the board is viewed from a low viewing angle, instead of directly overhead. This

may cause pieces to partially occlude each other. Additionally, some pieces are highly similar to each other,

such as the rook and pawn, which may lead to misidenti�cation.

This chapter focuses on the problem of recognizing di�erent 3D chesspieces from a single image of the

chessboard, under game conditions. We use a chamfer matching approach, which permits 
exible operating

6This is a joint work with Gongguo Tang and William Ho� [91].
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angles and allows for di�erent occlusion conditions. Furthermore, ourmethod has potential in other

applications. For example, in many industrial applications, the objects to be recognized are small with

relatively little image texture [149] and CAD models are often not available or are di�cult to obtain. In

these cases, taking a small number of training images is feasible and ourmethod is applicable to these

problem domains.

The chapter is organized as follows. In section 5.2, we describe relatedwork. In sections 5.3 and 5.4, we

present our approach for chessboard and chess piece recognition, respectively. In section 5.5, we show

experimental results and a comparison to an alternative approach using convolutional neural networks

(CNNs). We conclude this chapter in section 5.6.

5.2 Related Work

Many algorithms have been developed to recognize a chessboard for the purpose of camera calibration

and 3D scene reconstruction. Most of these use the approach of detectingcorners on the board [150,151].

However, when the chessboard is populated with chess pieces, suchas during an actual game, many corners

might be occluded by pieces. Therefore, algorithms for recognizing populated chessboards typically use line

detection based methods [90,152,153].

The research on chess piece recognition is sparse. Early approaches modi�ed the chessboard and pieces

with sensors [154]. However, modi�ed chessboards and pieces are expensive and not portable. Fortunately,

with the rapid increase of computing power on mobile devices, an opportunity exists to apply computer

vision methods to chess piece recognition, which is inexpensiveand transferable.

Conventional approaches to object detection extract and match features such as the histogram of

oriented gradient (HOG) [43] and the scale invariant feature transform (SIFT) [46]. These techniques work

well when the objects have adequate visual texture. However, as shown in Figure 5.1, very few e�ective

SIFT features can be extracted from the small chess pieces since they do not have much distinguishable

textures. Moreover, similar features among pieces complicate the matching process. In order to avoid

incorrect matching, [155] and [156] assume the initial positions of the pieces are known, and then track the

movement of pieces on the chessboard. However, those assumptions are undesirable and we want as few

manual operations as possible.

Fortunately, although there is not much distinctive texture on the p ieces, the di�erent pieces have

distinctive contours. A contour-based recognition method can match the observed contour to a template

contour that is obtained from a model of the piece, or from a training image.By exploiting the relative

positions of the edge points and normalizing the magnitudes, contour-based descriptors can be scale and

rotation invariant like the Fourier descriptor with di�erent shape s ignatures [157] and the context
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shape [158]. However, they also face some challenges. Methods using Fourier descriptors or polygonal

approximations [159] may be a�ected severely when pieces have similar shapes or when occlusion occurs. A

contour based method that is more robust to these e�ects is oriented chamfer matching [160,161], and this

is the method we selected.

Figure 5.1: The SIFT features matching for the bishop. 2010 and 1211 SIFT features are extracted from
left and right images respectively but only 40 matched features pairs are found.

Besides the above methods, convolutional neural networks have recently achieved great success in image

classi�cation and object detection problems [61,162,163], on large scale data sets like the ImageNet [164].

Therefore, we also implement several convolutional neural networks and compare them to our oriented

chamfer matching approach. As far as we know, this is the �rst work applying a convolutional neural

network approach to the problem of 3D chess piece recognition under game conditions.

5.3 Chessboard Recognition

Chessboard recognition is an important �rst step towards piece recognition, since �nding the board

constrains the search for pieces. Additionally, we need to �nd the board in order to determine the relative

locations of the pieces with respect to the board. As stated in the introduction, there are many chessboard

recognition algorithms but only a few consider populated boards where thepieces cause occlusion. We

chose to use a line detection based method since it is rare that a boardline is completely occluded by the

pieces. Speci�cally, we use the algorithm of [90] which achieves a highchessboard recognition success rate

and more importantly, their workable viewing angles range covers the angles that a player would naturally

look at the chessboard during a game. We brie
y introduce their algorithm as follows.

Given a chessboard image, the Canny edge detector and Hough transform are used to �nd all possible

lines in the image. The detected lines are clustered into two groups based on their locations in a scaled

Hough transform space. These two groups correspond to the two orthogonal setsof lines on the

chessboard. In the same space, outlier lines are �ltered out by observing the relation between the detected

lines. The intersections of two groups of remaining lines are calculated and recorded. Finally, all possible
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chessboard location candidates are transformed and matched to a chessboard reference model. The

location with largest number of correct matching corners and the smallest matching residual error becomes

the system output.

Once the chessboard lines are found, we need to �nd the pose of the boardwith respect to the camera,

in order to predict the possible locations and appearance of the chess pieces. This requires the camera

intrinsic parameter matrix K , and the board-to-camera rotation matrix RC
B (R is used to indicateRC

B in

the following content). These two matrices can be estimated from the vanishing points of the two sets of

chessboard lines by solving the following equations [165].

Rx = K � 1

2
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<R x ; Ry > = 0

(5.1)

where Rx and Ry are the board coordinate system's bases inx and y directions. (x1; y1) and (x2; y2) are

the vanishing points coordinates on the image plane. In addition,cx , cy and f are the optical center of the

image and the camera focal length in pixels. Finally, the last column of the rotation matrix, Rz , can be

obtained by taking cross product ofRx and Ry .

Since we only have a single image of the chessboard, unless we know thesize of the chessboard, there is

no way to �nd out the true object scale. Therefore, we de�ne a hyperplane using the board coordinate

system'sRz basis as the support vector and a �xed constant to control the scale factor automatically.

Based on the hyperplane and the rotation matrix, the normal vector for each square can be calculated and

printed on the image as shown in Figure 5.2 using blue sticks.

Figure 5.2: The chessboard preprocessing result. The board boundaries are marked by green lines and the
normal vector of each square is indicated using a blue stick.

88



5.4 Piece Recognition

Once the pose of the chessboard has been found, the pose of each square can be estimated. This is

needed to rotate and scale the templates that are used for matching. We will focus on piece recognition in

the following sections.

5.4.1 Piece Location and Color Detection

Before matching templates, we want to determine possible piece locations in order to reduce the

computation complexity. By leveraging the four chessboard corners in ahomography transformation, an

orthophoto (i.e., top-down view) of the chessboard is generated as shown in Figure 5.3. Possible squares

where pieces might be located are determined by counting the number of edge points in the areas that are

indicated by green rectangles. An eight times eight matrix stores the possible squares occupied by pieces.

When the board is viewed from a very low angle, one chess piece might occupy several squares in the

orthophoto like the bishop in Figure 5.3 which covers both the square it occupies and the square behind it.

In this case, a false indication of occupancy may occur. So a chamfermatching score threshold operation is

implemented to avoid a false positive detection.

Figure 5.3: Left: Orthophoto of the board. Right: Search regions for occupied squares.

We next locate areas of interest (AOI) Figure 5.4 in the original image that may contain chess pieces.

The size of an AOI in the image is relative to the viewing angle of the board. When the chessboard image

is taken from a relatively low angle, pieces are taller than in a directoverhead view. So a lower viewing

angle leads to a larger AOI height. The height of the AOI must be large enoughto contain the image of

the largest pieces, which are the king and queen. The width of the AOI is set to the width of the

corresponding square on the board.
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Figure 5.4: The AOIs in the input image.

We can determine the color of the pieces at this stage as well. Since we know the locations of the

squares, we can �nd the average intensities for both black,I b, and white squares,I w . Each candidate's

color is initiated to the square color which it stands on. The �nal decision can be easily made by

comparing each candidate square's intensity,I ij , to I w and I b.

Pij =

8
>><

>>:

Black; if I ij < k w I w ; square (i; j ) is white

W hite; if I ij > k bI b; square (i; j ) is black

same as the (i; j ) square's color

(5.2)

Pij indicates the color of the piece associated with the (i; j ) square on the chessboard.kw and kb are

scaling factors and in our project,kw = 0 :7 and kb = 1.

5.4.2 Template Preparation

Three steps are performed in preparing the templates for matching. First, selecting the template based

on the viewing angle. Second, rotating the template based on the normal vector. Third, scaling the

template based on the square size.

For each chess piece, 12 templates with di�erent viewing angles are captured as shown in Figure 5.5.

They range from 10 to 70 degrees, where the template viewing angle is de�ned in Figure 5.6. Note that the

knight is not symmetrical around its vertical axis, so additional templates are needed for this piece to

represent its appearance for rotations about the vertical axis. However,for simplicity, we assume all the

knights are facing right and therefore only 12 templates are applied in this chapter. During recognition, the

viewing angle of the square being examined is calculated, and the templates nearest to that angle will be

selected for the following translation and matching.
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Figure 5.5: The bishop templates for chamfer matching.

Figure 5.6: The viewing angle.

Furthermore, the pieces do not always lie vertically and have varying sizes in the images due to their

positions with respect to the camera. In the case that a piece is not vertical in the input image, we will

rotate the templates accordingly as shown in Figure 5.7 and scale it to �t into the observing square.

Figure 5.7: The selected and translated pawn's template.

5.4.3 Oriented Chamfer Matching

As previously stated, we use a contour-based recognition method because of the lack of texture features.

Chamfer distance matching, originally proposed in [166], is a well-established contour matching technique

which measures the similarity between the objects in the input image and templates. For every candidate
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object position, a chamfer matching score is calculated. The object'sclass and location are determined by

the template and the region that get the minimum chamfer matching score.

The traditional chamfer matching requires the edge images for both the input image, I , and the

template, T. The chamfer distance can be obtained by solving the following least square problem wherejT j

is the number of total edge points in the template and� is the truncation parameter for normalization. In

our project, � = 30.

ddist (x) =
1

� jT j

X

x t 2 T

min( �; min
x i 2 I

jj (x t + x) � x i jj2): (5.3)

For a speci�c matching starting point x in the input image, the chamfer distance score is the average

distance between the template edge points and their nearest edge points in the input image. Furthermore,

the above least square problem can be solved e�ciently by mapping thedesired template's edge image onto

a pre-computed input image's distance transformation image and summingup the element-wise product of

pixel intensities within the template covered region.

To provide additional stability and resistance to background noise, edge orientation is adopted to

compare the gradient di�erences [160,161]. The orientation score can be calculated by solving the following

least square problem where� is a function measuring the edge point's orientation in radians. The physical

meaning of � and ddist in the input image can be found in Figure 5.8.

dorient (x) =
2

� jT j

X

x t 2 T

j� (x t ) � � (arg min
x i 2 I

jj (x t + x) � x i jj2)j: (5.4)

Figure 5.8: The oriented chamfer matching.

Similarly, the orientation score can also be calculated e�ciently using the pre-computed gradient

images. The �nal chamfer score is calculated by:
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dscore (x) = (1 � � )ddist (x) + �d orient (x); (5.5)

where � is a weight factor in the range of [0; 1]. In our project, � = 0 :5 and the detailed analysis regarding

di�erent values of � can be found in the Section 5.5. A perfect matching would get a score of 0. After

template matching, the template with smallest oriented chamfer matching score and its corresponding

location will be marked on the input image for each AOI. Templates with high scores are rejected.

5.4.4 Matching Process

The matching process is quite straight forward. For each AOI, all templates taken from the angle that

matches the observing square's viewing angle are selected and translated for chamfer matching. A list

stores the chamfer scores for all di�erent templates and records the template with the minimum score. In

addition, to expedite the matching process, anN -sampling strategy is applied. Namely, we compute the

chamfer score with a stride ofN pixels if we are in a high score area, but compute the score at every pixel

in the low score areas. The idea is to focus our computational resourceson the most promising piece

locations. After �nishing all AOI matching, the recognition results i ncluding the pieces colors, names and

their corresponding locations are shown on the input image as shown in Figure 5.9.

Figure 5.9: The recognition result.

We can reject invalid piece detections by a threshold on the chamfermatching score. To determine this

threshold, we recorded the oriented chamfer matching scores for di�erent templates and true classes for a

typical image in Table 5.1. Based on the table, 0:2 is a reasonable threshold to rule out a false positive

detection.
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Table 5.1: The oriented chamfer matching scores.

True classn Template King Queen Bishop Knight Rook Pawn

King 0.1285 0.1705 0.2201 0.2041 0.1930 0.2050

Queen 0.1537 0.0605 0.1969 0.1731 0.1674 0.2016

Bishop 0.3044 0.3482 0.0764 0.2007 0.1270 0.1669

Knight 0.3283 0.3473 0.2550 0.0925 0.1820 0.1868

Rook 0.1992 0.1838 0.1288 0.1871 0.0860 0.1389

Pawn 0.2809 0.2701 0.1899 0.2605 0.1994 0.0794

Empty square 0.3083 0.2619 0.2754 0.2778 0.2588 0.2754

5.5 Experiments

We tested our approach and compared it to several alternative approaches based on convolutional

neural networks, on real chessboards taken from varying angles and resolutions. In addition, we quantify

the e�ect of occlusion and pan angles and evaluate their processing time. We also study the performance

with di�erent algorithm parameters. Examples of input images and the recognition results are shown in

Table 5.2.

5.5.1 Experimental Setup

In order to imitate the views that a player would naturally have duri ng a real game, the viewing angle

of the test images is approximately 40 degrees using the de�nition in Figure 5.6. The sampling mode is

3-sampling and� = 0 :5. Thirty test images are taken and the number of pieces by type is shown in

Table 5.3.

Table 5.3: The pieces distribution of the test set.

Board King Queen Bishop Knight Rook Pawn

30 43 32 76 63 98 173

In addition, several test sets with same piece distribution but di�erent occlusion conditions and pan

angles are collected. In all test sets, we assume there is no piece directly behind another since we will study

the e�ect of occlusion individually.

5.5.2 Convolutional Neural Networks

In this experiment, we selected three of the most popular convolutional neural networks,

GoogleNet [162], ResNet [61] and VGG [163], to compare with the oriented chamfermatching approach.
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Table 5.2: The 3D chess pieces recognition experiments. The �rst rowshows the recognition process of a
720� 960 pixels test image. The second row shows the recognition process with a 240� 320 pixels test
image. The third row shows the 60% occlusion image's recognition process and the last row shows the
recognition process on a test image with a 30 degree pan angle.

Input images Preprocessing Templates matching Recognition result
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Furthermore, the research of transfer learning shows that the learned CNN features are transferable

among similar tasks [167]. Therefore, all the selected networks are pre-trained on the ImageNet [164]

classi�cation data set for initialization. And to adapt to the piece recognition application, the networks'

last layers are replaced by a softmax regression with six output nodesand all test images are resized to

223� 223� 3 pixels accordingly. The Adam optimization algorithm [76] is applied with 0:001 learning rate

and 1000 maximum iteration number. To train the system, we took 20 additional chessboard images and

extracted the pieces as the training set which contains pieces images with varying viewing angles and

colors. The number of training images for each piece type is listed in Table 5.4 and four bishop training

examples are shown in Figure 5.10.

Table 5.4: The number of training images of each piece type for convolutionalneural networks and oriented
chamfer matching.

Convolutional neural network

King Queen Bishop Knight Rook Pawn

40 40 40 40 40 60

Oriented chamfer matching

King Queen Bishop Knight Rook Pawn

12 12 12 12 12 12

Figure 5.10: Four bishop training examples for CNN.

In the �rst experiment, we train and evaluate the neural networks and oriented chamfer matching's

performance on images where the pan angle of the camera (the rotation about thevertical axis) with

respect to the board is zero degrees. Pieces have less than 10% occlusion and the resolution of the images

is 720� 960 pixels. Their recognition accuracy is recorded in Table 5.5 from which we can observe that all

approaches perform quite well at piece recognition. The oriented chamfer matching method achieves

95:46% accuracy which is better than ResNet50 but slightly worse than GoogleNet and VGG-16. However,

to achieve this performance, the neural networks require 3.6 timeslarger training set than the oriented

96



chamfer matching.

Table 5.5: The recognition accuracy for di�erent approaches.

King Queen Bishop Knight Rook Pawn Overall

GoogleNet 97.67% 100.00% 100.00% 100.00% 97.96% 96.53% 98.14%

VGG-16 100.00% 90.63% 97.37% 98.41% 87.76% 99.42% 96.08%

ResNet50 88.37% 100.00% 100.00% 100.00% 81.63% 97.69% 94.43%

Oriented Chamfer 90.70% 90.63% 85.53% 100.00% 95.92% 100.00% 95.46%

5.5.3 E�ect of Resolution

In this section, we evaluate the e�ect of image resolution. We use 120, 240, 360, 480and 720 to indicate

120� 160, 240� 320, 360� 480, 480� 640 and 720� 960 resolution test sets respectively and record both

the convolutional neural networks and the oriented chamfer matching's overall recognition accuracy in

Figure 5.11. The oriented chamfer matching outperforms convolutional neural networks when the images

are taken by a low resolution camera. It may be that the low resolution test images lose the features that

neural networks learned from the high resolution training images.
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Figure 5.11: The recognition accuracy with di�erent resolutions.

5.5.4 E�ect of Occlusion and Pan Angle

The above two experiments are evaluated on the test set with no or slight occlusion (< 10% occlusion).

To quantify the occlusion e�ect, we select several test images where all pieces are successfully recognized

and start occluding the pieces with a 10% interval. Speci�cally, 60% occlusion means 60% area of the

pieces from the bottom is occluded and an example is shown in the 3rd row in Table 5.2. The overall

accuracy for both convolutional neural networks and oriented chamfer matching under di�erent occlusion
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conditions is recorded in Figure 5.12. As expected, accuracy decreases asthe occlusion e�ect becomes

stronger. We observe that under severe occlusion (� 60%), oriented chamfer matching outperforms the

convolutional neural networks. It is possible that the convolutional neural networks might perform better

in these cases if the training set included many more examples of occluded pieces.
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Figure 5.12: The recognition accuracy with di�erent percentages of occlusion.

Finally, in a real usage scenario, the camera may pan around the chessboard. Therefore, we also

evaluate the approaches with di�erent pan angles in Figure 5.13. It can be observed that panning the

camera away from the zero angle brings down the accuracy. The orientedchamfer matching achieves

similar accuracy to GoogleNet while outperforms the VGG-16 and ResNet50.
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Figure 5.13: The recognition accuracy with di�erent pan angles.
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5.5.5 Processing Time

Regarding the e�ciency, we evaluate the convolutional neural networksand oriented chamfer matching

in terms of the processing time using TensorFlow [168] and Matlab respectively on an i7 6700K CPU. For

the oriented chamfer matching, two major factors a�ecting the processing time are the sampling method

and the image resolution. By manipulating these two factors, we acquirethe average processing time of

oriented chamfer matching for di�erent settings in Table 5.6. Lower resolution implies smaller searching

area and the same applies for the sampling method. The convolutional neural networks' testing time is also

recorded in Table 5.6. We �nd that if we choose 9-sampling method for the720 resolution test set, the

oriented chamfer matching has comparable processing time to the neural networks.

Table 5.6: The processing (testing) time for recognizing 10 pieces (unit: second). Di�erent resolution
images should lead similar testing time for neural networks since after preprocessing, all images would have
the same dimension.

Oriented Chamfer 120 240 360 480 720

0-Sampling 1.3776 1.4578 1.9259 3.4092 7.2975

3-Sampling 1.3932 1.4472 1.8124 3.0181 5.3851

6-Sampling 1.3975 1.3809 1.7419 2.8735 4.7469

9-Sampling 1.3796 1.3772 1.6405 2.7951 4.3742

12-Sampling 1.3719 1.3723 1.6662 2.6239 4.1666

Network Time

GoogleNet 1.2181

VGG-16 8.2453

ResNet50 3.1680

In addition, there is a tradeo� between processing time and accuracyfor oriented chamfer matching. To

visualize the tradeo�, we evaluate the overall accuracy for di�erent settings in Figure 5.14. In the low

resolution, the width of each piece is too short to capture useful edge structures and the 12-sampling

method might skip the ground true locations. Both cases lead very low overall accuracy.
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Figure 5.14: The recognition accuracy with di�erent sampling methods and resolutions.

99



5.5.6 Lambda

Another important factor in the oriented chamfer matching is the parameter � , which controls the

weighting of the distance score to the orientation score. When� = 0, the oriented chamfer matching

degenerates to the chamfer distance matching [166]. When� = 1, only the orientation term is applied. We

examine and record the overall accuracy with di�erent � in Figure 5.15. The accuracy with zero� is far

smaller than other settings. Because in a noisy edge image, the distortion of the templates combing with

the false edge points may lead the false matching while the orientationterm provides an e�ective guideline

to rule out this situation. In addition, � = 0 :5 achieves the highest accuracy in most cases which makes it

an excellent choice for pieces recognition.
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Figure 5.15: The recognition accuracy with di�erent values of � .

5.6 Conclusion

In this chapter, we present an approach for 3D chess piece recognition using oriented chamfer matching.

After recognizing the chessboard, we can select the appropriate templates for matching and compute the

oriented chamfer score e�ciently. We quantify the e�ect of resolut ion, occlusion and pan angles, analyze

the processing time and accuracy tradeo� and examine the e�ect of di�erent algorithm parameters. We

also implement the convolutional neural networks for comparison. In experiments, the chamfer matching

approach achieves similar performance as the convolutional neural networks, but uses a much smaller

training set and avoids the time consuming training process. In addition, the oriented chamfer matching is

more robust in severe occlusion and low resolution cases. This result may follow from the fact that in the

chamfer matching method, we explicitly give the system information on what features belong to the object,

but in the convolutional neural networks, the system must learn what is object versus background from

training examples. It is possible that if more training examples were used, the performance of the
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convolutional neural networks might improve in severe occlusion and low resolution cases. However, the

collection of labeled training images is time consuming and a burden forthe user. Since the performance of

the two approaches is otherwise comparable, this might indicate the choice of the oriented chamfer

matching approach.
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CHAPTER 6

LEARNING TO FIND GOOD CORRESPONDENCES OF MULTIPLE OBJECTS

Given a set of 3D to 2D putative matches, labeling the correspondencesas inliers or outliers plays a

critical role in a wide range of computer vision applications includingthe Perspective-n-Point (PnP) and

object recognition. In this chapter, we study a more generalized problem which allows the matches to

belong to multiple objects with distinct poses. We propose a deep architecture to simultaneously label the

correspondences as inliers or outliers and classify the inliers into multiple objects. Speci�cally, we discretize

the 3D rotation space into twenty convex cones based on the facets of a regular icosahedron. For each

facet, a facet classi�er is trained to predict the probability of a correspondence being an inlier for a pose

whose rotation normal vector points towards this facet. An e�cient RANSAC- based post-processing

algorithm is also proposed to further process the prediction results and detect the objects. Experiments

demonstrate that our method is very e�cient compared to existing methods and is capable of

simultaneously labeling and classifying the inliers of multiple objects with high precision.7

6.1 Introduction

6.1.1 Finding Correspondences of Multiple Objects

In this chapter, we propose an e�cient method to tackle the problem of �nding reliable correspondences

of multiple objects from a set of 3D to 2D putative matches. Ideally, we want the predicted, good

correspondences of an object to be a subset of the ground truth inliersof that object. This problem occurs

naturally in many computer vision tasks including the Perspective-n-Point (PnP) problem [169] with

multiple objects and 3D object recognition [170]. After obtaining inlier correspondences, they can be

applied to estimate the poses of multiple objects [171] and help the system in scene recognition and

understanding [172]. An example of the process of �nding good correspondences is shown in Figure 6.1.

Here, we used a color and depth camera (RGB-D camera) to capture a template image of objects, and then

matched points from the template image to a test image. In this example,we used the scale-invariant

feature transform (SIFT) descriptor [46] for feature matching. Other descriptors, such as oriented fast and

rotated brief (ORB) [45], speeded up robust features (SURF) [173], and deep descriptors [174,175] are also

applicable.

Since the 3D rotation can be uniquely determined by a rotation normal vector and a rotation angle

around that vector [176], we discretizes the 3D rotation space based on the direction of the rotation vector.

7This is a joint work with Yingheng Tang, Gongguo Tang, and Will iam Ho� [92].
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Figure 6.1: Finding good correspondences of multiple objects. Givena set of 3D to 2D putative matches
between the RGB-D template and test image, our method will label theinliers and classify them into
multiple objects. In this example, two objects are detected in the test image and the predicted good
correspondences of the two objects are shown in di�erent colors respectively.

Speci�cally, we put a regular icosahedron in the origin of the 3D rotation space and use the twenty

facets of the regular icosahedron to de�ne twenty convex cones, where each convex cone is constructed

using three vertex vectors belonging to the same facet of the regular icosahedron [7]. All vectors that point

towards a facet are associated with that facet and belong to the corresponding convex cone de�ned by this

facet. Then for each convex cone (or facet of the regular icosahedron), we train a classi�er to identify inlier

correspondences for poses whose rotation normal vector falls within thisconvex cone (or points towards

this facet of the regular icosahedron). We say that an object belongs to a facet when the pose of the object

is associated with a rotation vector pointing towards this facet. Therefore, if objects have distinct poses,

namely, if di�erent objects belong to di�erent facets, each facet classi�er is responsible for classifying the

inliers of at most one object. We discuss how to handle the case when multiple objects belong to the same

facet in Section 6.2.4. The inlier correspondences identi�ed by thenetwork classi�er are then post-processed

to �lter out any remaining outlier matches, and �t a rotation and translati on for each detected object.

An important contribution of our method is that we do not require any costl y iterations to identify

inlier correspondences, unlike traditional methods. Instead, inliers are identi�ed by a single pass through a

network, followed by a short post-processing step. The post-processing step does use an iterative algorithm,

but the number of iterations are very small. As a result, our method ismuch faster than competing state

of the art methods. Also, we can handle the case where multiple objectsare present in the scene. In

Section 6.3, we show experimental results on synthetic data as well asa publicly available dataset.
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6.1.2 Related Work

Given a set of putative matches, many methods have been proposed to detect inlier correspondences

and �t a model, among which RANSAC [177] is the de facto standard in practice[178]. Some extensions of

RANSAC include MLESAC [179] which chooses the solution maximazing the likelihood, PROSAC [180]

which explores hypotheses from a gradually increasing subset of matches, and USAC [181] which combines

multiple RANSAC improving techniques into a uni�ed framework. S ome approaches [182,183] extend

RANSAC to incorporate multiple objects. However, since these approaches rely on sampling a small subset

of matches to estimate the hypothesis, as the portion of outliers or noiselevel increases, the required

number of iterations for hypothesis estimation increases signi�cantly.

In contrast, learning-based methods have attracted much interest due to their non-iterative end-to-end

processing approaches [91,93,184]. Most learning-based methods for pose estimation take raw images as

the input [185{188]. However, [178] shows that this approach is not suitable forscenes with occlusion and

large baselines. For outlier rejection, [189] proposes a learning-based di�erentiable counterpart of RANSAC

called DSAC, which tries to mimic RANSAC.

Recently, some approaches have been proposed to use a network to �nd inliers among point

correspondences. [178] proposes a network to directly predict inlier probabilities for 2D to 2D

correspondences. [72] applies the network of [178] to the case of 3D to 2D correspondences and achieves

promising results for the Perspective-n-Point (PnP) problem. Our work is closely related to [178] and [72].

Nonetheless, [178] and [72] assume there exists only one model or object amongthe correspondences,

whereas our work allows multiple objects.

The rest of this chapter is organized as follows. In Section 6.2, we proposethe learning-based facet

network and post-processing algorithm. Several numerical simulations and an experiment on real data are

reported in Section 6.3. Finally, we conclude this chapter in Section6.4.

6.2 The Proposed Method

6.2.1 Learning-based Facet Network

As introduced in Section 6.1, we discretize 3D rotation space into twenty convex cones according to the

twenty facets of a regular icosahedron. For each facet, as shown in Figure 6.2, a facet classi�er is trained to

identify correspondences that are compatible with a pose whose rotationnormal vector points towards this

facet. Thus, there is a bijective relationship between the 20 facet classi�ers and the 20 convex cones de�ned

by the 20 facets of the regular icosahedron.
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Figure 6.2: The regular icosahedron and three vectors pointing towards the same facet.

Since all the 3D to 2D point correspondences are interchangeable, the order of the input

correspondences should not a�ect the prediction result. Therefore, we adopt the ResNet block structure

proposed in [178], which shares weights between correspondences and allows di�erent number of matches as

input, to build our facet classi�ers as shown in Figure 6.3. Speci�cally, the facet network consists of 20

facet classi�ers of the same structure but di�erent weights. If we have N putative matches, the input of the

facet network is of sizeN � 5 where each row stores a 3D to 2D match. Each match consists of the 3D

point from the RGB-D template and its corresponding normalized 2D point in the test image. A multilayer

perceptron with shared weights is applied to each match individually and context normalization [178],

which implements normalization on each neuron using information among allmatches, is responsible for

embedding global information. The output is of sizeN � 20 where the (i; j )-th entry stores the inlier

probability (from 0 to 1) of the i -th match for facet-j . The outputs of the facet classi�ers are passed

through a non-maximum suppression block. This ensures that each rowhas at most one non-zero entry,

since we assume that each inlier match can only belong to one facet.

Note that there is a trade o� between the number of classi�ers and resolution in the 3D rotation space.

Increasing the number of classi�ers by discretizing the 3D rotationspace into more exclusive convex cones

would lead to higher rotation space resolution but requires more training e�ort. In addition, an alternative

approach is to train a multi-class classi�er instead of several binary classi�ers as in this chapter.

Nevertheless, having several binary classi�ers that can be trainedseparately and individually provides

much more 
exibility to the model. Speci�cally, if some of the wei ghts are missing or corrupted, we only

need to retrain the speci�c classi�ers with corrupted weights. Moreover, if we are only interested in the

objects with certain range of rotation or we have the prior knowledge on therange of rotation for the

objects of interest, we don't need to apply all classi�ers and only theclassi�ers for the rotation of interest

are su�cient for the object detection.
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(a) The structure of the facet network.

(b) The structure of each facet classi�er.

Figure 6.3: The structure of facet network consists of twenty facet classi�ers of the same structure. (a) The
facet network. (b) The facet classi�er where P denotes multilayerperceptron. (X; Y; Z ) i is the 3D point in
the RGB-D template and (x; y) i is the corresponding, normalizedx and y coordinates of thei -th match in
the test image.

6.2.2 Network Training

Since each facet classi�er is responsible for only one facet (or convex cone), namely, it identi�es whether

a 3D to 2D match is compatible with a pose whose rotation vector lives in thespeci�c convex cone, the

matches which are inliers for one classi�er are outliers for the rest of the classi�ers. Therefore, the 20 facet

classi�ers are trained separately using the binary cross entropy lossfunction.

L = �

"
� 1

N in

NX

i =1

1 i log(pi ) +
� 2

Nout

NX

i =1

(1 � 1 i ) log(1 � pi )

#

(6.1)

where N in and Nout are the total number of inlier and outlier matches. N in + Nout = N . 1 i is the

indicator function which is 1 when the i -th match is the inlier for the classi�er under training and 0

otherwise. pi is the estimated inlier probability of the i -th match. � 1 = 1 and � 2 = 2 are the weights.

For each facet classi�er, its training dataset contains 32000 examples where each example consists of

200 3D to 2D matches. The validation set is of size 320. Each example contains thematches of multiple

objects whose number is uniformly selected inf 1; 2; 3g. At most 1 of them is the inlier object of the current

facet, which provides robustness to the classi�er against outlier objects interference. The matches
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belonging to the same object follow the same 3D transformation. To create the inlier object of a speci�c

facet, we randomly sampled its rotation vector within the convex cone associated with this facet using the

three vertex vectors [7]. The network is trained using Adam optimization algorithm [76] with 0.0001 initial

learning rate and 32 batch size for 200 epochs. The learning rate would decrease by half if the loss on the

validation set does not decrease for 7 consecutive epochs. The detailed 3D to 2D matches generation

process and noise information for our experiment are described in Section 6.3 Experiments.

6.2.3 Post-processing and Object Detection

After receiving the inlier probabilities, denoted as W in 2 RN � 20, from the facet network, a

RANSAC-based post-processing component is implemented to detectthe objects in the test image and

return the correspondences for each of the detected objects. Speci�cally, the post-processing component

contains two steps. The �rst step is adaptive thresholding. If we assume there are at mostk objects in the

test image, we threshold each entry ofW in to either 0 (outlier) or 1 (inlier), starting with a threshold of

0:9 and then gradually decreasing the threshold value with a step size of0:05. This process will stop when

we havek columns of W in that have at least n1 non-zero entries, or when the threshold value reachesT1.

The second step is a RANSAC-based clustering step. We sort the columns of W in based on the number

of non-zero entries in each column. Then starting from the column with the largest number of predicted

inliers, we �rst �t a rotation and translation and then verify this tran sformation using predicted inliers

from all columns. Predicted inliers in other columns that agree with this transformation will be assigned to

the current examining column. In addition, those con�rmed inliers will be excluded in the following

transformation veri�cation for other columns. This process will repeat until all columns with at least n2

number of predicted inliers are examined. The RANSAC-based clustering step can be viewed as RANSAC

with a restricted subset of matches for hypothesis estimation. Because the inlier portion in each subset is

very high after network prediction and thresholding, the post-processing component is extremely e�cient,

requiring very few iterations (this is veri�ed in the experiments in Section 6.3). The reason that we verify

the transformation using predicted inliers in other columns is that, due to noise, some ground-truth inliers

belonging to the same object may spread to several facets. This can happen, for example, if this object's

rotation normal vector is pointing close to the facet boundary. Any remaining predicted matches after the

clustering step will be discarded.

Thus, the post-processed output denoted asW out 2 RN � 20 has many zero columns and, ideally, onlyk

columns with a large number of non-zero entries. Then a simple thresholding with threshold value T2 on

the normalized number of predicted inliers for each column can be applied to detect the objects. Here, the

normalized number of predicted inliers is de�ned as the number of predicted inliers in a facet divided by
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the total number of predicted inliers. For the example object shownin Figure 6.1, we show the results of

processing in Figure 6.4. This �gure shows raw matches, and the normalized number of predicted inliers for

di�erent facets after thresholding and after clustering respectively.
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Figure 6.4: Post-processing and object detection. (a) Raw matches using SIFT descriptor. (b) The
normalized number of predicted inliers for di�erent facets after adaptive thresholding. (c) The normalized
number of predicted inliers for di�erent facets after post-processing. Yellow dotted line shows the threshold
T2 for object detection. We setk = 3, T1 = 60%, T2 = 0 :1, n1 = 20, and n2 = 10.

The hyper parameters of the post-processing should be set accordingly based on the estimated statistics

and noise level of the data. Speci�cally,k should be set to be the estimated, largest number of objects

among the matches andn2 represents the minimal number of matches expected for each object.n1 should

be set slightly greater than n2 to allow for some contaminated inliers prior to the post-processing step.

Note that due to the false negative prediction caused by the noise and network error, n2 is normally

smaller than the ground-truth statistics of the data. T1 represents the desired minimal probability of each

predicted match being an inlier, which should be set higher when the noise level is low.T2 should be set

slightly less than the estimated, mininal normalized number of inliers of the objects.
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6.2.4 Discussion

In this chapter, we assume objects to have distinct poses; namely,di�erent objects have their rotation

normal vectors pointing towards di�erent facets, so that each peak in Figure 6.4 corresponds to one object

in the test image. If there exist several objects with normal vectorsthat point towards the same facet, we

�nd that one potential solution is to train another angle network which con sists of multiple angle

classi�ers. Speci�cally, each angle classi�er is responsible for detecting correspondences for poses that have

the rotation angle around the normal vector falling in a speci�c angle range. Then by combining the results

from the facet and angle networks, one can classify several objects belongto the same facet in a

non-iterative manner. Alternatively, one can implement RANSAC sequentially on the predicted inliers

belonging to the same facet, and set the stop criterion based on a pre-set minimum number of inliers for

each object.

6.3 Experiments

In this section, we report the results of several numerical simulations and an experiment on the GMU

kitchen dataset [190]. To train our network8, we generate a synthetic training dataset of 32000 examples

and a validation dataset of 320 with outliers and noise as described in Section 6.2.2. We follow the data

generation procedure described in [72] for PnP and extend it to the case of multiple objects. Speci�cally,

each example comprises 200 3D to 2D matches. The number of objects in each example and the inlier

portion of each object is uniformly selected inf 1; 2; 3g and between [0:2; 0:3] respectively. We �rst generate

3D points in camera coordinates whoseX , Y , Z are uniformly sampled from the ranges of [� 1; 1], [� 1; 1],

and [4; 8] respectively. Then using the intrinsic parametersf x = f y = 800, xc = 320 and yc = 240, we

project the 3D points onto the 2D image and add Gaussian noise with 5 pixelsstandard deviation. For

those matches belonging to the same object, we set their ground-truthtranslation of the camera pose as

their centorid and randomly set the rotation. Matches that do not belong to any objects have random

translation and rotation.

Metrics. For simulations, we generate a testing dataset of 1000 examples. For each example, we

calculate the inlier detection precision and recall, and record the average number of RANSAC iterations in

the post-processing step and the average time consumption (unit: second) using a GTX 1080 GPU for

network inference and an i7-6700 CPU for post-processing. Inlier detection precision is de�ned as the

number of detected ground-truth inliers divided by the number of predicted inliers. Recall is de�ned as the

number of detected ground-truth inliers divided by the number of all ground-truth inliers.

8Code is available at https://github.com/youyexie/Learni ng-To-Find-Good-Correspondences-Of-Multiple-Objects
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Compared methods. We implement sequential RANSAC [183,191] which applies RANSAC to detect

each object sequentially, and removes the inliers from the dataset aseach transformation is detected. If the

number of objects is one, sequential RANSAC is equivalent to classicalRANSAC. In addition, we train the

inlier prediction network proposed in [178]. Since they assume thereis only one object in each example, we

retrain their network so that it predicts the inliers without clas sifying them into di�erent objects. Then a

sequential RANSAC post-processing is performed to �t the transformations of multiple objects. Moreover,

since their network is deeper than our facet network, we train it with a training dataset of 64000 examples.

And if not explicitly stated, we set k = 3, T1 = 60%, T2 = 0 :1, n1 = 20, and n2 = 10 for our approach. Note

that both sequential RANSAC as well as the network of Yi et al. [178] followed bysequential RANSAC

require knowledge of the ground-truth number of objects, which controls the number of transformations

they want to �t. For fairness and to study the performance of inlier pr ediction and object detection of our

method individually, in Section 6.3.1 and 6.3.2, we directly pick then largest peaks from the

post-processed normalized number of predicted inliers for di�erent facets to calculate the metrics, wheren

is the ground-truth number of objects. In Section 6.3.3, we study the object detection performance of our

method individually. For the real data, the ground-truth number of obj ects is not provided.

6.3.1 Finding Correspondences of One Object

We �rst study the simple case where there is only one object with 30% inlier portion in each example of

the testing dataset, with 2 pixels standard deviation Gaussian noise.Since the network of Yi et al. [178]

predicts weights for each match, an inlier detection threshold is needed. We adjust this threshold so that

they achieve similar recall to our method. Since in the one object case the standard deviation of the noise

is not very large, we setT1 = 70%. The result is recorded in Table 6.1, from which we can observe that all

methods achieve over 99% precision and over 75% ground-truth inliers are detected. However, our method

requires a much smaller average number of iterations compared to others.

Table 6.1: Finding correspondences of one object.

Precision Recall Average number of iterations

RANSAC 99.9% 80.4% 374.3

Yi et al. [178] 99.8% 75.4% 24.4

Our method 99.2% 75.7% 17.5

6.3.2 Finding Correspondences of Multiple Objects

Now we turn to the case of multiple objects, where each example of the testing dataset contains 3

objects with distinct poses and the same inlier portion of 30%. Thus, the outlier portion is 10% and the
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pseudo-outlier [192] portion, which is de�ned as the outlier portion to each object, is 70%. We set the inlier

detection threshold as 0:5 for Yi et al. [178]. We vary the standard deviation of the Gaussian noise and

record the results in Figure 6.5. Under severe noise, some inliers areheavily contaminated and that

explains the signi�cant drop of recall as the noise standard deviation increases.
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(c) Precision of inlier detection.
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(d) Recall of inlier detection.

Figure 6.5: Finding correspondences of multiple objects with varying standard deviation of the additive
noise.

From the results we can observe that although our method is slightly inferior to sequential RANSAC

and Yi et al. [178] in terms of inlier detection precision and recall, our method nevertheless achieves over

94:2% precision under severe noise and large pseudo-outlier interference. More importantly, our method is

around 15� faster than Yi et al. [178] and 20� faster than sequential RANSAC in terms of the average

number of iterations and average time consumption when the standard deviation of noise is 5 pixels. In

addition, the average time consumption of our method is below 0.1 secondper example consisting of 200

3D to 2D matches. This is due to the fact that the feed-forward classi�er network is very e�cient and

e�ective in predicting inliers, thus reducing the number of i terations required by the RANSAC-based

post-processing step and total processing time. To further verify the e�ciency of our method, a similar
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experiment �xing the Gaussian noise standard deviation to 2 pixels and varying the inlier portion of each

object is also implemented, and the average number of iterations and time consumption are recorded in

Figure 6.6. These results con�rm that our method is substantially faster than the other two methods, in

terms of the number of iterations and average time consumption.
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(b) Average time consumption.

Figure 6.6: The e�ect of the inlier portion of each object on the average number of iterations and time
consumption.

6.3.3 Object Detection Performance

Besides being very e�cient, our method can detect multiple objects among correspondences

automatically and we examine the object detection performance in this section. Each example of the

testing dataset has the ground-truth number of objects uniformly sampled from f 1; 2; 3g and all objects

have the same inlier portion. When 20% of the inliers of an object are detected, we count it as a success

detection and we de�ne the object detection accuracy as the number of detected objects divided by the

total number of objects. The object detection accuracy under di�erent noise level and inlier protion of each

object is recorded in Figure 6.7, which shows that our method can detect the objects very accurately.

6.3.4 Performance on GMU Kitchen Dataset

In the last experiment, we implement our method on the GMU kitchen dataset [190] which consists of

multiple kitchen scenes. Speci�cally, we take two images from scenes 1 and 7 as the RGB-D templates and

several images from the rest of the scenes as the test images. Then basedon the distribution of the 3D

points in the templates and the provided intrinsic matrix, we generate a synthetic training dataset to train

our facet network. SIFT descriptors [46] are applied for the feature matching. The inlier prediction results

of multiple objects on GMU Kitchen Dataset are shown in Figure 6.8 and Figure 6.9.
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Figure 6.7: The object detection accuracy with di�erent Gaussian noisestandard deviation and inlier
portion of each object.

Di�erent colors of correspondences indicates di�erent detected objects. The promising results imply

that by slightly adjusting the synthetic training dataset, our meth od is capable of simultaneously �nding

the good correspondences and classifying them into multiple objects on real data.

6.4 Conclusion

In this chapter, we propose an e�cient method consisting of a learning-based facet network and a

RANSAC-based post-processing step to accurately �nd good correspondences of multiple objects with

distinct poses, given a set of 3D to 2D putative matches. We discretize the 3D rotation space using a

regular icosahedron, and for each facet of the icosahedron, a classi�er is trained to identify inlier

correspondences for poses that have a rotation normal vector pointing towards the facet. According to our

experiments, the proposed method is extremely e�cient comparedto existing methods and is able to

simultaneously identify inliers and detect objects accurately.
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(a) RGB-D template

(b) (c)

(d) (e)

Figure 6.8: Finding good correspondences on GMU kitchen dataset. (a) shows the RGB-D template. (b)
and (d) are the raw matches using SIFT descriptor and the results areshown in (c) and (e) respectively.
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(a) RGB-D template

(b) (c)

(d) (e)

(f) (g)

Figure 6.9: Finding good correspondences on GMU kitchen dataset. (a) shows the RGB-D template. (b),
(d), and (f) are the raw matches using SIFT descriptor and the results are in (c), (e), and (g) respectively.
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CHAPTER 7

FAST APPROXIMATION OF NON-NEGATIVE SPARSE RECOVERY VIA PROJECTED GRADI ENT

DESCENT INSPIRED DEEP LEARNING

Non-negative sparse recovery refers to recovering non-negative sparse source signals from linear

observations. This model arises naturally in many image processing applications such as super-resolution

and image inpainting. In this chapter, we propose two e�cient neural networks for fast approximation of

non-negative sparse recovery. We also derive upper bounds on networksizes measured by the numbers of

layers and neurons to achieve a speci�ed approximation error. Numerical experiments demonstrate the

e�ectiveness and robustness of the proposed networks and show theirpotential in solving more complicated

signal recovery problems with the non-stationary transformation process and noisy observation.9

7.1 Introduction

7.1.1 Algorithm Approximation

Deep learning has found numerous applications [91,184], among which one important �eld is algorithm

approximation [193]. The basic idea is to unfold an iterative algorithm and transform the iteration process

into a series of network layers. The network parameters are then trained with back-propagation. For

example, [193] and [194] solve a sparse recovery problem without the non-negative constraint by

approximating the Iterative Soft-Thresholding Algorithm (ISTA) [195] an d Alternating Direction Method

of Multipliers (ADMM) algorithm with neural networks, respectivel y. [196,197] address the non-negative

matrix factorization problem through algorithm approximation and [198] approx imates the optimization

algorithm for the network training. [199] considers the non-negative sparserecovery problem but their

network contains a special integrator component and the networks in thischapter have a unique skip

connection design which can be seen as a variation of the skip connection in ResNet [61]. More

importantly, few of the algorithm approximation literatures quantify t he relation between the system

performance and the network size as we do in this work.

7.1.2 Non-Negative Sparse Recovery

Throughout this chapter, we consider the non-negative least square problem for sparse recovery which

occurs naturally in many machine learning and image processing tasks [200,201].

minimize
x

1
2

jjA x � y jj2
2

subject to x 2 R n
� 0

(7.1)

9This is a joint work with Zifan Wang, Weiping Pei, and Gongguo Tang [93]
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where y = A x � 2 R m for some ground truth signal x � 2 R n
� 0 is the measurement vector, and

A 2 R m � n (m < n ) is the sensing matrix. Sincem < n , this problem is under-determined and ill-posed.

There are an in�nite number of solutions x̂ such that f (x̂ ) = 1 =2jjA x̂ � y jj2
2 = f (x � ). Fortunately, in many

scenarios, the ground truth signal is both sparse and non-negative. More precisely, we assumex � only

contains at most s positive entries and we callx � a s-sparse vector.

Proposition 7. [202,203] If the matrix A 2 R m � n satis�es the self-regularizing condition and

(3=� 2; s)-restricted eigenvalue condition, the convex optimization(7.1) has a uniques-sparse solution with

overwhelming probability.

A. Self-regularizing condition: there exists a constant� > 0 such that

max
n

� : 9h 2 R m ; jjh jj2 � 1; such that
A T h
p

m
� � 1

o
� �: (7.2)

B. (3=� 2; s)-restricted eigenvalue condition: given� from (7.2) and sparsity s, the following inequality

holds

min
J �f 1;:::;n g;

jJ j� s

min
� 2 R n 6=0 ;

jj � J c jj 1 � 3=� 2 jj � J jj 1

jjA � jj2p
mjj � J jj2

> 0 (7.3)

where jJ j measures the cardinality ofJ and � J is the vector � with all but entries whose indices=2 J set to

zero.

When A satis�es the conditions in Proposition 7, solving (7.1) equals to solvinga non-negative sparse

recovery problem and we assumeA satis�es Proposition 7 throughout the chapter. [202] shows that if the

entries of A are sampled from i.i.d sub-Gaussian distribution onR x � 0, Proposition 7 is satis�ed with

overwhelming probability.

A classical approach to solve convex optimizations like (7.1) with a simple constrained set is the

projected gradient descent (PGD) algorithm. Due to the convexity of the objective function and the

uniqueness of the solution, starting from an arbitrary initial point, e .g. x 0 = 0, PGD is guaranteed to

converge to the ground truth solution. Given the sensing matrixA and the observationy , PGD alternates

between a gradient descent step and a projection step

x k+1 = ReLU( x k � � (A T A x k � A T y ))

= ReLU(( I � � A T A )x k + � A T y )

:= ReLU( W x k + Sy)

(7.4)

where � is the step size and ReLU represents the projection onto the non-negative orthant de�ned as

ReLU(x ) = arg min y 2 R n
� 0

jj x � y jj2 = max f 0; x g.
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PGD can be accelerated with improved convergence rate to obtain the following accelerated projective

gradient descent (APGD) [204,205]:

x k+1 = ReLU [ yk � � r f (yk )]

yk+1 = x k+1 + 
 (x k+1 � x k ):
(7.5)

Substituting yk = x k + 
 (x k � x k � 1) and r f (yk ) = A T A y k � A T y into x k+1 yields

x k+1 = ReLU
n �

(1 + 
 )I � � (1 + 
 )A T A
�

x k +
�
�
 A T A � 
 I

�
x k � 1 + � A T y

o

:= ReLU ( W 1x k + W 2x k � 1 + Sy) :
(7.6)

When initialized at x 0 = 0, the PGD and APGD have block diagrams shown in Figure 7.1 (a) and

Figure 7.2 (a). The rest of the chapter is organized as follows. In Section7.2, we propose two neural

networks for non-negative sparse recovery and derive bounds on the network sizes to achieve a speci�ed

reconstruction error. Section 7.3 contains experiments and the chapter is concluded in Section 7.4.

7.2 Deep Learning Approximation

In this section we propose two e�cient neural networks for non-negative sparse recovery inspired by the

algorithmic pipelines of PGD and APGD. We refer to the networks inspired by PGD and APGD

algorithms as the learned projective gradient descent (LPGD) networkand the learned accelerated

projective gradient descent (LAPGD) network respectively. Speci�cally, we unfold the PGD and APGD

algorithms and make their parameters,W , W 1, W 2 and S, trainable. The block diagrams and network

structures of LPGD and LAPGD networks are shown in Figure 7.1 and Figure 7.2.x k is the output of the

k-th ReLU layer and we call the network whose output isx k the k-depth network. In sparse recovery,

samples (y i ; x i ) from a speci�c distribution are fed to networks to learn the mapping from y i to x i which is

denoted asg(y i ; W ), where W designates all the trainable parameters. GivenN samples, the training

process tries to minimize the Euclidean distance between the predicted and ground truth signals,

Loss(W ) = 1
N

P N
i =1 jj x �

i � g(y i ; W )jj2
2. We derive the relation between the reconstruction error,

1
2 jjA � g(y ; W ) � y jj2

2, and the LPGD and LAPGD network sizes in terms of the number of neurons and

layers in Theorem 7.10.

Theorem 7.10. Let F � be the optimal value of the problem (7.1), then for any" > 0, there exists an LPGD

(or LAPGD) network, g(y ; W ), which outputs non-negative vectors and hasO(log � � �
�

�
"
C

�
) layers

(including input, hidden and output layers) and O(n � log � � �
�

�
"
C

�
+ m) neurons, such that

1
2

jjA � g(y ; W ) � y jj2
2 � F � + " (7.7)

where � is the square of the largest singular value ofA , � is a quantity depending only onA and

C = jjy jj2
2=2.
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(a) The block diagram of the LPGD network.

(b) The network structure of the LPGD network.

Figure 7.1: The learned projective gradient descent (LPGD) network.

119



(a) The block diagram of the LAPGD network.

(b) The network structure of the LAPGD network.

Figure 7.2: The learned accelerated projective gradient descent (LAPGD) network.
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Proof. The problem (7.1) can be reformulated as an unconstrained optimization,

minimize
x

F (x ) = f (x ) + g(x ) (7.8)

where f (x ) = 1
2 jjA x � y jj2

2 and g(x ) is the indicator function of the nonnegative orthant. Apparently f has

� -Lipschitz continuous gradient with � = kA k2
2 = � max (A )2.

Furthermore, we argue that F (x ) satis�es the proximal-Polyak-Lojasiewicz (PL) inequality [206]:

1
2

Dg(x ; � ) � � (F (x ) � F � ) (7.9)

for some� > 0, where

Dg(x ; � ) = � 2� min
z

�
hr f (x ); z � x i +

�
2

kz � x k2 + g(z) � g(x )
�

: (7.10)

Then [206, Theorem 5] ensures that the proximal gradient algorithm with step size 1
� applied to (7.8),

which reduces to the PGD applied to (7.1), has a linear convergence rate

F (x k ) � F � �
�

1 �
�
�

� k

(F (x 0) � F � ): (7.11)

Following the line of arguments in [206, Appendix F], one obtains that� > 0 can be taken as the Ho�man

constant for a system of inequalities with a system matrix
�

AT � AT � I

� T

, which can be further upper

bounded using the minimal singular values of certain submatrices of
�

AT � AT � I

� T

[207, Theorem

4.2]. The choice of� also implies � < � .

Therefore, for an arbitrary " > 0, if we initialize x 0 = 0 and set C = jjy jj2
2=2, we have

1
2

jjA x k � y jj2
2 � F � �

�
1 �

�
�

� k

C � " (7.12)

which results in

k � log
� "

C

�
=log

�
1 �

�
�

�
= log � � �

�

� "
C

�
: (7.13)

Therefore, according to the structure of the LPGD network in Figure 7.1, when W = I � 1
� A T A and

S = 1
� A T , the LPGD network requires dke+ 1 layers including the input and output layers and ndke+ m

neurons to minimize the reconstruction error below" if F � = 0. In addition, since the LAPGD network

degenerates to the LPGD network whenW 2 = 0, the result applies to both LPGD and LAPGD

networks.
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Note that the proposed networks and theorem are also applicable to (7.1) whenA does not satisfy

Proposition 7. But in that case, (7.1) could have more than one solution and we can no longer guarantee

that x̂ converges to thex � .

7.3 Numerical Experiments

7.3.1 Fast Approximation for Sparse Recovery

In the �rst experiment, we compare the non-negative sparse recovery performance of the proposed

networks with the PGD and APGD algorithms. Speci�cally, we synthesize 20000 data pairs

(x i 2 R 20; y i = A x i 2 R 10) for training and another 2000 data pairs for testing. The goal is to recover the

high-dimensional signalx i from observation y i with known A 2 R 10� 20. For each ground truth vector, x i ,

we randomly select its sparsity from the setf 1; 2; 3g and choose the locations of the non-zero entries

uniformly at random. Then the non-zero entries ofx i are sampled from the i.i.d uniform distribution on

[0; 100]. Similarly, each entry ofA is sampled from the i.i.d uniform distribution on [0; 1].

The neural networks are trained using the Adam algorithm [76] with 10� 4 initial learning rate. All

weights of the network are initialized with i.i.d entries uniforml y on [0; 0:001]. In addition, W , W 1 and

W 2 are initialized as symmetric matrices since they are symmetric inPGD and APGD algorithms. The

batch size is 200 and the whole training process takes 10000 epochs. The LPGD and LAPGD networks

with di�erent depths are trained separately and we record their average recovery error,jjx � � g(y ; W )jj2,

on the testing set in Figure 7.3. The PGD and APGD algorithms start with x 0 = 0 and their step sizes are

1
� where � = kA k2

2 and 
 = 0 :9. We can observe that the LPGD and LAPGD networks manage to learn

the sparse recovery process and outperforms PGD and APGD by a large margin with the same

computational cost in the test set.
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Figure 7.3: The average recovery error on the testing set. For LPGD and LAPGD networks, k indicates
their depths.
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7.3.2 The E�ectiveness of The Skip Connection

We refer to the connection that does not come from the last layer or comesfrom the last layer with an

identity transformation as the skip connection. The second experiment illustrates the e�ectiveness of the

skip connection in the LPGD and LAPGD networks by comparing the average recovery error of the

3-depth LAPGD, 3-depth LPGD, 3-depth LPGD without skip connections and a vanilla neural network

with same number of layers and initializations. We adopt the same setupin the last experiment and the

results are recorded in Table 7.1.

Table 7.1: The average recovery error on the testing set.

LAPGD LPGD Vanilla Network LPGD w/o skip

8.89 12.59 12.71 14.52

Recall that, unlike the vanilla network, the weights between hidden layers in the LPGD network are the

same and skip connection improves the network performance signi�cantly. The LAPGD network with

additional skip connections achieves better performance than LPGD network.

7.3.3 Non-stationary Super Resolution

In this experiment, we examine the robustness of the LPGD and LAPGD networks when applied to the

sparse recovery problem with non-stationary sensing matrix and noisyobservation. This problem can no

longer be solved by the PGD and APGD algorithms. Particularly, we apply the networks to the single

molecule imaging, in which all sub-cellular structures are dyed with 
uorophores before imaging by the

microscope and in each observation, only a small portion of the 
uorophores areactivated for imaging.

Thus each frame is composed of the activated 
uorophores convolved with non-stationary point spread

functions of the microscope with additive noise as shown in Figure 7.4 (a). If we superpose all the frames,

we obtain the low resolution image in Figure 7.4 (b). The data comes from Single-Molecule Localization

Microscopy grand challenge organized by ISBI10 which contains 12000 imaging frames. With the same

initialization from last experiment, we train the 7-depth LPGD and 7-de pth LAPGD networks using 8000

imaging frames and implement the super-resolution on the rest 4000 frames. Thus, the training and testing

datasets follow the same distribution but have di�erent sparsity pattern and intensity for each frame. All

data are pre-processed by subtracting the average intensity of thetraining set and the super-resolution

results of the LPGD and LAPGD networks are presented in Figure 7.4 (c) and(d).

10 EPFL Biomedical Imaging Group, Single-Molecule Localizat ion Microscopy: http://bigwww.ep
.ch/smlm/
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(a) A typical frame. (b) The sum of all frames.

(c) Super-resolution result of the
LPGD network.

(d) Super-resolution result of the
LAPGD network.

Figure 7.4: The single molecule imaging. The size of the images in (a) and (b)are 32� 32 pixels with pixel
size 200 nm� 200 nm. (c) and (d) show the super-resolution results from LPGD and LAPGDnetworks
whose sizes are 64� 64 pixels.

7.4 Conclusion

In this chapter, we propose two e�cient neural networks for fast approximation of the non-negative

sparse recovery. Speci�cally, we design the LPGD and LAPGD networks by unfolding the projected

gradient descent and accelerated projective gradient descent algorithms and making their parameters

trainable. Moreover, we derive an upper bound on the network sizes fora given approximation error. The

experiments illustrate that the proposed networks are extremely e�cient compared to the classical

optimization algorithms and are capable of handling problems with non-stationary sensing matrix and

noisy observation.
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CHAPTER 8

CONTAMINATED MULTIBAND SIGNAL IDENTIFICATION VIA OPTIMIZATION-INSPIR ED DEEP

LEARNING

Multiband signals, whose active frequencies lie within continuousintervals, arise in a wide range of

applications like radar imaging. In this chapter, given limited and varying-length time-domain samples of a

contaminated multiband signal, we propose novel deep networks to estimate the number of bands and

locate the bands' centers. A multiband signal representation model, which combines the long short-term

memory (LSTM) and convolutional neural network, is trained to map varying- length observed samples to a

frequency spectrum representation. A counting model then counts the number of bands based on the

estimated spectrum. Combining the spectrum representation and estimated number of bands, the bands'

centers can be recovered e�ciently and automatically. Numerical experiments demonstrate that the

proposed method is very e�ective and can leverage extended samples for better performance. Moreover, it

outperforms other deep architectures for line spectral estimation atdi�erent noise levels and is much faster

than an atomic norm-based method.11

8.1 Introduction

8.1.1 Contaminated Multiband Signal Identi�cation

Conventional line spectral estimation [79] appears widely in many applications, e.g., power

electronics [208]. Mathematically, one observes a time-domain multitone signal

y(t) =
MX

j =1

A j ei 2�F j t + � (t) (8.1)

where the number of tonesM is unknown, A j 2 C is a complex weight consisting of the unknown

amplitude and phase,Fj is the unknown frequency of interest, and� (t) denotes additive Gaussian noise.

In [77,78], deep networks are proposed that solve the line spectral estimation problem with competitive

performance. These networks give insight into the connections between a fundamental problem in signal

processing and an emerging tool in machine learning.

The multiband signal identi�cation problem generalizes the model in (8.1), such that each component is

supported over a continuous narrow band in the frequency domain. Namely, y(t) has its continuous-time

Fourier transform, Y (F ), supported on a union of several bands,

11 This is a joint work with Michael B. Wakin and Gongguo Tang [94 ].
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F =
M[

j =1

[Fj � B j ; Fj + B j ]; y(t) =
Z

F
Y(F )ei 2�F t dF + � (t): (8.2)

Here B j is the width of the band whose center isFj . Such multiband signals arise in applications like radar

imaging [209] and communication [210]. Unfortunately, the deep networks in [77,78] are not designed to

accommodate multiband signals. In addition, most deep architectures [77,78,93,193] for signal processing

problems only allow a �xed-length input signal, while leveraging extended samples for better identi�cation

accuracy is characteristic of many signal processing techniques like the discrete Fourier transform (DFT).

In this chapter, we propose novel deep networks to tackle the multiband signal identi�cation problem

while allowing for input signals of di�erent lengths. After uniform an d non-aliased sampling with sampling

interval Ts, the multiband signal has the form [211{213]

y =
MX

j =1

A j a(f j ) �
Z W j

� W j

a(f )mj (f )df + � 2 CN (8.3)

where a(f ) = [ ei 2�f 0; ei 2�f 1; � � � ; ei 2�f (N � 1) ]T , N is the length of the observed samples,

f j = TsFj 2 [� 0:5; 0:5) denotes the band's digital frequency center,Wj = TsB j 6= 0 denotes the digital

band width, and mj (f ) is the envelope of thej -th band in the digital frequency domain. Moreover, (:)T

denotes the transpose operator and� denotes the element-wise (Hadamard) product.

Given only the sampled signal vectory , the goal of this chapter is to estimate the number of bandsM

and the center frequencyf j of each band. This task is complicated by the fact that Fourier analysis

techniques, when applied to the �nite vector of samplesy , are plagued by the problem of spectral leakage:

the boundaries of the bands become smeared and bands can blend into one another.

8.1.2 Related Work

When all bands in the multiband signal have zero band width, our problem reduces to line spectral

estimation [79,214]. When the band widths are nonzero, however, those methods no longer apply. Most of

the research involving the multiband signal model studies the signal sampling problem, in which the aim is

to reconstruct the time-domain multiband signal using a minimal sampling rate [212,213,215]. For

example, [215] proposes periodic nonuniform sampling for mutiband signalreconstruction when the number

of bands is known, [212] proposes a universal sampling pattern which requires the lowest and highest

frequencies and the occupancy rate of the bands, and [213] studies sub-Nyquist sampling for

spectrum-blind multiband signal recovery under a compressed sensing framework [2,87]. More sampling

schemes are available in [216,217]. Meanwhile, [211] studies the multibandsignal identi�cation in the
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noiseless case, using discrete prolate spheroidal sequences (DPSS) [218] to construct a subspace model for

the active bands and employing these in an atomic norm minimization framework [11,101].

Deep learning has gained much attention in signal processing [93,219] due to its e�ciency and

promising performance. Relevant to our work are [77,78], which address line spectral estimation via deep

architectures for sample vectors of a �xed size. Their networks map the observed samples to a

pseudo-spectrum [78], from which the frequencies can be located by�nding peaks. This mapping process is

inspired by atomic norm minimization methods [79,211], which take time-domain samples and solve for the

dual polynomial. In this chapter, we extend these works to solve the multiband signal identi�cation

problem, and we allow for varying numbers of observed samples. Our workshows the potential to design

deep architectures that enjoy both the e�ciency of deep learning and the capability of leveraging extended

data points for better performance. Speci�cally, we propose a novel multiband signal representation model,

which combines a long short-term memory (LSTM) [69] and convolutional neural network [47], to encode

the observed samples and map the encoded signal to a frequency spectrum representation. A counting

model is then applied to estimate the number of bands,M , based on the predicted spectrum. The bands'

centers can then be automatically extracted from theM tallest peaks in the spectrum.

This chapter is organized as follows. In Section 8.2, we introduce the proposed multiband signal

representation and counting models for multiband signal identi�cation. Several numerical experiments are

conducted in Section 8.3 to evaluate the e�ectiveness of the proposedmethod. We conclude this chapter in

Section 8.4.

8.2 Proposed Method

8.2.1 Multiband Signal Representation Model

For line spectral estimation, [78] demonstrates that predicting a frequency spectrum which encodes the

frequency information is more e�ective than estimating the frequencies directly. Inspired by their

methodology and traditional atomic norm optimization methods [79,80], where adual solution is

constructed and a frequency spectrum can be plotted to locate the ground truth frequencies by correlating

the dual solution against exponential atoms of di�erent frequencies, ourmultiband signal representation

model maps the observed signal to a frequency spectrum (FS) representation. In the dual

polynomial-generated frequency spectrum, the ground truth frequencies would have magnitude 1 just like

the estimated frequency spectrum in [78] and our work. An example of a length-50 observed signal, its

length-1000 over-complete DFT, the signal's ground-truth bands, and the target frequency spectrum for

the deep network are shown in Figure 8.1. The target FS is a superposition of M Gaussian kernels,

F S(f ) =
P M

j =1 K (f � f j ) where each Gaussian kernel has the formK (f ) = exp( � f 2=� 2
f ). We set
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� f = 0 :006 as in [77] and note that there is a trade-o� between the resolution in thespectrum and the

number of informative non-zero values for network calibration. The discretized FS is of length-1000 with

circular periodization.
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Figure 8.1: An observed signal of 50 length at SNR 30 dB, whose bands' digital frequency centers are
f� 0:15; 0; 0:15g with digital band width W = 3=N = 0 :06. (a) The real and imaginary parts of the
observed signal. (b) The signal's 1000 length over-complete DFT. (c) The signal's ground-truth bands. (d)
The target FS.

The architecture of the proposed multiband signal representation model, termed DeepMultiband, is

shown in Figure 8.2. The input of the model is [yR ; y I ] 2 R N � 2 where yR and y I denote the real and

imaginary parts of the observed signaly and y = yR + iy I . Long short-term memory (LSTM) [69] has

achieved great success in handling data of di�erent lengths and is introduced in our model to deal with

varying-length inputs ( N is not �xed). However, an individual exponential signal sample can not provide

valuable information about the signal's frequency. Thus, we add an inputconvolutional layer, whose

convolution kernel has the view of several consecutive data samples, to embed the raw time series

exponential signal data. Intuitively, each embedded data point will contain the frequency and noise
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information within its time window. The LSTM is then responsible f or examining all the embedded data

and outputting a deconvolution signal. Speci�cally, an input convoluti on layer with kernel size 20 (we

assumeN � 20) �rst encodes the observed samples into a data bank of 30 channels, which results in an

(N � 20 + 1) � 30 matrix. An LSTM with hidden size 200 then processes each row of the data matrix one

at a time starting from the �rst row. After processing all encoded data, the last hidden state of size 200� 1

is mapped to an intermediate feature space with 32 channels by a lineartransformation. Intuitively, we

expect that each feature channel encodes a Fourier transformation-like spectrum as in the network

proposed in [77] for line spectral estimation. The transformed featuresare then processed by 20

convolutional neural network (CNN) blocks of the same structure but with di�erent weights; the data

preserves its size through those CNN blocks. Each CNN block consistsof a convolution layer with kernel

size 3 with circular padding to process the local frequency information, a batch norm minimization to

facilitate the training, and a recti�ed linear unit (ReLU) layer to im pose non-linearity. The structure of the

CNN block in DeepMultiband and counting model in Section 8.2.2 are inspired by [77,78] but with the

hyper-parameters, e.g., the kernel size and number of feature channel, �ne tuned based on the mutiband

signals in our experiments. Finally, a transposed convolution layer [220] with kernel size 12 and stride 5

produces the estimated frequency spectrum of length 1000.

Figure 8.2: DeepMultiband, the multiband signal representation model. The input and output sizes of the
model and the data sizes between the hidden layers are marked below.

8.2.2 Multiband Signal Counting Model

Given the frequency spectrum estimated by a pre-trained DeepMultiband model, a counting model is

trained to determine the number of bands within the observed signal. The input of the counting model is

the estimated FS and the output is a single value that is rounded to thenearest integer. The counting

model consists of an input convolution layer with 32 kernels of size 12 and stride 8, 20 CNN blocks as

introduced in Section 8.2.1 with the same setting, an output convolution layer with kernel and output
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channel size 1, and a fully connected layer that outputs the �nal value.

8.3 Numerical Experiments

8.3.1 Experiment Setup

We generate the simulation data based on (8.3). The training, validation, and testing data sets contain

200000, 1000, and 1000 multiband signals, respectively. The length of each multiband signal, N , is

uniformly selected from f 25; 26; : : : ; 50g, while the number of bands,M , is uniformly selected fromf 1; 2; 3g.

The bands' digital frequency centers are uniformly sampled within[� 0:5; 0:5) with a minimal separation of

2W + 1=N so that they are not overlapping; we study the case of overlapping bandsin Section 8.3.4. All

bands have a �xed maximum digital band width W = 0 :06 and 200 complex exponentials with frequencies

uniformly sampled within [ f j � W; f j + W ] are summed together to generate the corresponding signal

component within the j th band. Each complex exponential's amplitude is generated as (0:1 + jgj)ei� , where

g follows the standard normal distribution and � is uniformly selected in [0; 2� ]. We train the

DeepMultiband and counting models for 200 and 100 epochs, respectively, with batch size 256 and using

the Adam algorithm [76] with learning rate 0:001. In each epoch, we add additive Gaussian noise to the

multiband signal to yield an SNR drawn from the uniform distribution o ver [0; 50] dB. The loss functions

for the DeepMultiband and counting models are the squared̀ 2 error between the ground-truth and

predicted FS, jjF Sgt � F Spred jj2
2, and the squared error between the ground-truth number of bands and the

predicted number of bands, (M gt � M pred )2, respectively. We train DeepMultiband �rst and the counting

model second based on the FS predicted by a �xed-weight DeepMultiband.

Compared methods. Since the multiband signal identi�cation problem can be viewed as a generalized

line spectral estimation problem with a band convolution in the frequency domain, we implement the

PSnet [78] and DeepFreq [77] models, which to the best of our knowledgeare the state of the art deep

architectures for line spectral estimation, for comparison. Because PSnet and DeepFreq take a �xed-length

input, their networks are trained following the same setting as our model but using a truncated input

consisting of the �rst 25 samples. In addition, for each compared deep model, a counting model is also

trained based on its predicted FS to determine the number of bands.When the bands are modeled using

the DPSS dictionary [218] in Section 8.3.5, we implement an atomic norm minimization method proposed

in [211].

Metrics. We analyze the performance of the proposed method in terms of false negative rate (FNR), F1

score, and chamfer error. Speci�cally, FNR is de�ned as the percent ofundetected true band centers. A

successful detection is counted when there is a detected band center within � 0:02 of a true band center.

The F1 score is calculated based on the precision and recall. The chamfer error [91] between the
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ground-truth bands' centers, f 0 = f f 1; � � � ; f n 1 g, and estimated centers,f̂ = f f̂ 1; � � � ; f̂ n 2 g, is

1
n 1

P
f i 2 f 0

min f̂ j 2 f̂ jf i � f̂ j j + 1
n 2

P
f̂ j 2 f̂ minf i 2 f 0 j f̂ j � f i j.

8.3.2 E�ect of The Signal Length

We �rst examine the capability of our model to handle di�erent length s of signals. The results with

di�erent SNRs are recorded in Figure 8.3, where �gures in the left column show di�erent models'

performance on the testing dataset with signal lengths following the uniform distribution over [25 ; 50].

Without retraining the models, �gures in the right column of Figure 8. 3 present the models' performance

with signal lengths uniformly drawn from [100; 200]. We observe that the DeepMultiband model

outperforms other models at the low to middle SNRs when the signal length is within [25; 50] and

outperforms those models across all SNRs when the signal length is within [100; 200]. The results also show

that the DeepMultiband model can leverage extended samples to achieve better performance. Note that

when N increases, the minimum separation 2W + 1=N reduces, which makes the identi�cation problem

harder. Taking a �xed-size input limits the problem complexity t hat PSnet and DeepFreq models can

solve, which explains the diminished performance.

8.3.3 E�ect of The Band Shape

We again generate each signal in the testing dataset with length uniformlydrawn from [100; 200]. For

each band in the testing dataset, however, we evenly generate 200 exponentials within the band with

magnitudes gradually increasing from 0:1 to 0:2. This gives all bands in the testing dataset a trapezoidal

shape rather than the rectangular power spectrum used for training. Without retraining, the performance

of di�erent models on this testing dataset is recorded in Figure 8.4. Although the performance of all

models is slightly worse compared to the results in the right columnof Figure 8.3, our method still

outperforms other models and achieves around 2% FNR, 0:98 F1 score, and 0:013 chamfer error when SNR

is above 20 dB.

8.3.4 Multiband Signal with Overlapping Bands

To examine the e�ect of overlapping bands, we �x the number of bands in each multiband signal to 3,

where the �rst and second bands have separation uniformly selected in [W; 2W ]. Thus, there exist two

bands with overlapping ratio uniformly drawn within [0% ; 50%] and another non-overlapping band that is

at least 2W + 1=N separated from them. Since the number of bands is �xed, no counting model is needed.

We retrain di�erent representation models on this distribution w ith a signal length uniformly selected from

[25; 50]. In Figure 8.5, we record the performance of di�erent models on the testing dataset with

overlapping bands and signal length uniformly selected from [100; 200]. The results demonstrate that the
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DeepMultiband model is robust to the overlapping bands and outperforms other models by a large margin

over the whole range of noise levels.

8.3.5 Multiband Signal Modeled by DPSS

The DPSS dictionary [218] gives a collection of time-limited and essentially band-limited functions. In

this section, all bands in the training, validation, and testing datasets are generated using the DPSS

dictionary of length 50 with W = 3=N = 0 :06 and using the 2NW = 6 most band-limited sequences.

Dictionary coe�cients follow the random normal distribution and are nor malized to have unit `2 norm.

Thus, all observed samples have the same length of 50, and we retrain our DeepMultiband model on this

distribution. The atomic norm minimization method proposed for multi band identi�cation in [211] involves

solving for a dual polynomial, but it does not include an estimator for the number of bands. Thus, the

ground-truth number of bands is provided in this experiment. The performance of the atomic norm

minimization method [211] and the proposed DeepMultiband method on noiseless mutiband signals are

recorded in Table 8.1.

Table 8.1: Noiseless multiband signal with bands modeled by DPSS.

FNR F1 score Chamfer error
AtomicNorm [211] 0.15% 0.9985 0.0009

DeepMultiband 0.07% 0.9993 0.0012

Both methods perform very well in this case and achieve less than 0:2% FNR, over 0:99 F1 score, and

around 0:001 chamfer error. It is worth noting, however, that our model is trained on the noisy dataset and

thus is applicable to di�erent noise levels, while [211] assumes a noiseless observation. Moreover, measured

on an i7-6700 CPU, the DeepMultiband model only takes around 1:5 seconds to predict the frequency

spectrum for 1000 multiband signals of length 50, which is similar to DeepFreq and PSnet but more than

two orders of magnitude faster than the atomic norm-based method [211] using CVX [115].

8.4 Conclusion

In this chapter we solve the contaminated multiband signal identi�cat ion problem via deep learning. A

novel deep architecture, DeepMultiband, is proposed to map the observed varying-length multiband signal

to a frequency spectrum; a counting model then determines thenumber of bands. Based on the estimated

frequency spectrum and number of bands, the bands' centers can be identi�ed automatically. Our

experiments verify the e�ectiveness and robustness of the proposed method, which outperforms other state

of the art deep architectures for line spectral estimation under a range of noise levels and is more than two

orders of magnitude faster than atomic norm minimization.
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(b) False negative rate.
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(c) F1 score.
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(d) F1 score.
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(e) Chamfer error.
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(f) Chamfer error.

Figure 8.3: The e�ect of the length of the observed signal. Figures (a), (c), and (e) show the FNR, F1
score, and chamfer error of di�erent models for signal lengths uniformly selected in [25; 50]. (b), (d), and
(f) show the performance for signal lengths uniformly selected in [100; 200] without retraining the models.
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(b) F1 score.
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(c) Chamfer error.

Figure 8.4: The e�ect of a nonrectangular power spectrum in each band.
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Figure 8.5: Multiband signal with overlapping bands.

135



CHAPTER 9

DATA-DRIVEN PARAMETER ESTIMATION OF CONTAMINATED DAMPED EXPONENTIALS

In this chapter, we study the damped exponentials which appear naturally in a wide range of

applications including structural health monitoring and electric m achine fault detection. In this chapter,

given �nite time-domain samples of composite, contaminated damped exponentials, we propose novel deep

architectures to estimate the number of exponentials and recover the frequency and damping coe�cient of

each exponential. In our architecture, a damped exponential representation model maps time-domain

samples to a frequency-damping spectrum representation, whilea counting model then counts the number

of exponentials. Combining the spectrum representation and the estimated number of exponentials, the

frequencies and damping coe�cients of the exponentials can be recovered automatically. Altogether, this

yields an e�cient feed-forward method for parameter estimation of contaminated damped exponentials.

Our experiments indicate that the proposed method is very e�ective and can robustly handle exponentials

with close or even overlapping frequencies as long as the damping coe�cients are su�ciently separated. 12

9.1 Introduction

Advances in deep learning have led to a growing understanding of howto design networks for solving

sparse recovery and estimation problems [77,78,93,193]. Recently, powerful deep networks [77,78] have

been designed for solving one of the most canonical sparse signal processing problems: estimating

sinusoidal frequencies in line spectral estimation. The demonstrated performance is competitive with

traditional methods such as MUSIC [221]. Meanwhile, the problem of estimating the frequencies and

damping coe�cients of damped exponentials from �nite time-domain samples has wide applications,

including structural health monitoring [133,222], fault detection [89,136],and nuclear magnetic resonance

spectroscopy [38,145]. Unfortunately, this problem is more complicated than line spectral estimation, and

the previous networks [77,78] cannot accommodate the damped signal model.

In this chapter, inspired by [77,78], we design novel deep architectures to estimate the number of

exponentials and recover the frequency and damping coe�cient of each exponential. Our work adds to the

growing science of deep network design for solving canonical sparse signal processing problems.

9.1.1 Estimation of Contaminated Damped Exponentials

Suppose a system observes a composite signal consisting of a linear combination of M (unknown)

damped exponentials:
12 This is a joint work with Michael B. Wakin and Gongguo Tang [95 ].
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y(t) =
MX

j =1

A j e� � j t ei 2�f j t + � (t); (9.1)

where eachA j 2 C is a complex weight incorporating the unknown magnitude and phase of thej -th

exponential, and � (t) is additive Gaussian noise of unknown variance. By takingN samples ofy(t) with

sampling interval Ts, we obtain a vector y 2 CN whosen-th entry is

y (n) =
MX

j =1

A j e� � j Ts n ei 2�f j Ts n + � (Tsn)

=
MX

j =1

A j e� � j n ei 2�f j n + � (n)

(9.2)

where, without loss of generality (assuming non-aliased sampling), we take Ts = 1 and restrict the active

frequenciesf j 2 [� 0:5; 0:5). In this chapter, we assumeN = 50, and we also assume each damping

coe�cient � j 2 [0; 0:1]. Under these assumptions, a maximally damped exponential (� = 0 :1) will see its

amplitude decay by approximately 100� between its �rst and last sample.

Given the sample vectory , our goals are to determine the number of exponentialsM and to recover the

corresponding frequencyf j and damping coe�cient � j of each exponential.

9.1.2 Related Work

When all � j = 0, our problem reduces to line spectral estimation [79,214]. However, when damping is

present, line spectrum estimation methods no longer apply. To takedamping into account, several methods

relying on the discrete Fourier transform (DFT) are proposed in [223{226]. These methods, however,

assume either a single sinusoid or multiple sinusoids with well-separated frequencies. Some least square

methods leveraging sparse techniques [2,11,87] are proposed in [227{229], which iteratively re�ne the

estimated parameters and system order but are computationally cumbersome. Alternatively, two e�cient

time-domain approaches that allow exponentials with overlapping frequencies but separated damping

coe�cients are Prony's method [140], which solves a polynomial whose roots encode the parameters, and

the matrix pencil method [138,230], which constructs a matrix pencil based on the observed signal and

then solves a generalized eigenvalue problem. However, the polynomialand matrix pencil methods require

prior knowledge of the system order. And approaches such as Akaike information criterion (AIC) [231],

minimum description length (MDL) [232], and second-order statistic of eigenvalues (SORTE) [233] are

proposed to estimate the system order.

Deep learning has attracted signi�cant interest due to its e�cient end-to-end processing and

competitive performance [93,219,234]. Many deep architectures have beenproposed for sparse recovery of
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di�erent signal models [77,78,93,193]. Of particular interest are deep neural networks such as

DeepFreq [77] and PSnet [78] that achieve superior performance for line spectral estimation. However,

those works assume no damping.

In this chapter, we extend the works of [77,78] by taking damping into account, and our work shows the

potential for applying deep learning to a more complex sparse signal processing problem. Speci�cally, we

propose a novel damped exponential representation model that maps theobserved signal to a

two-dimensional frequency-damping spectrum, in contrast with the one-dimensional frequency spectrum

in [77,78]. Moreover, to boost the performance in estimating exponentials with very close or overlapping

frequencies but di�erent damping coe�cients, we propose a novel two-branch structure in the

representation model to extract the frequency and damping information. We also propose a counting

model to determine the number of exponentials,M , based on the estimated frequency-damping spectrum.

Finally, the frequencies and damping coe�cients can be extractedfrom the M peaks with the largest

magnitudes in the spectrum.

The rest of the chapter is organized as follows. In Section 9.2, we propose the damped exponential

representation model and counting model for parameter estimation of contaminated damped exponentials.

In Section 9.3, several experiments are conducted to evaluate the performance of the proposed networks

and we conclude this chapter in Section 9.4.

9.2 Proposed Methodology

9.2.1 Damped Exponential Representation Model

In applying deep learning to line spectral estimation, [78] shows that nonparametrically predicting the

frequency spectrum is more e�ective than parametrically predicting the frequencies directly. Inspired by

that approach, our damped exponential representation model aims to map the observed signal to a

nonparametric frequency-damping spectrum (FDS).

More speci�cally, the input of our representation model is [y T
R ; y T

I ]T 2 R 2N where (:)T is the transpose

operator. yR and y I are the real and imaginary parts of the observed signaly = yR + iy I . Based on the

ground-truth parameters f (f 1; � 1); (f 2; � 2); : : : ; (f M ; � M )g of the exponentials contained in an observed

signal, the ground-truth FDS is de�ned to be the superposition of M generalized 2D Gaussian kernels,

F DS (f; � ) =
MX

j =1

K (f � f j ; � � � j ) (9.3)

where the kernel has the formK (f; � ) = e� (f 2 =� 2
f + � 2 =� 2

� ) . Larger values of the standard deviations� f and

� � allow for more informative non-zero values backpropagated during calibration but at the cost of lower
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resolution. In this chapter, we set N = 50, � f = 0 :9=N, and � � = 0 :45=N. If the observed signal has more

than 50 samples, our network could use the �rst 50 samples. An example of the input and output of the

representation model is shown in Figure 9.1, in which the discretized FDS is of size 30� 100. To account

for periodicity in the frequency parameter f , we use a circular extension of the frequency axis. Since no

such periodicity exists for the damping coe�cient, we pad the spectrum with � values smaller than 0 and

greater than 0:1. With this discretization, the resolution of f and � are 0:01 and 0:005, respectively.
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(a) The real and imaginary parts of the observed signal.
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(b) The corresponding frequency-damping spectrum .

Figure 9.1: A noisy observed signal consists of three damped exponentialswhose parameters (f j ; � j ) are
(� 0:2; 0:04), (0:0; 0:02), and (0:3; 0:08) respectively. The observed signal's real and imaginary parts are
shown in (a) and its frequency-damping spectrum is shown in (b).We pad the spectrum with damping
coe�cient values smaller than 0 and greater than 0:1.

The structure of our representation model, which we term Dank (deep + damp), is shown in Figure 9.2.

We �rst linearly encode the input signal to an intermediate feature space of 60 channels. Then several

convolution neural network (CNN) blocks consisting of a convolution layer with kernel size 6 and circular

padding, a batch normalization layer [59], and a recti�ed linear unit (ReLU) layer further process the

features.
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Figure 9.2: The Dank model for damped exponentials. Each convolutional neural network (CNN) block
consists of a convolution layer with kernel size 6 and circular padding and a batch normalization layer
followed by the recti�ed linear unit (ReLU). The linear encoder size, input and output sizes of the model
and each CNN block are marked below the blocks.

Despite the di�erences in the size of the feature channel, convolution kernel, and padding, the structure

of the feature encoder and CNN block are inspired by the DeepFreq [77]and PSnet [78], respectively, which

are designed for line spectrum estimation. [77] �nds that the learned feature encoder for undamped

exponential signals implements a Fourier-like transformation and based on that, the localized kernel in the

convolution layer can accurately locate the sinusoid frequencies. However, the Fourier transform of a

damped exponential is a generalized Dirichlet kernel parameterized by � [235], which suggests that a �xed

size localized convolution kernel is not appropriate. Moreover, to enable the identi�cation of exponentials

with overlapping frequencies but separated damping coe�cients, we introduce a novel two-branch network

structure. In particular, the top branch (see Figure 9.2) implements the convolution vertically as in the

PSnet [78] to locate the frequencies, while the bottom branch implements the convolution horizontally to

estimate the damping coe�cients utilizing the information from th e whole feature channel. Finally, the

transposed convolution [220] decoders with kernel size 1 produce theestimated spectrum.

9.2.2 Damped Exponential Counting Model

Based on the predicted FDS, we train a counting model to determinethe number of valid damped

exponentials in the observed signal. Speci�cally, the input of the counting model is the estimated FDS and

the output is a single value to be rounded to the nearest integer. Based on the estimated system orderM ,

the frequency and damping coe�cients are then extracted from theM peaks having the largest magnitudes

in the input spectrum. Since the system order should be invariantto the translation of the peaks in the

FDS, the counting model consists of 20 CNN blocks introduced in Section 9.2.1 followed by a convolution

layer with output channel and kernel size 1 and a fully connected layer to predict the �nal value.
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9.3 Numerical Experiments

9.3.1 Experiment Setup

To validate our approach, we generate simulation data based on (9.2). The training, validation, and

testing datasets consist of 200000, 1000, and 1000 composite signals, respectively.For each signal,N = 50,

M is uniformly selected from 1 to 5, andA j = (0 :1 + jgj)ei� , where g follows the standard Gaussian

distribution and � is uniformly selected in [0; 2� ]. All pairs of frequencies and damping coe�cients are

required to satisfy at least one minimum separation condition betweenthe pair of frequencies (4=N) or

damping coe�cients (0 :04). First, the frequency f 1 and damping coe�cient � 1 are selected uniformly in

the range of [� 0:5; 0:5) and [0:0; 0:1], respectively. WhenM � 2, the second exponential is generated to

have its frequency close to the frequency of the �rst exponential. Speci�cally, f 2 = f 1 + u where u is

uniformly selected in [� 1=N; 1=N]. Thus, the �rst and second exponentials have very close or overlapping

frequencies but well-separated damping coe�cients (due to theseparation condition). We apply the same

procedure for generating the third and fourth exponentials if M � 4. We train the proposed Dank model

by applying the Adam algorithm [76] for 200 epochs, minimizing the squared̀ 2 error between the network

estimated FDS and the ground-truth FDS, jjF DSest � F DSgt jj2
2. The initial learning rate is 0:0003 which

reduces by half when the loss function does not decrease for 3 consecutive epochs on the validation set.

The batch size is 256. During each epoch, we add scaled Gaussian noise to the signals so that the SNR for

each example is chosen uniformly at random between 0 and 50 dB. The counting model is trained using a

�xed-weight representation model to generate the FDS and followingthe same training setup with 100

epochs. Similarly, the counting model's loss function is the squared `2 norm error between the network

output and the ground-truth system order.

9.3.2 Performance of Dank and Counting Models

We �rst validate the performance of the Dank representation model in terms of the false negative rate

(FNR) given the ground-truth number of exponentials for each observed signal. A successful recovery is

counted for a damped exponential when the frequency and damping coe�cient errors are both smaller than

1=N. In addition, we compare the proposed Dank model to several representative methods: DeepFreq [77],

PSnet [78], total-least-squares (TLS) matrix pencil [138], TLS Prony's method [236], and RELAX [227]

which minimizes a nonlinear least squares problem. Note that because the original DeepFreq [77] and

PSnet [78] only concern the frequency spectrum, we modify their �nal layers by changing the output

dimension so that they too can predict the FDS. We train these networks following the same training setup

as our model. The results are recorded in Figure 9.3 (a). The proposed model outperforms other methods

in the low to medium SNR regimes and achieves less than 3% FNR when SNR� 35 dB.
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Figure 9.3: Performance of Dank and counting models.

We also examine the system order estimation performance of the proposedcounting model, which

determines the number of exponentials based on the FDS estimated bythe pre-trained Dank model. We

compare with the AIC [231], MDL [232], and SORTE [233] methods which estimatethe system order based

on the signal covariance matrix. Moreover, we train separate counting models of the same structure using

the FDS estimated by DeepFreq [77] and PSnet [78] respectively. Theresults are shown in Figure 9.3 (b).

We observe that our counting model outperforms the covariance matrix based methods except at high

SNR, and the quality of the predicted spectrum has a great impact on the counting accuracy.

9.3.3 The Overall Performance of The Combined Models

We assess the overall performance of the combined models in terms of the F1 score and root mean

square error (RMSE). Based on the success recovery criteria in Section 9.3.2, we calculate the

P RECISION and RECALL and de�ne the F1 score to be 2=(P RECISION � 1 + RECALL � 1).

Moreover, for each ground-truth exponential, we calculate the recovery errors of the frequency and

damping coe�cient. Then the RMSEs of the frequency and damping coe�cient are calculated based on the

recovery errors of all ground-truth exponentials in the testing dataset. We combine the system order

estimation method AIC with the matrix pencil, Prony's method, and R ELAX method and the DeepFreq

and PSnet with their trained counting models for comparison. The results are recorded in Figure 9.4. We

see that, in terms of F1 score, the proposed method outperforms other deep learning methods over the

whole range of SNRs and the traditional methods by a large margin in low to medium SNRs. And in terms

of RMSE, although the traditional methods and proposed method achieve a comparable performance for

frequency estimation, our method is much more e�ective in estimating the damping coe�cients in low to

142



medium SNRs. Results show that our method can robustly handle damped exponentials with close or

overlapping frequencies and well-separated damping coe�cients.
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Figure 9.4: The overall performance of the combined models.

9.3.4 Without Overlapping Frequencies and Real Data

In this section, we generate a synthetic signal without overlappingfrequencies based on a measured

nuclear magnetic resonance (NMR) signal in [229]. We setM = 3, ( f 1; f 2; f 3) = (0 :078; 0:196; 0:287),

(� 1; � 2; � 3) = (0 :015; 0:023; 0:017), (jA1j; jA2j; jA3j) = (7 :09; 2:31; 5:98) � 104, and

(\ A1; \ A2; \ A3) = ( � 0:102; � 0:283; � 0:173) � 2� . We add complex Gaussian noise with zero mean and

di�erent variances, � 2
� , and we de�ne the magnitude-to-noise ratio 	 = 10 log 10

� P M
j =1 jA j j2=� 2

�

�
. The

ground-truth system order, 3, is provided for all methods and we record their accumulated RMSE in

Figure 9.5. The accumulated RMSEs of frequency and damping coe�cientare de�ned as the sum of the

RMSE of (f 1; f 2; f 3) and (� 1; � 2; � 3) respectively across 1000 trials. The Cram�er-Rao Lower Bound

(CRLB) is calculated based on [227]. The 2-D cubic interpolation is appliedto the estimated FDS by Dank
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for better accuracy. We observe that when there are no exponentials with overlapping frequencies, our

method has a comparable performance to traditional methods. In addition, measured on a system with

i7-6700 CPU and GTX 1080 GPU, Dank takes around 2.05 seconds to process 1000 signals of length 50. In

contrast, matrix pencil, the Prony's method, and RELAX method take 0.87, 0.22, and 11.02 seconds

respectively. Although Dank is e�cient in testing, it takes around ei ght hours to train.
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(a) Accumulated RMSE of frequency.
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Figure 9.5: Damped exponentials without overlapping frequencies.

Finally, we examine the reconstruction error of di�erent methods in a real data experiment.

Speci�cally, we hang an iPhone from a 1 centimeter line, release thephone from a 45 degree initial

position, and record its accelerometer data. The recorded data is real-valued; we pass 0s as the imaginary

part to the input of Dank. Based on the rank of the Hankel matrix formed by th e recorded data [89], we

set the system order to be 5 for all methods. We then attempt to reconstruct the data based on the

parameters estimated by each method. And the average relative reconstruction errors among 10 trials for

Dank, matrix pencil, Prony's method, and RELAX method are 12:8%, 10:5%, 13:6%, and 8:3%

respectively. This demonstrates the e�ectiveness of Dank on real data.

9.4 Conclusion

We apply deep learning to the parameter estimation problem for contaminated damped exponentials.

We propose two novel networks, the Dank representation model and thecorresponding counting model, to

map the observed signal to an FDS and subsequently determine the number of exponentials based on the

estimated spectrum. Experiments show that the proposed approach canhandle composite signals of

damped exponentials with (i ) very close or overlapping frequencies but di�erent damping coe�cients and

(ii ) contamination by Gaussian noise at varying noise levels.
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CHAPTER 10

SUPPORT RECOVERY FOR SPARSE SIGNAL WITH NON-STATIONARY MODULATION VIA

PROXIMAL GRADIENT DESCENT INSPIRED DEEP LEARNING

Estimating a sparse signal from its low-dimensional observations arises in many applications including

signal demixing and compression. If each dictionary atom undergoes a distinct modulation process, this

problem becomes a sparse recovery and blind demodulation problem with non-stationary modulation.

However, in the presence of noise, the sparse signal and modulation parameters cannot be recovered

exactly. And thus in this chapter, we study the support recovery problem for the sparse signal with

non-stationary modulation and propose to solve it via the optimization-inspired deep learning method.

Speci�cally, by assuming the modulating signals live in a known common subspace and applying the lifting

technique, we can formulate the support recovery problem as recovering a column-wise sparse matrix from

linear observation, which can be modeled via a block̀1 norm regularized quadratic minimization. By

unfolding the proximal gradient descent for that regularized quadratic minimization and replacing the

proximal operator with a proximal network, we construct a novel recurrent neural network (RNN) to

e�ciently solve the support recovery problem. The simulations indicate that the proposed network is very

e�cient in solving the support recovery problem, can be adaptive to di�erent sensing process without

retraining the network, and is applicable when the matrix of interest is contaminated with system noise

and thus not strictly column-wise sparse.

10.1 Introduction

10.1.1 Support Recovery for Sparse Signal with Non-stationary Modulation

Estimating a sparse signal from its low-dimensional observations arises in many applications like

super-resolution [12] and image compression [2]. Mathematically, after modulation, the system observes

y = DA c 2 R N , where y 2 R N is the observed signal vector,D 2 R N � N is the diagonal modulation

matrix, A 2 R N � M (N < M ) is the dictionary matrix, and c 2 R M is the sparse signal vector of interest.

SinceD performs the element-wise multiplication, which is known as modulation in signal processing, when

A is known, recoveringc and D from the observedy is referred to as the sparse recovery and blind

demodulation [2,9,11].

In this chapter, we further generalize the model by allowing each dictionary atom undergoes a distinct

modulation process as studied in [11,87], which is referred to as the non-stationary modulation. Namely,

the observation has the form
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y =
MX

j =1

cj D j a j 2 R N ; (10.1)

where cj is the j -th entry of c and a j is the j -th column of the dictionary A . Moreover, we assume thatJ

of the coe�cients cj are non-zero and the modulating signals live in a known and common subspace:

D j = diag( B h j ); (10.2)

where B 2 R N � K (N > K ) is the known, orthonormal subspace matrix andh j 2 R K is the unknown

coe�cient vector. In this case, recovering h j is equivalent to recoveringD j . A similar subspace assumption

of the modulating signal can be found in the deconvolution and demixing literature [10,13].

Using the lifting technique based on Proposition 1 in [86], we can construct a column-wise sparse

matrix X = [ c1h1 c2h2 � � � cM hM ] 2 R K � M containing all the unknown parameters. In terms of the

constructed unknown matrix X , the observation (10.1) can be represented asy = � � vec(X ) where

� = [ � 1;1 � � � � K; 1 � � � � 1;M � � � � K;M ] 2 R N � KM : (10.3)

� i;j = diag( bi )a j 2 R N � 1 where bi is the i -th column of B .

In presence of noise, the observation becomesy = � � vec(X ) + n where n 2 R N denotes the noise

vector. In this chapter, we assume each entry ofn follow the Gaussian distribution and denote the

ground-truth matrix as X 0. Due to the additive noise, we cannot recoverX 0 exactly. Thus we aim to

recover the indices of the non-zero columns (support) inX 0 which is equivalent to the support of the

sparse signalc if we assume there is no null modulation,D j = 0. In order to recover the support of X 0

from y , [87,88] propose to apply the block̀ 1 (`2;1) norm regularized quadratic minimization

minimize
X 2 R K � M

1
2

jjy � � � vec(X )jj2
2 + � jjX jj2;1 (10.4)

where the `2;1 norm is de�ned as jjA jj2;1 =
P M

j =1 jja j jj2 and the value of � for exact support recovery is

derived in [87]. Equivalently, (10.4) can be written as

minimize
X 2 R K � M

1
2

jjy � � � vec(X )jj2
2 + �

MX

i =1

jj x i jj2 (10.5)

where x i is the i -th column of X .

Proximal gradient descent [83] can be applied to solve (10.5), which consists of gradient descent and the

proximal operator steps that would run sequentially and iteratively. By unfolding the proximal gradient

descent and replacing the proximal operator with a proximal network with the skip connection, we propose

a novel recurrent neural network (RNN) to e�ciently solve the supp ort recovery problem of sparse signal
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with non-stationary modulation.

10.1.2 Related Work

Most sparse recovery and blind demodulation literature [9,13,18,109,110] assume a common modulation

matrix D j for each dictionary atom. Speci�cally, [13] assumes a common modulation matrix and its

dictionary consists of complex sinusoids over a continuous frequency range. [12] generalizes the problem

in [13] to accommodate the non-stationary modulation. However, they make arandom `sign' assumption

on h j which makes it hard to consider the noise. In addition, [9] assumes a common modulation matrix

and considers the random Gaussian and Fourier dictionaries. In [11,86], we extend the work of [9] by

introducing the non-stationary modulation with bounded noise. And we study the unbounded Gaussian

noise in [87,88] for the support recovery problem, which is also the problem we study in this chapter. In a

contrast, [87,88] analyze and study the support recovery problem from theoptimization perspective and

this chapter studies this problem from the optimization-inspired deep learning perspective.

Deep learning has achieved competitive performance in signal processing [93,219,234] and particularly,

there are many deep networks proposed for the sparse recovery problem[77,78,93,94,193]. Compared to

them, in this chapter, we take the non-stationary modulation into account. By unfolding the proximal

gradient descent algorithm, we propose a novel recurrent neural network (RNN) to solve the support

recovery problem for sparse signal with non-stationary modulation. Theunfolding deep learning approach

for signal processing is pioneered in [193] and has been applied to many signal processing problems

including matrix factorization [196,197] and non-negative sparse recovery [93]. And the unfolding version

of proximal gradient descent are mainly investigated in the imaging inverse problems [237{239].

The rest of the chapter is organized as follows. In Section 10.2, we present our proposed recurrent

neural network for support recovery of sparse signal with non-stationarymodulation. Numerical

simulations are conducted in Section 10.3 to analyze the performance of the proposed approach and

compare to the optimization method. Finally, we conclude this chapter in Section 10.4.

10.2 Proposed Recurrent Neural Network

The proximal gradient descent [83] for solving (10.4) can be viewed as a twosteps iterative algorithm.

In the �rst step, it implements the gradient descent with respect to the data �delity, 1
2 jj y � � � vec(X )jj2

2,

and in the second step, it runs a proximal operator to impose the regularization, � jjX jj2;1. Mathematically,

the proximal gradient descent iteration has the form

vec(X k+1 ) = P
�
vec(X k ) � � � T (� � vec(X k ) � y )

�

= P
�
(I � � � T � ) � vec(X k ) + � � T y

� (10.6)
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where k is the iteration number, � is the gradient descent step size, and

P[vec(Z)] = arg min
vec( X )

1
2

jjvec(X ) � vec(Z)jj2
2 + � jjX jj2;1 (10.7)

is the proximal operator.

By unfolding the proximal gradient descent and replacing the proximal operator with a proximal

network with the skip connection, we construct the recurrent neural network for support recovery shown in

Figure 10.1. We use� T y as the network initial input. In the data �delity gradient descent s tep, the

sensing matrix � and observationy are used associated with a learnable step size� . And the proximal

operator is replaced by a proximal network consisting of convolutional layers, batch normalization layers,

and ReLU layers with skip connections. All recurrent blocks share the same weights. Intuitively, the

convolutional layer is responsible for analyzing the signal and combining with the ReLU layer to impose

the column-wise sparsity prior. The batch normalization layer aims to improve the stability and

convergence rate of the network. Those network layers are also found useful in deep architectures for other

signal inverse problems [77,94].

(a) The block diagram of proposed RNN.

(b) The proximal network (ProximalNet).

Figure 10.1: The proposed recurrent neural network (RNN) for support recovery. In the proposed RNN, all
recurrent blocks share the same weights. In the proximal network,'Conv', 'BatchNorm', and 'ReLU' denote
the convolutional layer, batch normalization layer, and the Recti�ed Li near Unit (ReLU) layer respectively.
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10.3 Numerical Simulations

We conduct several numerical simulations to evaluate the performanceof our proposed RNN for the

support recovery problem. We set the system parameters based on [87],such that the `2;1 regularized

quadratic minimization can recover the support exactly with overwhelming probability. Speci�cally, we set

J = K = 2, M = 120, N = 100, the mean and standard deviation of the Gaussian noise is 0 and� = 0 :1

respectively. The entry of A follows the standard normal distribution and we generate a random matrix

following the standard normal distribution and derive its orthonormal b ases to constructB . The J indices

of non-zero columns (support) inX 0 are uniformly selected fromf 1; 2; � � � ; 120g. The non-zero entry of X 0

has the form sign(x) + x where x follows the standard normal distribution and sign(x) = � 1 when x < 0

and sign(x) = 1 for x > 0. Moreover, we scale theX 0 such that 
 = 
 0
min j 2 T jj x 0;j jj 2

= 0 :1 to ensure the

support recovery problem is theoretically solvable with overwhelming probability [87], where


 0 =
p

� 2� 2
max K [log(M � J ) + log( N )] and � max = max i;j

p
N jB ij j.

Following the process above, we obtainy following (10.1) and generate 16000 (y ; X 0) pairs for training

and 4000 for testing. All convolution layers in the proximal network have akernel size of 3 with stride 1 and

1 zero padding. The proposed RNN is trained using Adam optimization [76] with an initial 0.01 learning

rate. And the network is trained with batch size 32 for 200 epochs. During training, we would half the

learning rate if the loss function value, jjvec(X ) � vec(X 0)jj2
2, does not decrease for 3 consecutive epochs.

10.3.1 Unfolding Di�erent Numbers of Iterations

For the proximal gradient descent, it would stop until a pre-set convergence criterion is satis�ed. And

for the proposed recurrent neural network, we would pre�x the number of iterations for unfolding. To

examine the e�ect of the number of unfolding iterations, we train our recurrent neural network with

di�erent numbers of unfolding iterations and record their performance in Table 10.1 in terms of the exact

support recovery rate, the average recovery error,jjvec(X ) � vec(X 0)jj2, and the average processing time

measured on a system with an i7-6700 CPU and GTX 1080 GPU. We use RNN-k to denote the network

constructed from k unfolding iterations of proximal gradient descent. An exact support recovery is

achieved when the estimatedX has the same support as the ground-truthX 0. We compare our method to

the `2;1 optimization method proposed in [87].
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Table 10.1: The performance of the proposed recurrent neural network with di�erent numbers of unfolding
iterations. Speci�cally, RNN- k denotes that we unfoldk iterations of the proximal gradient descent and
thus RNN-k contains k recurrent blocks.

`2;1 optimization RNN-1 RNN-3 RNN-5 RNN-7

Exact support recovery rate 100.0% 75.6% 97.0% 97.2% 98.7%

Average recovery error 4.69 4.35 2.35 1.79 1.16

Average process time (s) 0:58 0.69� 10� 4 1.61� 10� 4 2.54� 10� 4 3.51� 10� 4

From Table 10.1 we can observe that, when the number of unfolding iterations is � 3, the proposed

network achieves a comparable exact support recovery rate compared to the `2;1 optimization method.

And the proposed network is much more e�cient compared to the `2;1 optimization method solved via

CVX [115].

10.3.2 E�ect of �

In (10.7), we can see that the proximal operator is independent of� , which implies that the proximal

network could also be independent of� . Namely, for a di�erent sensing matrix � , our proposed network

can be reused by simply replacing the� matrix in the recurrent network and plugging in the pre-trained

proximal network. To verify that, we construct 4000 (y ; X 0) pairs for di�erent sensing matrices � s and

record the exact support recovery rate of our proposed recurrent network in Figure 10.2 without retraining

the network. From the results we can observe that our proposed network can be easily adaptive to other

systems with a di�erent sensing matrix � .
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Figure 10.2: The exact support recovery rate of the proposed RNN-3 with di�erent sensing matrices� .
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10.3.3 Comparison to A Generic ResNet

Recovering the indices of non-zero columns inX 0 is equivalent to recovering the indices of non-zero

entries in vector c. Thus, an alternative approach for solving the support recovery problem is to directly

recover a sparse vectorc from the observation y via a generic network without applying the lifting

technique to construct X . To examine this approach, we design a generic ResNet [61] shown in Figure 10.3

(a), in which the ResNet block consists of a sequential stack of threeindependent ProximalNets whose

structures are shown in Figure 10.1. And the fully connected layers would accommodate the data sizes for

the input and output accordingly. Because in our proposed recurrent network all ProximalNets share the

same weights, the number of learnable weights in RNN-3 is around 75:8% of the number of learnable

weights in the compared generic ResNet. We record the exact support recovery rate of the RNN-3 and the

generic ResNet in Figure 10.3 (b), from which we can observe that incorporating the optimization

technique into the network design improves the network performance signi�cantly, even with a smaller

number of learnable weights.

(a) A generic ResNet.
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(b) The exact support recovery rate.

Figure 10.3: The comparison between RNN-3 and a generic ResNet who predicts the sparse vectorc
directly for support recovery. (a) The ResNet for comparison, whose ResNet block consists of a sequential
stack of three independent ProximalNets. (b) The exact support recovery rate of the RNN-3 and the
generic ResNet.
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10.3.4 E�ect of J

In this section, without retraining the network, we examine the exact support recovery rate of the

proposed network RNN-3 whenX 0 has di�erent numbers, J , of non-zero columns. The result is shown

in Figure 10.4, from which we can observe that although RNN-3 is trained only on data with J = 2, it is

robust to the change ofJ and achieves a comparable support recovery rate of thè2;1 optimization

method [87].
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Figure 10.4: The exact support recovery rate of the proposed RNN-3 with di�erent numbers of non-zero
columns in X 0.

10.3.5 Approximately Column-wise Sparse X

Due to the system noise, the matrixX of interest might not be strictly column-wise sparse but

approximately. Mathematically, the system observesy = � � vec(X ) + n where vec(X ) = G � vec(X 0) and

G = I + H . X 0 is the original column-wise sparse matrix,I 2 R KM � KM is the identity matrix and

H 2 R KM � KM is a random Gaussian matrix whose entries follow the Gaussian distribution with 0 mean

and � G standard deviation. In this section, we set� G = 0 :01 and record the recovery performance of the

`2;1 optimization method [87] and the re-trained RNN-3 network in Table 10.2. We can see that even when

the matrix of interest is not strictly column-wise sparse, the proposed network can still be very e�ective in

recovering the signal.

Table 10.2: The average recovery error for the approximately column-wise sparse matrix.

`2;1 optimization RNN-3

Average recovery error 5.40 3.67
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10.4 Conclusion

In this chapter, we study the support recovery problem of the sparse signal with non-stationary

modulation via the proximal gradient descent inspired data-driven method. With the common modulating

signal subspace assumption and using the lifting technique, we reformulate the support recovery problem

into a column-wise sparse matrix recovery problem, which can be e�ectively solved via the `2;1 norm

regularized quadratic minimization. By unfolding the proximal gradient descent for the `2;1 norm

regularized quadratic minimization, we propose a novel recurrent neural network to solve the original

support recovery problem. Simulation results show that the proposed network is extremely e�cient, can be

adaptive to di�erent sensing matrix without retraining the networ k, and can be applied to the case when

the matrix of interest is not strictly column-wise sparse.
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CHAPTER 11

CONCLUSION AND POSSIBLE FUTURE DIRECTIONS

Throughout this thesis, we have studied several inverse problemsin signal processing and machine

learning. For sparse signal with non-stationary modulation, we develop new theories and optimization

methods which reveal the su�cient number of observation for simultaneous sparse recovery and blind

demodulation in noiseless and bounded noise cases. And we propose a new optimization method in

presence of unbounded Gaussian noise and derive the corresponding su�cient conditions for exact support

recovery. For damped signal contaminated with the spike interference and Gaussian noise, we develop

robust convex and non-convex optimization methods to demix the noisy observation and recover the

parameters of the damped exponentials. Attracted by the competitiveperformance achieved by

data-driven methods for high-dimensional signals, we examine severalclassic neural networks on the 3D

chess pieces recognition and design a novel deep network to solve the3D to 2D correspondences classifying

and clustering problems in computer vision. Furthermore, by leveraging the techniques from optimization

methods, we develop novel optimization-inspired data-driven methods for several inverse problems. We

design novel deep architectures following the atomic norm optimization process for multiband signal

identi�cation and parameter estimation of contaminated damped exponentials. By unfolding the iterative

optimization methods, we propose novel neural networks for the non-negative sparse recovery and the

support recovery for sparse signal with non-stationary modulation. Based on the experiment results, the

optimization-inspired data-driven methods are very e�cient, robu st to noise, and applicable to the

complicated sensing process. However, there are many questions remain and worth future exploration.

Compared to the optimization methods, one biggest disadvantage of the data-driven methods is the

lack of theoretical performance guarantee. Therefore, developing analysis techniques and tools [240{242]

for data-driven methods would be a very meaningful future direction. And those analysis tools could be

applied to guide the design of a more e�ective deep architecture.

Optimization-inspired data-driven methods have demonstrated their competitive performance in terms

of the recovery error and processing time compared to traditional signal processing and optimization

methods in multiband signal identi�cation, sparse recovery problem, etc. Thus, it would be interesting to

apply the optimization-inspired data-driven methods to more inverse problems like the acoustic source

localization and examine the performance of the optimization-inspireddata-driven methods on practical

applications.
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Moreover, recent studies [243,244] have demonstrated that the butter
y factorization deep architecture

inspired by the fast Fourier transform (FFT) can recover common linear transformations like discrete

Fourier transform (DFT) and discrete cosine transform (DCT). They al so report its competitive

performance applied to the image classi�cation by replacing networks'fully-connected layers with the

butter
y network. Compared to the replaced layers, the butter
y network has advantages in computation

e�ciency and network compression. However, unlike the butter
y f actorization in FFT which can be easily

extended to di�erent lengths of signals, the existing butter
y f actorization deep architecture only allows a

�xed size input and output. Therefore, extending the work of the butter
y network for varying lengths of

input and output would be an interesting future direction. One potential way to achieve this is by reusing

the pre-trained small butter
y matrices.
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