
T-3273

APPLICATION OF A MONOTONIC DATA STRUCTURE TO AN
IRREGULAR SIMULATION GRID

by
Michael D. Kelly

ProQuest Number: 10782847

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest

ProQuest 10782847

Published by ProQuest LLC (2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106 - 1346

T-3273

A thesis submitted to the Faculty and Board of
Trustees of the Colorado School of Mines in partial
fulfillment of the requirements for the degree of Master
of Science (Mathematics).

Golden, Colorado

S igned:
M i chae1 D . Kel

Approved :
y Dr. Jean Be 11
/ Thesis Advisor

Dr. Jean Be 11
Thesis Advisor

Golden, Colorado
Date BVl. »\ 8Q>

Dr. Ardel Boes
Professor and
Department Head
Mathematics

i i

T-3273

ABSTRACT

This thesis investigates a newly proposed dynamic
data structure designed to address several problems which
arise in certain types of large scale physical simulation
problems. The particular simulation problems studied are
in the area of Hydrodynamics and involve a "Free
Lagrangian" numerical method, developed by M.J. Fritts and
J.P. Boris (Fritts & Boris,78).

This thesis offers a fundamental solution to the
following problem inherent to the above mentioned
numerical method. The numerical method uses a triangular
connectivity. Data partitioning of the triangles is
necessary to take advantage of parallel processing or
multiple memory levels, but such partitioning has been
virtually impossible due to the fact that an inappropriate
list data structure is being used (Bell & Patter son, 8 5Jt.
The access pattern of a list is random, and therefore
eliminates vectorization of numerical computations.

A vectorized "Nearest Neighbor" algorithm, developed
by Jay P. Boris of the Naval Research Laboratory
(Boris,35), which utilizes modern parallel processing
computer architectures is introduced and analyzed with
respect to the solution of problems stemming from use of

iii

T-3273

the list data structure.
The algorithm is a dynamic data structure known as a

Monotonie Logical Grid (MLG). The MLG lends itself to
vectorization, and is partitionable to take advantage of
multi-processor environments. In addition the MLG uses
indexes of main memory arrays and contiguous memory
locations to reduce partic1e-to-partic1e relationship
calculations and near neighbor search times.

The MLG's structure is derived from and contains
spatial relationships similar to the relationships of the
simulation grid it represents. Since particle movement may
violate the laws that govern the structure of the MLG,
algorithms used to update the MLG are also investigated.
Finally, new algorithms which utilize the properties of
the MLG to search for neighboring elements are introduced
and analyzed.

iv

T-3273

TABLE OF CONTENTS
ABSTRACT..iii
LIST OF FIGURES viii
LIST OF TABLES... x
ACKNOWLEDGEMENTS.. xi
INTRODUCTION..1
CHAPTER 1 - THE FREE LAGRANGIAN MODEL.................. 7

1.1 INTRODUCTION......................................7
1.2 THE LAGRANGIAN MODEL............................. 7
1.3 THE FREE LAGRANGIAN GRID....................... 14
1.4 THE NUMERICAL METHOD............................19
1.5 THE MATHEMATICAL MODEL..........................22
1.6 DATA MANAGEMENT REQUIREMENTS................... 23

CHAPTER 2 - THE MONOTONIC LOGICAL GRID................27
2.1 INTRODUCTION.....................................27
2.2 DEFINITION OF A MONOTONIC LOGICAL GRID........ 28
2.3 PROPERTIES OF THE MLG...........................29
2.4 AN ORDER N MLG SORTING ALGORITHM...............34

CHAPTER 3 - REPRESENTATION OF THE FREE LAGRANGIAN
GRID USING THE MLG.........................42

3.1 INTRODUCTION.....................................42
3.2 POINT DATA vs. TRIANGLE DATA................... 42
3.3 MINIMUM MLG STORAGE REQUIREMENTS...............43
3.4 EXTENSION OF THE POINT MLG TO

REPRESENTATION OF TRIANGLE DATA................44
v

T-3273

TABLE OF CONTENTS continued

CHAPTER 4 - MLG TEST PARAMETERS........................ 46
4.1 INTRODUCTION.................................... 46
4.2 INITIAL GRID CONFIGURATIONS....................47
4.3 PARTICLE MOVEMENT EQUATIONS................... 49
4.4 DATA PARTITIONING SCHEMES......................51
4.5 MLG SEARCHING ALGORITHMS.......................56

4.5.1 ADJACENT TRIANGLE SEARCH................ 57
4.5.2 SURROUNDING TRIANGLE SEARCH............. 60

4.6 SUBROUTINE CPU TIMINGS......................... 63
CHAPTER 5 - ALGORITHMS.................................. 64

5.1 INTRODUCTION................ 64
5.2 INITIALIZATION ALGORITHMS......................65

5.2.1 INITIAL GRID CONSTRUCTION...........65
5.3 MODEL EXECUTION ALGORITHMS.................... .67

5.3.1 PROCESSING ATTRIBUTE ADJUSTMENT........ 67-
5.3.2 MLG SORTING ALGORITHM................... 68
5.3.3 MLG SEARCH ALGORITHMS....................69

5. 3. 3.1 ADJACENT TRIANGLE SEARCH......... 73
5.3.3.2 SURROUNDING TRIANGLE SEARCH....... 76

5.3.4 POINT MOTION............................. 83
5.4 DATA OUTPUT ALGORITHMS......................... 84

CHAPTER 6 - RESULTS AND CONCLUSIONS....................85

vi

T-3273

TABLE OF CONTENTS continued

6.1 INTRODUCTION.....................................85
6.2 MLG vs. LIST.....................................86
6.3 DIFFERENCES IN INITIAL GRID CONFIGURATIONS...100
6.4 COST OF THE MLG SORT...........................103
6.5 SORT SWEEP COUNTS.............................. 105
6.6 CENTROID AND AVERAGE COORDINATE ATTRIBUTES...108
6.7 CPU REDUCTION USING PNTSRCHF.......... 110
6.8 CONCLUSIONS.....................................Ill
6.9 FUTURE DIRECTIONS.............................. 112

REFERENCES CITED....................................... 114
APPENDIX A ..115
APPENDIX B ..120
APPENDIX C ..133

' APPENDIX D ..145
APPENDIX E ..165

vii

T-3273

LIST OF FIGURES

FIGURE PAGE
1.1 Typical 2-D fixed lattice grid....................9
1.2 Typical rectangular 2-D lagrangian grid..........9
1.3 Point migration in a fixed lattice grid.........10
1.4 High and low sectional point resolution 10
1.5 Point migration in Lagrangian grid............... 11
1.6 Sectional point resolution in Lagrangian grid...11
1.7 Grid corruption due to point motion.............. 13
1.8 Point insertion - boundary exterior.............. 15
1.9 Triangle reconstruction.......................... 16
1.10 Side bisection.................. 18
1.11 Triangle trisection.................. 19
1.12 Typical vertex cell...............................23
2.1 Irregular point configuration....................31
2.2 First possible MLG representation of fig. 2.1... 31
2.3 Second MLG representation of fig. 2.1........... 32
2.4 Order N log N sorting algorithm................. 36
2.5 i and j directional vectors used in sorting 37
4.1 Triangle centroid.................. 53
4.2 Vertex containing the smallest x coordinate 54
4.3 Midpoint of the longest side bisector........... 55
4.4 Average vertex coordinate 56

viii

T-3273

LIST OF FIGURES continued

4.5 Typical symmetric index offset of 1...... 59
4.6 Index offset of 1 at MLG boundaries............. 59
4.7 i index offset of 2, j index offset of 1......... 62
5.1 Interior point A 70
5.2 Corner point B 70
5.3 Border point C 71
5.4 Hidden interior triangle......................... 76
5.5 Surrounding triangle search for point Pn79
5.6 Incomplete search for point Pn 80
5.7 Readjustment of commencement triangle........... 81

ix

T-3273

LIST OF TABLES

TABLE PAGE
6.1 Sort sweep iteration counts

(Uniform Strain flow)........................ 93
6.2 Offset results (adjacent triangle)..........94
6.3 Variances about mean offsets................ 96
6.4 Offset results (surrounding triangle)

(Irregular initial grid)..................... 97
6.4a Attribute means from table 6.4.............. 98
6.5 Offset results (surrounding triangle)

(Regular initial grid)...................... 101
6.5a Attribute means from table 6.5............. 102
6.6 Sort sweep iteration counts................. 106
6.7 Sort sweep iteration counts..................107
6.8 Mean attribute offsets....................... 109
6.9 Mean attribute offsets....................... 109

x

T-3273

ACKNOWLEDGEMENTS
I would like to thank Dr. Jean Bell for all the help

that she offered during the development and writing of
this thesis, and two good friends John Barkmier and Pat
Quist for many good ideas in the development of this
study.

Personally, I would like to thank my parents for
making all that I have done at Colorado School of Mines
possible and deep thanks to my wife Laurel for putting up
with all that has gone into trying to finish this work.

xi

T-3273 1

INTRODUCTION

Simulation models in the area of transient
hydrodynamics which contain free surfaces, fluid
interfaces, and fluid boundaries are approached most
readily by means of Lagrangian methods using a rectangular
mesh (Fritts & Boris,78). However, Lagrangian methods
have, in the past, been restricted to "well behaved" flows
since point movement will, in time, distort the
differencing mesh to the extent of inaccurate numerical
calculation and deterioration of the numerical method
being used. Physical phenomenon modeled include breaking
waves (smooth waves which turn turbulent) and shear flow
(the interface between two different fluids which are
moving parallel to each other with different velocity
magnitudes).

M.J. Fritts, J.P. Boris and W.P. Crowley have
introduced a new meshing technique which uses triangles as
general mesh connections. Certain geometric properties of
the triangle make their use advantageous over polygons of
larger order. One advantage is the relatively easy
restructuring of the mesh after point movement has caused
point crossing or disconnection. Another advantage is the
ability of the triangle to cover a surface with less cusps

T-3273 2

and local irregularities as well as handle exterior fluid
borders, interior object borders, and fluid interfaces.

Unfortunately management of point data for the
triangular Lagrangian mesh still lacks the efficiency and
speed demanded by real life problems. The use of the
triangular mesh is in conjunction with a finite difference
numerical method, which means that information about
neighboring points and neighboring triangles must be
readily available for point information updates. Since the
triangular mesh may at times be very irregular in
composition, there is no clear cut mapping between the
grid points and a data structure that will render data
quickly and efficiently. For instance if we are
considering simulating a flow in two dimensions, there is
no apparent mapping between the triangles of the flow
space and a two dimensional "array" which would contain
information about the flow.

Consequently, a list data structure is used to store
point information. The list data structure is applicable
in this case from the viewpoint that point updating is not
required to be sequential. Only information about points
and triangles near the point in question need be present
during updates. Unfortunately, searching this list for
information about any given point or triangle is very time

T-3273 3

consuming and ior large simulation problems (10? - 10^
points), is intolerable.

Jay ?. Boris of the Naval Research Laboratory has
developed an algorithm which proposes to eliminate the
forgoing problem as well as utilize performance intensive
machine attributes such as vectorization and parallel
processing.

The algorithm is based on a data structure known as a
Monotonie Logical Grid (MLG). This data structure bridges
the gap between the tesselated flow space and its
structural representation in the data base, as well as
lending itself to vectorization of numerical operations
and parallel processing. The MLG gives us the mapping
necessary to go between the flow space and the data
structure while still preserving the spatial relationships
.between points in the space. As will be demonstrated
later, because of the definition of the MLG, point
movement in space implies an actual physical movement of
data in the data base, giving us a dynamic data structure.

The Free Lagrangian Grid uses a special finite
difference numerical method as the underlying mathematical
model. Adjacent cell computation in a regular finite
difference method now becomes adjacent triangle (or
totality of triangles around a point) computation. Spatial

T-3273 4

relativity is inherent to the MLG data structure,
therefore reducing search times and search lengths for
adjacent or surrounding triangles quite substantially by
localizing spatially related data.

We will investigate several different characteristics
of the MLG, as well as different governing schemes, in
order to optimize its performance. One such scheme is the
method of determining and maintaining the partitioned data
sets. This involves determining which triangle attribute
(i.e. triangle center, one particular vertex, etc.) will
determine the best partition of data for parallel
processing. One characteristic of the MLG to be studied
is the preservation of spatial relationships between
points in the space with respect to the data present in
the data base. Test results of MLG performance show that
the spatial "nearness" of one point to another point in
the space is reflected and very apparent in the data base.

This locality of data is then applied to reducing the
amount of time spent and length of search conducted in
order to determine adjacent and bordering triangles. Test
results show that overall the MLG produces much reduced
search lengths for neighboring and bordering triangle
information.

T-3273 5

Algorithms have also been developed, and will be
explained in later chapters, which use the data locality
of the MLG and certain geometric properties of triangles
to conduct searches of the database to find triangles for
point update computations. In these algorithms a
comparison is made between a scheme using more main memory
storage and a scheme using more CPU time requirements.
Results show that the scheme using more main memory
storage decreases the search times involved in finding
adjacent triangles, whereas the scheme involving less
storage obviously increases search times while decreasing
main memory requirements.

Although the physical models developed in this study
are quite fundamental and at times seem to be quite well
behaved, the algorithms produced were developed with
.emphasis on independence of data partitioning relative to
the intricate particulars of the flow equation being used.
In other words when the algorithms were developed, special
care was taken not to construct code which depended on the
flows to be tested.

And, as fluid motion changes, certain telltale traits
of the motion might demand that certain parameters being
used to partition the data be changed. This change in
parameters is handled efficiently by the algorithms

T-3273 6

developed and thusly add to the flexibility of the MLG.
Overall test results obtained from this study support

the use of the MLG as a data structure for highly
transient hydrodynamic simulation problems that require
preservation of locally related spatial information (e.g.
finite difference numerical methods) in order to establish
partitionable data sets which will take advantage of
supercomputer attributes such as parallel processing and
vectorization of computations.

Certain limits are put upon the tests conducted in
this study. In the Free L a g r a n g i a n models, the
reconstruction of a corrupted grid is very important in
maintaining a reliable mathematical model. The algorithms
developed for this study do not reconstruct a grid if
triangle inversion (crossing of triangle sides) occurs,
nor do they reconstruct triangles in order to maintain
even grid resolution. The reason for this is that the
algorithms for grid bookkeeping are complex and too
difficult to incorporate into this study at the present
time.

Therefore, all flows applied to the points of the
space are restricted so as to produce small scale movement
in the space for up to approximately 5-8 time steps.

T-3273 7

CHAPTER 1 - THE FREE LAGRANGIAN MODEL

1.1 INTRODUCTION
In modeling highly transient fluid flow in

hydrodynamics, Lagrangian methods have been extensively
used and developed. The need for a dynamic meshing grid, a
grid which actual follows fluid flow, as well as a method
for simplification of the numerical equations (elimination
of the term which accounts for fluid movement through the
grid), were some of the factors in the motivation behind
the Lagrangian grid.

Jay P. Boris, Marty J. Fritts, and W.P. Crowley have
been conducting research in the development of meshing
grids for use in these difficult hydrodynamic simulation
problems. One particular result of their work which is the.
fundamental building block of this study is a meshing
technique called the Lagrangian grid (Fritts & Boris,79).

1.2 THE LAGRANGIAN GRID
Lagrangian methods for solutions to fluid flow

problems differ from conventional differencing methods in
that the reference point of the observer changes between
the two methods. In a conventional finite difference
method using a "fixed grid" mesh, the observation space is
tesselated into a regular two, or three dimensional

T-3273 8

lattice with orthogonal connections between lattice points
(fig. 1.1). Once the simulation has begun, points move
through the mesh while the observer calculates point
interactions relative to the the stationary meshing grid.
Relationships between points of the space are related to
the grid cell in which they happen to be at any given time
in the simulation run.

In L a g r a n g i a n methods, the m e s h i n g grid is
constructed using the actual points, or a subset of
points, being monitored in the observation space as the
grid cell connections (fig. 1.2). When point movement in
the observation space takes place the meshing grid cells
move and distort in conjunction with the observation
points. Thus, the observers reference point moves relative
to the points of the fluid flow.

As can be seen in figures 1.3 and 1.4, if fluid flow
were to create the situation indicated, difficult grid
resolution representation is forced on the fixed grid
mesh. For example, point migration to one section of the
grid would eventually cause more than one point to be
present in a single grid cell. Because of the use of a
finite difference numerical method the resolution of the
grid would have to be increased over the entire grid as a

T-3273 9

FIG. 1.1: Typical 2-D fixed lattice grid

G* 1.2: Typical rectangular 2-D Lagrangian grid

T-3273 10

t ~
I
IIh-

 o!
©

e

4 I—
G
 J.

©--- j

— — —

©

FIG 1.3: Point migration in a fixed lattice grid

FIG. 1.4: High and low sectional point resolution

T-3273 11

FIG. 1 5: Point migration in a rect. Lagrangian grid

FIG. 1.6: Sectional point resolution in Lagrangian grid
one particular area.

T-3273 12

result of the need for grid resolution increase, in this
Alternately, the Lagrangian grid conforms to the fluid

flow (fig. 1.5 and 1.6) making grid resolution related to
rectangular area. In reference to figures 1.5 and 1.6,
large area in a certain rectangle indicates low resolution
of points in that particular section of the grid. Thus,
grid resolution is localized, meaning fine resolution in
one area of the grid does not imply fine resolution
throughout the grid. Therefore, representation of the grid
resolution as given by the Lagrangian model need not
suffer in one section of the grid because of point
movement to another, as is the case in the use of the
fixed meshing grid. This is not to say that the fixed grid
method does not have its place in transient hydrodynamic
simulation problems. If point movement throughout the

-space is well behaved and restricted to small incremental
migrations over time then the fixed grid method would
suffice as a meshing scheme. Unfortunately, the method
breaks down when point movement is drastic and grid
resolution is variable and quite diverse throughout the
grid.

One obvious drawback to the use of a rectangular
Lagrangian mesh is that over time, the mesh becomes

T-3273 13

distorted to the extent that point motion could, and most
likely would, cause crossing of rectangle sides (fig.
1.7). This s i t u a t i o n renders the grid useless.
Restructuring of the grid (i.e. reconnection or
reconfiguration of points in order to "uncross or
reconnect" rectangle sides) is a logical step in
rectifying the problem.

This approach however, is difficult to achieve because

FIG. 1.7: Grid corruption due to point motion

of the topology of the rectangular mesh. The addition or
deletion of grid points in hopes of correcting the
misshaped grid may not be possible with the insertion or
deletion of one or more points in the grid. In fact the
determination of the number of points to add or delete, as
well as the sides to add or delete, may be quite difficult
to establish.

T-3273 14

Another drawback to the use of a rectangular mesh is
the representation of complex boundaries and structures.
The topology of the rectangular mesh is such that
irregularities may be present in boundary or free surface
representations of the fluid, thereby presenting less than
desirable curvature or resolution.

Finally, "Rectangular mesh approaches appear to
suffer a serious 'even-odd' or computational-mode
instability..." (Fritts & Boris,79) which necessitates a
form of numerical dampening, in turn destroying the
reversibility of the simulation.

1.3 THE FREE LAGRANGIAN GRID
Geometric properties of the triangle offer a path

around the difficulties of grid restructuring and boundary
representation inherent to a rectangular mesh. As a
Lagrangian mesh distorts with point movement through time.,
restructuring of the grid is imperative, and a triangular
mesh lends itself to relatively easy restructuring. Boris,
Fritts, and Crowley are credited with the idea of a
triangular Lagrangian mesh called a Free Lagrangian Grid
(Fritts & Boris,79).

The Free Lagrangian grid offers an answer to the grid
reconstruction problem. As the triangular mesh becomes

T-3273 15

distorted, r e s t r u c t u r i n g of grid points or the
insertion/deletion of triangles and points becomes
relatively easy. Insertion of just one point into the grid
can be accomplished with the guarantee that a triangular
mesh can be redefined. This argument involves three cases.
Case one involves the insertion of a point outside the
boundary established by the points in the space. All that
is needed to create at least one triangle are the two
nearest points to the inserted point. From there, more
triangles may be created using points near the new point
as long as no triangle sides are crossed in the creation
(fig 1.3).

FIG. 1.8: Point insertion - boundary exterior

Case two and three are the basis of two grid update
routines to be discussed shortly and involve the insertion

T-3273 16

of a point onto an existing triangle side and insertion of
a point on the interior of an existing triangle,
respectively.

As the Free Lagrangian grid moves in time and becomes
distorted the possibility of triangle inversion, or side
intersection, becomes greater. As an example, this sort of
situation is present when long narrow triangles border
larger triangles. When this "mismatch" of triangle areas
occurs the numerical method used becomes less accurate
because of the difference in relative areas. One method of
solution is a special reconnection algorithm (Fritts &
Boris,79). In the algorithm it is noted that "every non­
boundary line uniquely specifies its bordering triangles".
Once the two bordering triangles are established, the two
possible diagonals of the quadrilateral that is formed are
computed and the shortest of the two are used as the new
border 1

FIG. 1.9; Triangle reconstruction

T-3273 17

If a change in grid resolution is need e d , the
insertion or deletion of points as well as reformulation
of triangles in the grid will produce the desired results.
Point insertion or deletion can be accomplished in at
least two ways. First of all consider the case of
increasing grid resolution. One method is called Triangle
Side Bisection (Fritts & Bor is,79), (fig. 1.10).

One obvious advantage to the side bisection insertion
method is the increase in accuracy of curve representation
at fluid boundaries and interfaces. This comes as a result
of shorter line segment lengths which in turn produce
finer curvature.

Insertion of points within the boundaries of a
triangle is another method of grid resolution increase and
is called Triangle Trisection (Fritts & Boris,79), (fig.
,1.1 1) .

As for point deletion from the grid (decrease in grid
resolution), the procedures are the inverses of the
insertion methods, be it triangle side bisection or
triangle trisection.

As can be seen there are no ambiguous considerations
to be made when restructuring a triangular mesh. If more
triangles are needed in a section of the space in order to
increase grid resolution, then point addition, and

T-3273 18

consequently triangle addition, in that section will
achieve the desired resolution. The same is true for a
decrease in grid resolution, accomplished by point and
triangle deletion.

Now that the grid configuration is set up, certain
definitions concerning the grid for purposes of numerical
computations must be made as well as an overview of the
numerical method and the demands it makes on data
management.

FIG. 1.10s Side bisection

T-3273 19

FIG. 1.11 : Triangle trisection

1.4 THE NUMERICAL METHOD
One particular model built around simulation problems

-in transient hydrodynamics is a model called SPLISH which
is currently being developed by Fritts and Boris. The
numerical method used in this model is called an implicit
finite difference method on a Lagrangian grid (Bel1,82).

Examples of physical phenomenon modeled by SPLISH are
breaking waves, shear flow (involving the interface
between two fluids with parallel velocity vector fields
but different magnitudes), Rayleigh-Taylor instabilities,
droplet burning, and air flow over hydrofoils.

T-3273 20

These different types of phenomena exhibit highly
t r a n s i e n t f l u i d flows in which the n u m e r i c a l
representation can be quite difficult to model. Thus the
Lagrangian grid was used in hopes of eliminating some of
the computational problems which arise from these types of
flows. SPLISH has certain data management requirements
which will be quite useful in testing the proposed data
structure to be studied within this report.

In actuality the Free Lagrangian grid is used in this
particular model (SPLISH) because of its ability to
represent fluid boundaries, interfaces, and object
surfaces with higher accuracy than grids using polygons of
higher order. With the types of fluid motion just
mentioned, the need for change in resolution throughout
the grid is also present and is handled sufficiently by
the triangular grid.

The number of attributes concerning general fluid
flow simulations which are of interest to the scientist
vary from application to application. One such study may
require knowledge about "ideal" fluid characteristics such
as vertex velocities and triangle velocities, while
another study may require magnetic fields, charges,
currents, resistivities and plasma densities in order to
model the phenomenon correctly (Bel1,82). But as stated in

T-3273 21

(Bel 1,32), the number of attributes to be used by a
simulation model may vary between models but, the data
management remains very similar.

The scale of the space being monitored also varies
from problem to problem. In one situation the overall
dimensions may be on the order of centimeters while in
another the scale may be in thousands of meters. This
slight inconvenience is handled by normalizing the
variables so that scale is no longer a problem, "exactly
the same behavior is seen on different scales for
different problems" (Bell,82).

SPLISH also handles a variety of boundary conditions,
from rigid bottom boundaries to periodic vertical
boundaries to free surface boundaries at the top of the
grid. Bottom boundaries may consist of ocean bottom
topography in modeling ocean currents or it may be the
earth's surface in modeling atmospheric patterns. The top
boundaries may be, in the same models, the ocean surface
or one of many levels of the atmosphere, respectively.

As of yet SPLISH is only a two dimensional model
using cross-sectional planes of a three dimensional domain
as the observation space. In the future the model is to be
extended to three dimensions and revised in order to
handle more complicated flows such as viscous and

T-3273 22

compressible fluids and reactive flow such as burning
elements or chemical reaction.

1.5 THE MATHEMATICAL METHOD
SPLISH uses a specia1 finite difference numerica1

method in which differencing is done over triangular cells
within the mesh. Traditional finite difference methods
difference over a regular grid mesh. Thus the mathematical
equations must be reformulated in terms of the Free
Lagrangian representation of the space. There are three
main equations in the Lagrangian formulation. They are
conservation of mass, conservation of vorticity and
Euler’s laws of motion (Bell,82 , Fritts & Boris,79). As
with most finite difference algorithms, future values to
be calculated for one grid cell depend on the neighboring
cells around it. Therefore, data management must provide a
route to information about surrounding triangles.

In modeling highly transient hydrodynamics, the Free
Lagrangian method has created the definition of a Vertex
Cell. The vertex cell, used in vertex velocity
calculations, is created by taking all triangles around a
point and calculating all three side bisectors for each
triangle. The intersection of these bisectors locates the
triangle’s centroid (assuming mass is constant throughout

T-3273 23

the triangle) and divides the triangle into six equal-area
sub-triangles. Once the surrounding triangles have been
divided, two sub-triangles from each of the triangles
surrounding the central point are combined to form the
vertex cell. A typical vertex cell is shown in figure
1.12.

FIG. 1.12s Typical vertex cell

1.6 DATA MANAGEMENT REQUIREMENTS
The Lagrangian formulation of finite difference

numerical methods requires the formulation of vertex cells
for each vertex update. Therefore knowledge about

T-3273 24

triangles that surround points of the space is one
requirement put upon the data management process.

This particular numerical method also requires
information about triangle areas and centroids. This
requirement is handled readily by the fact that only
information about triangle verticies is needed to
calculate a triangle's area or centroid. In other words,
to obtain any particular triangle's area or centroid one
need only have the coordinates of the verticies of the
triangle. Information about other triangles is not needed.

In the "rotation" part of the numerical method,
triangles are checked to make sure that vorticity, or
rotational flow, is conserved throughout the grid. In
other words, all triangles must be constrained to conserve
vorticity from one time step to another. This involves the
determination of the triangles which surround any given
triangle as well as which of the verticies are connected
(Bell,82).

When it comes to the reconstruction of triangle sides
and the insertion or deletion of grid points, knowledge
about neighboring triangles is again a requirement before
determining positions for alterations. For instance, if a
triangle is determined to be too large (in terms of area),
then its neighboring triangles must be determined in order

T-3273 25

to implement either the side bisection insertion or the
triangle trisection methods. Similarly, if resolution
needs to be increased along a border or fluid interface,
then information about which triangles lie on the border
(relative position with respect to the overall grid) needs
to be gathered along with the information about which side
of the triangle actually lies along the border.

This list of data management requirements is in no
way exhaustive. The purpose of the forgoing discussion is
to present a common prerequisite of the candidate data
management facilities. The common factor between the data
management requirements is the accessibility of knowledge
about neighboring triangles and neighboring points. A
spatial relationship inherent to the data structure would
give quick and efficient data retrieval and would meet the
requirements of the Free Lagrangian Method.

Unfortunately, a very costly data structure in term's
of access time and search lengths is presently being used.
A list or linked list data structure is currently being
used to store point and triangle information. There is no
preservation of data locality in a list structure,
therefore, when looking for spatially related data,
searching must be conducted through the entire list.

A linked list may be the answer to this problem, but

T-3273 26

updating of the list and pointers must be performed for
all insertions and deletions of points in the space which
come about from grid restructuring and resolution changes.
This idea becomes very complicated when simultaneous
deletions and additions are made and if the list of
triangles or points is large, the time involved in
updating the list becomes less desirable.

Because of the lack of data locality the hope of even
slightly reducing the search lengths by using a
partitioned subset of the total data set is abolished.

Arguments to the effect that the list data structure
is used because point or vertex updating is not required
to be sequential with respect to the point space are
understandable, but this argument completely ignores the
spatial relationships between the points of the space of
.which the L a g r a n g i a n n u m e r i c a l m e t h o d re q u i r e s
information.

The problem of excessive access times as well as
oversized search lengths to find needed information has
hindered the numerical method to the point that a
different data structure which will reduce the time spent
searching and re-searching long lists must be found.

T-3273 27

CHAPTER 2 - THE MONOTONIC LOGICAL GRID

2.1 INTRODUCTION
Jay P. Boris of the Naval Research Laboratory in

Washington D.C. has introduced a data structure which
eliminates major problems with the list data structure
approaches used in the past. The data structure is called
a Monotonie Logical Grid (MLG).

The MLG gives us preservation of spatial
relationships within the data structure, therefore
allowing the data management processes to obtain data
quickly in order to service the computational routines
being used.

In the MLG, searching begins at a record containing a
triangle which is close to the triangle being searched
upon, so the length of the search is reduced by the
elimination of looking at unrelated data. Since spatially
related data is localized in the MLG, search lengths are
cut back because searching the entire list is no longer
necessary. Therefore, independent subsets of the list are
established by storing data in the MLG. The independence
of these data sets, in turn, allows us to perform multiple
processing.

One obvious difference in the "shapes" of the data

T-3273 28

structures is that the MLG uses a data structure which is
similar to the spatial data it contains. If the simulation
model is run in a three dimensional space then the MLG
takes the form of a three dimensional array. The same is
true for two and even one dimensions.

As for the placement of the data into the data
structure, the method is not random as in the case of the
list structure. The placement, and subsequent storage, of
data into the MLG is completely dependent on spatial
attributes of the elements being stored.

2.2 DEFINITION OF A MONOTONIC LOGICAL GRID
Boris gives the following definition of an MLG

(Boris,85)s

For N particles in three dimensions, the
arrays of object locations, X(i,j,k), Y(i,j,k) and
Z(i# j#k), constitute an MLG if and only if:

X(i, j,k) < X(i+1, j,k) for 1 < i < NX-1
Y(i, j,k) < Y(i, j+1, k) for 1 < j < NY-1 (1.0)
Z(i,j,k) < Z(i,j,k+1) for 1 < k < NZ-1

where NX, NY and NZ are the number of points in
the x, y and z directions respectively.

T-3273 29

In other words, if the point positions are stored in
three dimensional arrays, then all x directional vectors,
X(i, j,k) for all 1 < i < NX with fixed j and k, would be
monotone increasing with an increase in the index i. All y
directional vectors Y(i, j,k) for all 1 < j < NY with
fixed i and k, would be monotone increasing with an
increase in the j index. And all z directional vectors,
Z(i, j, k) for all 1 < k < NZ and fixed i and j, would be
monotone increasing with an increase in the k index.

2.3 PROPERTIES OF THE MLG
Implicitly the definition for the MLG states that if

the ordering defined by the inequalities 1.0 of section
2.2 is not present in the data structure the point
information must be sorted into Monotonie Logical Order
(MLO). Figure 2.4 of section 2.4 give us the guarantee
that MLO is always possible. An algorithm for sorting tfre
MLG into MLO is described in section 2.4.

But first, what is to be noted from the definition of
the MLG is that relationships between points of the space
are present in the MLG. If point A is directly next to
point B in the space, then by virtue of the spatial
coordinates of the two points the information concerning
point A is stored directly next to the information

T-3273 30

concerning point B . If a point is between point A and B
in the space then the information about that point will
reside in the MLG between the information about A and B .
Also, Different point configurations will yield different
MLG data structures. This can be seen in the situation
that if a point C were to move past A and position itself
lower and to the left of A, then the information about
point C would have to "move" to a cell which was lower and
to the left of information about point A in order to
preserve its relative relationship to A and in order to
conform to the inequalities (1.0). Thus sorting of MLG
information is necessary.

Also note that the points of the space need not be
aligned in such a regular pattern as the lattice example
described above. If the points of the space were situated
-.as pictured in figure 2.1 there still exists an MLG
structure which would conform to the points of the space.
One possible MLG configuration is shown in figure 2.2.

This MLG representation is not unique. Figure 2.3 is
one more possible MLG structure which represents the same
point space. Another look at the definition of the MLG
will explain at least one situation which could create two
possible MLG data structures for the same point
configuration.

T-3273 31

4 o 7 o
3o 5g

9g

2° 8g 6 g
'g

FIG. 2.1: Irregular point configuration

3 4 7
2 9 5
1 8 6

FIG. 2.2: First possible MLG representation of FIG. 2.1

T-3273 32

3 4 7
2 5 9
1 8 6

FIG. 2.3: Second possible MLG representation of FIG. 2.1

In the case of a two dimensional model let :

Y(i,j+1) = Y(i+1,j+1) (1)
Y(i,j-1) = Y (i+1,j-1) (2)
and X (i,j) = X (i+1,j) (3)

for a fixed j such that 2 < j < NY-1 and
for a fixed i such that 1 < i < NX-1.

Note that the forgoing assumptions do not violate
inequalities (1.0), so that we are actually looking at a

T-3273 33

small section of an existing MLG structure. Now if we were
to exchange information in the following manner:

X(i, j) with X(i+l,j) and Y(i, j) with Y(i+1, j)

then since (1)-(2) are given, monotonicity as given in
inequalities (1.0) is not violated by the interchange
Y(i , j) with Y(i + 1 , j). And since (3) is given, the
interchange X(i, j) with X(i+1, j) does not violate
monotonicity either. Thus we have two MLG structures
representing one point space configuration. This situation
does not pose any problems in distinguishing which
structure to use. Actually, the presence of more than one
possible data structure gives us the flexibility of
optimizing MLG's to the particular data set being used. It
is quite possible that one MLG configuration would yield
-better results (with respect to maximum index offsets) in
vectorization and partitioning than would another MLG
configuration of the same data.

When the number of points in the space becomes larger,
so does the number of possible MLG configurations. The
proof given above only involved a small section of an MLG.
The existence of this situation in other sections of the
MLG is quite probable, thus increasing the number of
possible MLG data structures for the global data set. As a

T-3273 34

result, optimization of MLG structures is a topic which is
still under research and which will most likely advance
the use of the MLG quite drastically.

S.G. Lambrakos and J.P. Boris have conducted work in
the area of optimization of MLG structures (Lambrakos &
Boris,85). In their work they have established and defined
certain properties of the MLG which are used in
determining proper MLG representation of data.

One such definition is of a Nearest Neighbor Template
(NNT). The NNT is defined to be the section or partition
of the MLG surrounding a particular target cell, "... a
finite set of small index offsets in the MLG which
correspond to the near neighbors in space." (Lambrakos &
Boris,85). In their work testing was conducted concerning
the size of the NNT and its relationship to the
operational cost of the sorting and calculation routines
of the MLG algorithm. It was found that search lengths are
directly related to the size of the NNT. A large NNT will
produce larger search lengths, while a smaller NNT will
produce smaller search lengths.

2.4 AN ORDER N MLG SORTING ALGORITHM
Point movement in the grid necessitates sorting of the

MLG in order to retain MLO. J.P. Boris has developed an

T-3273 35

algorithm of order N for sorting the MLG into MLO
(Boris,85).

If the motion of the points in the space is large
(i.e. large numbers of points passing each other within
the timestep) then the possibility of violating
monotonicity (section 2.3 inequalities (1.0)) are quite
high; as is the number of points that actually interchange
relative positions. In the same instance, if point
movement in the grid is small, the possibility of
violations, along with the actual number of violations,
decrease. We shall now follow this general observation in
analyzing the algorithm offered by Boris.

Boris first offers a vector sort routine which scales
as N log (N) (Boris,85). In the algorithm, all N object
locations must be sorted into increasing Z order. Next,
.the first NY X NX object locations are to be sorted into
increasing Y order while keeping the k index equal to 1.

Now within the first NY X NX objects which are sorted
into increasing Y order, sort the first NX into increasing
X order while keeping the j index equal to 1 and indexing
these NX object locations such that i=l,...,NX. Once the
first NX of the first NY X NX object locations are sorted
then continue with the next NX objects, until all NY X NX
objects are sorted accordingly.

T-3273 36

The next step is to increment the k index to 2 and
conduct the sorting in a similar manner on the next NY X
NX object locations. This step is repeated until all NZ
"planes" (each of size NX X NY) are sorted.

Two problems accompanying this algorithm are, its
computational cost and the fact that if point motion is
large in a certain section of the point domain then,
certain cell information may have to cross a large section
of the MLG in order to find its correct position
(Boris,85) (fig. 2.4).

I MY x M X j

— M X — |
----------- MZ x NY x M X ------------

FIG. 2.4: Order N log N sort algorithm

As an alternative Boris offers another algorithm which
scales as N. In the algorithm the concept of
dimensionality is kept in the sort. In other words, if the
simulation model is two dimensional, then sorting will be
done on a two dimensional array (the MLG resembles a two

T-3273 37

dimensional array for 2-D models). Each row in the MLG is
defined to be an i directional vector, while each column
is defined to be a j directional vector (fig 2.5).

2 - D
MLG

i
FIG. 2.5: i and j directional vectors used in sorting

The first step is to sort all i directional vectors
into increasing X order. This sort does not rely on any
relationships between different vectors (i.e. X(i,j,k) as
related to x (i#jm ,kn) where j ^ jm and k 4 kn). In other
words while fixing both the j and k indexes sort all
object locations (1 < i < NX) in increasing X order
without regard to object locations in vectors around the
current i directional vector. The same technique is used
for all j and k directional vectors.

c
to

r
>

*d
O
fu<D
73
—>

i dir ecilor at vei :to r

»

T-3273 38

Boris also gives us an efficient algorithm for
determining if consecutive array elements are out of
order. The algorithm follows.

In order to determine if two consecutive elements are
in increasing order, first calculate the sign of the
difference of the the two object locations and assign it
to the number s = 0.5 . Next calculate the weights w and
(1-w) as w = s + 0.5 and (1-w) = s - 0.5 respectively. Now
w = 1 and (1-w) = 0 when the two object locations are in
increasing order while w = 0 and (1-w) = 1 when they are
not.

Once the order of object locations has been determined
then the following four operation statements will swap
data if consecutive object locations in an i directional
vector are out of order and will leave the information
_ intact if they are not:

T(i,j,k) = w x X(i,j,k)
U(i,j,k) = (1-w) x X(i,j,k)
X(i,j,k) = T (i,j,k) + (1-w) x X(i+l,j,k)
X(i+1,j,k) = w x X(i+l,j,k) + U(i,j,k)

where T(i,j,k) and U(i,j,k) are temporary storage
variables. This swap procedure can be conducted on all
adjacent elements in the MLG for all i,j and k directional

T-3273 39

vectors.
Underlying this sort algorithm is the technique of

sweeping through the grid for each sort iteration. When,
for instance, all i directional vectors are being sorted
only adjacent elements are swapped. The technique of
reiterating through the vector until all positions are in
order is not done. One sweep is made through all i
directional vectors exchanging only adjacent elements that
are out of order. Next all j directional vectors are swept
through and finally all k directional vectors. A count is
kept of the number of actual element swaps. If this count
is non-zero the entire sweep through all directions is
repeated.

Further optimization of this sort routine can be
achieved in determining local areas within the MLG grid
:which do not need sorting thereby avoiding many unneeded
calculations. Bookkeeping involved with this idea,
however, becomes quite sophisticated and may not return
sufficient benefits to warrant the coding of the
algorithms.

In looking at the relative motion of the points in
the space with respect to the resultant amount of sorting
required as a consequence of that motion, one observation
made by Boris about the magnitude of the number of sort

T-3273 40

iterations needed to establish MLO, “Almost all of the
grid restructuring occasioned by particles passing each
other occurs in the first two or three vectorized
iterations." (Boris,85), is supported by test results
conducted in this study. The number of sort iterations is
generally low. The term generally is used because cases
have arisen in which a noticeable increase in the number
of sort iterations was recorded for several timesteps
within particular test runs. This discrepancy can be
explained when looking at the particular flow equations
being used to perturb the points.

Sort iteration counts remain low, (5 - 10), in
sections of consecutive timesteps until point motion
triggers either minor global, or major localized point
passing, which would in turn necessitate an increase in
-sort operation counts. Such situations will be presented
in the result chapter of this study.

Originally the MLG was developed to monitor points
moving about in a spatial domain. Data about the points
was stored in the MLG and dynamically moved about in
conjunction with the motion of the corresponding points.

This study will extend the model of the MLG to handle
two dimensional figures (triangles). This is accomplished
by characterizing the triangles with one particular point.

T-3273 41

while storing information about the triangle as a whole in
the MLG.

T-3273 42

CHAPTER 3 - REPRESENTATION OF THE FREE LAGRANGIAN GRID
USING THE MLC '

3.1 INTRODUCTION
The MLG model introduced by J.P. Boris was developed

for points moving about in space. This chapter discusses
the extension of the point model to a 2-D figure model.

We will discuss storing point data in the MLG versus
storing triangle data, as well the minimum amount of data
which can be stored in the MLG.

3.2 POINT DATA V S . TRIANGLE DATA
The Free Lagrangian numerical method discussed earlier

requires information about the triangles which surround
points in the real space as well as information about
adjacent triangles of the space.

If we were to store point data in the MLG, we would
lose information about the vertices (points) which
determine triangles of the space. For instance, if we
were required to find all vertices of the triangle Tm ' we
would have to resort back to searching a list containing
triangle data in order to relate the triangle Tm to its
vertices, because the MLG does not contain any information
about triangle-vertex relationships. This is exactly the
problem we are trying to overcome.

T-3273 43

On the other hand, storing information about triangles
in the MLG allows us to relate point and triangle data
directly. For example, if we need to determine the
coordinates of all verticies of a triangle, we would
simply use the triangle I.D. stored in the MLG as the
index reference to the array containing triangle
information. Once we have found the correct position in
the triangle array we can use the vertex I.D.1s as index
references to the point array.

3.3 MINIMUM MLG STORAGE REQUIREMENTS
The next step in the transformation of the MLG point

model is to determine the minimum amount of data which
needs to be stored. Since triangle data is being stored,
the triangle I.D., in the least, must be stored. As will
be seen in the next section, the coordinates of the
"triangle processing attribute" must also be stored in
order for us to sort the MLG. All other references to data
can be made using the triangle I.D. as the array index.

Therefore, the minimum amount of data needed in the
MLG is comprised of the triangle identification number,
and the coordinates of the "triangle processing
attribute". Data such as point coordinates and triangle
vertex I.D.'s can be stored in arrays outside the MLG, and

T-3273 44

referenced using the MLG triangle I.D. as the array index.
The MLG takes the form of a four dimensional array.

The first three dimensions are the i, j and k indices of
the MLG cells, while dimension 4 contains the triangle
data. Following are the data positions in the fourth
dimension of the MLG cell at (i,j,k):

Dimension 4: Triangle attribute storage
Position 1: x coordinate of triangle processing

attribute
Position 2: y coordinate of triangle processing

attribute
Position 3: z coordinate of triangle processing

attribute
Position 4: Triangle I.D. of triangle at (i,j,k)

In the initial development of this study the author
stored triangle vertex I.D.'s in the MLG in addition to
all of the above outlined data. It was thought that the
triangle vertices were needed in the MLG when referencing
the point array for point coordinates, but was later found
not to be the case.

3.4 EXTENSION OF THE POINT MLG MODEL TO
REPRESENTATION OF TRIANGLE DATA

We must now determine how to apply two dimensional
figures (triangles) to a point MLG model. This is easily

T-3273 45

accomplished by characterizing each triangle using one
particular point of the triangle. For instance, we could
characterize all triangles of the space by their
centroids, or by the vertex which has the smallest x
coordination.

We will call this characterization point the "triangle
processing attribute". All sorting which was discussed in
the preceding chapter will now be performed on the
triangle processing attribute.

There are many possible triangle processing attributes
which could be used. Only four were chosen. These four
attributes will be discussed in detail in later chapters.
For now the four triangle processing attributes are:

1. Triangle centroid
2. Triangle vertex with the smallest x coordinate
3. Average vertex coordinates
4. Midpoint of the longest triangle side bisector

T-3273 46

CHAPTER 4 - MLG TEST PARAMETERS

4.1 INTRODUCTION
In order to test the MLG and its adaptation to a Free

Lagrangian grid certain tests were developed that indicate
the usefulness of the MLG in searching for adjacent and
surrounding triangles. The following test procedures and
parameters were developed in order to test key issues such
as search times and lengths and partitionability of the
data stored in the MLG.

The process of testing algorithms involves the
establishment of execution parameters in accordance with
each issue being examined. For instance, when examining
the partitionability of data stored in the MLG, different
flow equations (fundamental, non-conservative equations)
are used to "move" data about in the MLG, therefore
testing the sort and search algorithms in relation to
locality of spatially related information in the MLG. In
addition, both regular and irregular initial grid
configurations are used in testing the MLG performance.

The reason for the varying initial grid configuration
is to correlate data accessibility between different
initial grid shapes, thus determining the difference
between data partitioning using regular and irregular

T-3273 47

initial grid constructs.
Different partitioning schemes have been developed in

order to establish which triangle attributes make the best
triangle processing attributes. The calculation of
operation counts and the determination of maximum index
offsets in searching algorithms will establish which
attributes are optimal.

4.2 INITIAL GRID CONFIGURATIONS
Appendix A gives plots of all initial grid

configurations used in the testing of the MLG. These
initial grids are broken.down into two main categories,
regular and irregular grids.

Regular initial grid construction is performed in a
predetermined manner using a special technique for placing
points and triangles into a regular pattern. All points
are initially placed at lattice positions in a two
dimensional space. From here triangles are formed using
these points as verticies. The pattern formed by these
triangles is very regular and constant throughout the
grid. Appendices A.1 and A.2 show examples of both a
"symmetric" and a "slightly deviated" regular initial
grids.

Irregular initial grid construction carries the

T-3273 48

regular grid construction phase one step further by adding
a random number of points to randomly determined pre­
existing triangles in the space. The method of inserting
more points is the Triangle Trisection method (section
1.3) and the number of triangles trisected is taken to be
a predetermined percentage of space triangles present from
the regular grid construction phase. In other words, if it
is desired to tesselate 90% of the regular grid into an
irregular pattern and if 100 triangles were constructed in
the regular grid construction phase, then there will be
190 triangles present in the initial irregular grid after
all construction is complete. Appendices A.3 and A.4 show
examples of "symmetric" and "slightly deviated" irregular
initial grids.

Initialization of the grid into either a regular or
irregular configuration is done in order to compare
sorting and searching results obtained from the use of
both the regular and irregular schemes. Any differences in
the results will suggest partiality by the MLG to initial
grid configuration, thereby reducing the flexibility of
the MLG.

"Symmetric" and "slightly deviated" initial grid
options are used as an extra deviation to the initial grid
construction. The amount of deviation of point placement

T-3273 49

from the regular lattice grid positions is variable and
can be changed from one execution to another. This added
initial deviation produces different grids through the
duration of executions and thusly eliminates the
dependence between flows and processing attributes and the
initial grid structure. For example, if consecutive
executions use a "slightly deviated" irregular initial
grid construction the correlation between the execution
runs is not dependent on the use of the same initial grid.

4.3 PARTICLE MOVEMENT EQUATIONS
Movement of points and triangles in the point space

causes the movement of data in the MLG. As was seen
earlier, sorting of the MLG will preserve the data
locality within the data structure, thus making data
access quicker and more efficient.

In order to test the MLG and its dynamic
representation of the point space, different particle
movement equations are used to observe data movement in
the MLG. Three types of particle movement were developed
and tested.

The vector equations modeling these three flows are as
follows :

T-3273 50

1. Modified Uniform Strain Flow

px(t+l) = px(0) e<_bt> + Px(t)
py (t+1) “ Py(0) e(bt) + Py(t)

2. Modified Parabolic Flow in X

px(t+l) = px(0) + fc(yo - Py(t))2
py(t+l) = Py(0)

where Yq is a constant.

3. Random Flow

Px (t+1) = Px (t) + ri
Py (t+1) = Py (t) + t2

where r^ and r^ are randomly generated, uniformly
distributed, numbers in a predetermined interval.

px(t) and Py(t) are the x and y components of the
point coordinates at any time t. Appendix B shows a11
three particle movement results, B.1-B.4 picture the
Uniform Strain flow, B.5-B.8 the Parabolic flow and B.9-
B .12 the Random flow.

As can be seen from the plots of the point space and
the triangular interconnections, the Parabolic and Random
flows distort the grid sufficiently enough to warrant
further investigation into the adaptability of the MLG to

T-3273 51

these different flows. The plot of the Uniform Strain
flow, however, shows that point motion governed by these
vector equations does not produce enough distortion in the
triangular connections to disrupt the MLG data to any
large extent.

In fact, numerical results show that very little
physical change occurs in the MLG as a result of Uniform
Strain point motion in the space.

4.4 DATA PARTITIONING SCHEMES
Several triangle attributes have been tested in order

to classify one or two of them as being the best
processing attribute. First of all an explanation of the
triangle processing attribute.

As stated above (section 3.3), positions 1, 2 and 3 of
an MLG cell contain the x, y and z components of the
triangle processing attribute, respectively. The triangle
processing attribute is defined to be one certain "point"
of the triangle on which all sorting will be done.
Therefore if the triangle processing attribute is defined
to be the triangle centroid, then the coordinates of the
centroid will be stored in positions 1-3 of the MLG
triangle attributes and the sorting of the MLG cells will
use these three coordinates as the sort criterion. Thus

T-3273 52

when sorting all i directional vectors the following
comparison:

X(i,j,k) < X(i+l,j,k)

will take the form:

MLG(i, j,k,l) < MLG(i+l, j,k,l)

where MLG(i, j,k,n) is the cell at i, j,k in the MLG
data structure. Likewise, sorting j and k directional
vectors would involve the use of elements in positions 2
and 3 respectively.

Since there are many attributes of the triangle which
could be used as processing attributes, only a few were
chosen. These few were chosen so as to give different
insight to the relative shape of the triangle they
-represent. For instance, if triangles in a particular
point space are forced to become elongated (long and
narrow) then the processing attribute defined to be the
midpoint of the longest bisector would also give
information about relative dimensions of the sides of the
triangle. In other words, the point being used for the
processing attribute will be somewhat skewed from the
center towards the long end of the triangle, thereby
representing the majority of the triangle as being farther

T-3273 53

away from the center than would a processing attribute
defined to be the triangle centroid. The triangle centroid
in this instance would lead us to believe that the
triangle is centralized more around its center point than
is really the case.

Four triangle attributes were chosen to be used as
processing attributes and they are:

1. Triangle centroid (assuming mass is constant)
2. Vertex with the smallest x coordinate
3. Midpoint of the longest side bisector
4. Average vertex coordinate value

Attribute 1 (triangle centroid) was chosen for the
fact that the triangle could be generalized close to its
center (fig. 4.1).

FIG. 4.1: Triangle centroid

T-3273 54

If the flow is such that large differences in triangle
areas are not present in the space then the triangle
centroid would sufficiently represent the state of the
triangle. As a matter of fact, this particular attribute
works quite well in the processing of a wide variety of
shapes and sizes of triangles. This choice of points has
proven to be one of the best of the four, in most
combinations of flows.

If flow is random and triangle distortion is difficult
to predict then attribute 2 (vertex) should represent the
space sufficiently (fig. 4.2).

X

FIG. 4.2: Vertex containing the smallest x coordinate

However, as will be seen, this attribute causes a loss
in the information about the general shape of the

T-3273 55

triangle. Information about only one of the vertices does
not give us a general description of the triangle. The
triangle could be very elongated and all we will know is
the position of the vertex with the smallest x coordinate.
This attribute has proven to be the poorest of the four
choices.

If point motion causes elongation of the space
triangles then attribute 3 (longest bisector midpoint)
will reflect the state of the triangle sufficiently (fig.
4.3), and testing shows that this is the case. However, if
triangle shapes evolve to the point that triangle sides on
the average are close in magnitude then extra work is
being done calculating the midpoint, when the triangle
centroid could be used with less computation.

FIG 4.3: Midpoint of the longest side bisector

T-3273 56

Finally, attribute 4 (average coordinate) was chosen
to average out the vertex coordinates and give a mean
representation of the triangle (fig. 4.4).

FIG. 4.4: Average vertex coordinates

This approach dampens differences in side lengths
giving us an average positional location for the
coordinates of the triangle. This type of attribute can be
applied to triangles of varying shapes, giving similar MLG
representation to various triangles of different shapes.
This choice of attributes has shown to be quite good, and
as will be shown later is one of two attributes that give
similar good results.

4.5 MLG SEARCHING ALGORITHMS
Once the flow and attribute parameters have been set

up the issue of determining how well the MLG performs with

T-3273 57

respect to searching must be addressed. What search
algorithms will test the MLG model as if it were being
used in real time applications?

The Free Lagrangian model requires point and triangle
mesh update procedures to use information about
neighboring points and triangles. The vertex cell defined
in chapter 1 requires information concerning all triangles
around a point, while the triangle mesh bookkeeping
algorithms require information concerning adjacent
triangles.

This then will be the basis of developing searching
algorithms which will aid in data access processes. In
this chapter we will only develop the evaluation criterion
for searching out adjacent and surrounding triangles. The
next chapter will develop the actual algorithms used.

4.5.1 ADJACENT TRIANGLE SEARCH
First of all, we will develop the criterion for

determining the accessibility of information about
adjacent triangles.

The MLG used in this study is related to a two
dimensional array. Let us define an "index offset of m" to
be all MLG cells MLG(i,j,k ,n) such that :

T-3273 58

io " * _< i < io + *
io " * < i < io + *
k o - n i < k < k o + m

where i0# j0 and k0 are the MLG indices of the central
cell.

A typical index offset of 1 is pictured in figure 4.5.
In the case that i0, jo or ko is equal to 1 then the index
offset of 1 would only include the central cell as the
outermost cell in the direction of the MLG boundary
(figure 4.6).

In searching for adjacent triangles a measurement will
be made as to the magnitude of the index offset in order
to find all adjacent triangles to the triangle contained
in the central cell. Since the MLG offers us data
locality, index offsets measure the relative closeness of
spatial data within the MLG. We will then use thi-S
measurement in evaluating MLG performance in adjacent
triangle searches

T-3273 59

V 1

Jo

Jo" 1

FIG. 4.5: Typical symmetric index offset of 1

Jo+ 2

Jo+ 1

Jo

FIG. 4.6: Index offset of 1 at MLG boundaries

T ’ IT "

1

'J(I
1_______ J_______1------- 1

6 lo+ 1 lo+ 1

'o'Jo

lo- 1 ' Io 'o+ 1

T-3273 60

using different processing attributes as well as different
flows. Once all adjacent triangles have been found for
each MLG cell (triangle), an average index offset will be
determined. This average, along with analysis of
individual maximum and minimum cell index offsets and the
variance of the offsets around their mean will be the
basis of determining which processing attribute works best
with certain point flow equations.

4.5.2 SURROUNDING TRIANGLE SEARCH
Now, we will define the procedures for the evaluation

of algorithms which search for all triangles around a
given point. These algorithms are more complex than their
adjacent triangle counterparts, however segments of the
adjacent triangle search carry over to the surrounding
triangle searches, making this search algorithm somewhat
related to the more fundamental adjacent triangle
algorithm.

As for searching for all triangles around a given
point, again a measurement of index offsets will be taken
for each point. These index offsets will then be averaged
over all points of the space. This average along with
analysis of maximum offsets in the i, j and k directions
and the variance of the offsets around their respective

T-3273 61

means will be the basis of evaluation in this search.
The measuring of offsets in searching for triangles

around a point differs from the adjacent triangle "index
offset of m" definition given above. First of all, points
are processed by stepping through the MLG, triangle by
triangle, and processing all unprocessed points which
appear as part of the present triangle. While stepping
through each triangle, when points that have not been
processed are encountered the triangle which contains them
is recorded as being the "entry triangle" for that
particular point. For instance, if the unprocessed point
pn is present in triangle Tm of the MLG then triangle Tm
will be defined to be the "entry triangle" for point Pn •
Since every triangle in the space has a unique MLG
reference index, the i, j and k indices of the entry
.triangle then become the target cell indices. In other
words, if triangle Tm has an MLG index reference of

i0 »jo'^o*n) then the target cell indices become iQ, jQ
and k0 e

From this point a record is kept of the maximum index
offset needed in all three of the i, j and k directions in
order to find all triangles which share the point in
question. This in turn is the measurement which we will
use to evaluate the performance of the MLG in the case of

T-3273 62

surrounding triangle searches. Figure 4.7 pictures a
typical i index offset of 2 and j index offset of 1 for a
point Pn contained in triangle Tm at the MLG index

(*o#io)•
Each point will have associated with it a maximum i, j

and k index offset, which suggests that index offsets may
! i i I I I— I- - - - - - - 1- - - - - - - 1- - - - - - - J_ _ _ _ _ _ 1 _ _ _ _ _ _ I _

Jo+ 1

Jo

Jo" 1

l0 - 2 l0 - 1 'o lo + 1 V 2

FIG. 4.7: i index offset of 2, j index offset of 1

not be symmetric in the i, j and k directions as is the
case in searching for adjacent triangles. This difference
in defining performance measurements around index offsets
arises from the algorithm being used to perform the actual
searching. This algorithm is to be developed in the next
chapter.

1

—

_r
l0'Jo

„r 1 I

1 r r ~~ ir -1 ~r
1...........

T-3273 63

4.6 SUBROUTINE CPU TIMINGS
One final evaluation tool has been incorporated in

testing the performance of the MLG. Benchmark timings
(CPU) have been established within all subroutines of the
MLG test program. The actual CPU requirements of the
sorting and searching subroutines will be used in
comparisons between flows and between processing
attributes in order to help in the narrowing down or
simplification of establishing the optimal processing
attributes with respect to the parameters used in this
study. As will be seen in later chapters, time consumption
figures for similar flows vary noticeably between uses of
different processing attributes, suggesting that certain
triangle attributes are truly superior to others.

Different combinations of flows, initial grid
.configurations, and searching techniques have been used in
an extensive series of test runs of the MLG algorithm and
the subroutines used to aid in testing the MLG
performance. Future chapters will discuss the actual
combinations of parameters used and will give results of
the test runs, giving CPU timing comparisons, operation
count comparisons and index offset comparisons.

T-3273 64

CHAPTER 5 - ALGORITHMS

5.1 INTRODUCTION
In this chapter the algorithms used in testing the

performance of the MLG will be developed. An overall view
of all relevant algorithms used in the driver program
MLG.FOR will be given. These algorithms consist of three
general types.

Type one is a family of initialization procedures.
Model parameters such as model size, time duration, time
step size, plot and numerical data output confirmation,
and certain flow constants are established by non­
interactive initialization. Interactive input accounts for
the input of flow type, type of searching to conduct,
initial grid configuration and the particular processing
attribute to be used in sorting.

Type two is a family of model execution algorithms.
These algorithms are comprised of routines which, for each
timestep, adjust the processing attribute of each MLG
cell, sort the MLG, apply motion to the point space and
search the space for either adjacent or surrounding
triangles. These algorithms account for most of the
execution run time of the driver program as a whole.

Finally, type three is the family of output

T-3273 65

algorithms. These algorithms handle output of plot data,
statistical data accumulated from searching algorithms and
CPU timings obtained from the separate routines.

5.2 INITIALIZATION ALGORITHMS
The initialization family of algorithms can be further

broken down into two sub groups, interactive and non­
interactive .

Four execution parameters are read in from the user in
the interactive section of program initialization. These
four parameters are:

1. Initial grid configuration
2. Point flow equation
3. Triangle processing attribute
4. Type of searching to conduct on the data base

Non-interactive initialization routines consist of the
initialization of equation parameters, model size, point
and triangle arrays, and the initialization of output
files.

5.2.1 INITIAL GRID CONSTRUCTION
In the initialization of the triangular grid,

triangles are set up in a regular configuration (section
4.2 and appendices A .1 & A.2) . If the interactive

T-3273 66

parameter for initial grid construction specifies the use
of an irregular initial grid, the regular triangle space
is then tesselated into an irregular configuration.

GRIDFRAC, is a non-interactive parameter which
determines the maximum fractional part of the regular grid
which will be irregularly tesselated in this step. The
maximum of, GRIDFRAC X NUMTRI (where NUMTRI is the number
of triangles in the space) and a randomly generated number
in the interval (1 , NUMTRI), is taken to be the fraction
of the initial regular grid which will receive additional
tesselation.

This incorporation of randomness is used in order to
produce random tesselation patterns and thus give us the
facility to compare similar runs (with respect to
processing attributes, point flows and searching schemes)
-on different initial grids. This can be useful in
examining differences in a processing attribute's mean
performance on dissimilar grids.

Additionally, the number of triangles will not change
during execution of MLG.FOR . The reason for this is that
the algorithms needed for the bookkeeping of insertions or
deletions of triangles and points are too complex at this
stage to incorporate. Therefore after initial grid
construction, triangle and point interconnections are not

T-3273 67

broken and the number of triangles as well as the number
of points are kept constant. In keeping with this
convention, point flow equations have been formulated such
that point motion does not become extremely radical,
therefore keeping the grid uncorupted for as many
timesteps as possible.

5.3 MODEL EXECUTION ALGORITHMS
In this section we will discuss algorithms which are

used in the actual model execution stage of the program.
These algorithms consist of the adjustment of triangle
processing attributes, sorting of the MLG into Monotonie
Logical Order (MLO), searching the MLG for adjacent or
surrounding triangles and the application of motion to the
space points.

5.3.1 PROCESSING ATTRIBUTE ADJUSTMENTS
These particular algorithms, whose subroutine names

consist of ADJCENT, ADJTRI, ADJAVG, and ADJLONG, are used
to adjust any coordinates of the processing attributes
which may have changed from the previous timestep due to
point motion.

ADJCENT recalculates each triangle's new centroid
using the updated point array.

Adjustment of the vertex with the smallest x

T-3273 68

coordinate is performed by the subroutine ADJTRI. All
vertices of . the triangle are compared in order to
determine the vertex which, after point motion, has the
smallest x coordinate.

ADJAVG is a subroutine used to adjust the average
values of all vertices in a particular triangle. The
coordinates of each triangle are gathered from the updated
PT array and averaged in each dimension (x, y and z).

Similarly, the ADJLONG subroutine recalculates each
side bisector of each triangle and determines the midpoint
of the longest one.

5.3.2 MLG SORTING ALGORITHM
Basic concepts of the sort algorithm called MLGSORT

were presented in section 2.4 of chapter 2. Appendix C.l
shows pseudo-code for MLGSORT. Actual FORTRAN code for
MLGSORT is given appendix D.l

This algorithm incorporates a cut down version (with
respect to iteration sweeps) of a bubble sort. Vectorized
sweeps, as a result of the use of a red-black algorithm
are made through all dimensions of the space, thus giving
us the benefit of vectorized calculations and possible
multiple processing since dimensional sorts are
independent of vectors of the same dimension (section 2.4,

T-3273 69

chapter 2).

5.3.3 MLG SEARCH ALGORITHMS
Two separate searching algorithms are to be presented.

The first algorithm (adjacent triangle search) will be the
building block for the second (surrounding triangle
search). First of all let us discuss certain conventions
and arrays which are utilized in both algorithms.

A matrix of dimension NUMPTS X 3 called PTSTAT, where
NUMPTS is the number of points in the space, is utilized
in determining the position of the triangle with respect
to the boundaries of the triangular grid. This array
contains three attributes pertaining to each point of the
space. The attributes are stored in positions 1-3 of the
second dimension while dimension 1 indexes the point I.D..

The particular attributes of the point relate to the
position which the point holds relative to the boundary of
points in the space. An entry of 1 in the first position
of dimension 2 indicates that the point is interior to the
point boundaries, an entry of 1 in position 2 indicates
the point is considered to be a border point and an entry
of 1 in position 3 indicates the point is a corner point.

An interior point is defined to be any point such that
each triangle side which stems from it belongs to exactly

T-3273 70

two triangles of the space (fig. 5.1).

FIG.5.1: Interior point A

A corner point is defined to any point which
stemming from it only two triangle sides (fig. 5.2).

FIG. 5.2: Corner point B

has

T-3273 71

All other points of the space are defined to be border
points (fig 5.3).

FIG. 5.3: Border point C

Also:

Ei = l PTSTAT(n,i) = 1 , for all n 1 < n < NUMPTS

The above summation equation is evident by the fact that
it is impossible for a point to be defined in two ways.
For example, if a point is defined to be an interior point
then it is impossible for that same point to be defined as
a boundary point.

The information obtained by summing the different
positions of the PTSTAT matrix over all points (vertices)

T-3273 72

of a particular triangle will tell us what type of a
triangle we are dealing with.

There are also three definitions of triangles which
are similar to the definitions of points. They are
interior, border, and corner triangles. Following are the
definitions for the classification of triangle types :

Let

INTf,RIOR_SUM - vertices of Tm) PTSTAT (i , 1)
BORDER_SÜM - £(all vertices of Tm) PTSTAT(i,2)
CORNER_SUM = £(all vertices of Tm) PTSTAT(i,3)

then if
INTERIOR_SUM = 3 and BORDER_SUM = 0 and CORNER_SUM = 0

then triangle Tm is defined to be an interior
triangle. (1)

Also if
INTERIOR__SUM = 2 and BORDER_SUM = 1 and CORNER_SUM = 0

then triangle Tm is defined to be an interior
triangle. (2)

T-3273 73

And if
INTERIOR_SUM = 1 and BORDER_SUM = 2 and CORNER_SUM = 0

then triangle Tm is defined to be a border
triangle. (3)

And finally if
INTERIOR_SUM = 0 and BORDER_SUM = 2 and CORNERJSUM = 1

then triangle Tm is defined to be a corner
triangle. (4)

5.3.3.1 ADJACENT TRIANGLE SEARCH
ADJSRCH is a subroutine which uses the data locality

of the MLG in order to determine and calculate which
triangles are adjacent to any given triangle. This
subroutine, as well as the subroutine used to find
surrounding triangles around points, utilize the "close"
storage of data in the MLG with respect to neighboring
triangles in the space. Also the concept of the "index
offset" developed in section 4.5.1 will be utilized
within.

The adjacent triangles to each of the triangles in
the space are determined using a sequential access pattern
looping over the MLG indices i, j and k. Since the MLG
data structure physically resembles a three dimensional

T-3273 74

matrix, the looping indices loop through the real space
dimensions x, y, and z, with y being the inner most index,
x the next level up and z the outer most index. The
result of this order of looping produces update sweeps
through all y directional vectors of the MLG.

Now for each triangle Tm being updated index offsets
of consecutive magnitude (i.e. 1,2,3,...) are searched
until all triangles which are adjacent to it are found.
FINDADJ, a subroutine one level down from ADJSRCH,
determines current index offset magnitudes of the search
being conducted for triangle Tm » as well as the particular
MLG index reference, i0# j0 and k0 , of the triangle to be
determined as either adjacent or not adjacent to triangle

For each index offset, all triangles whose MLG index
references fall within the bounds of the offset are
.checked to see if they are adjacent to triangle Tin„ This
is done by calling upon the subroutine ADJCONF which is
yet another level below FINDADJ.

ADJCONF simply confirms or rejects the hypothesis of
triangle Tm being adjacent to the triangle at the MLG
index reference (iQ , jQ , kQ).

As for FINDADJ, this subroutine must also determine
the number of adjacent triangles which it must look for
while searching on each individual triangle, since no

T-3273 75

record of adjacent triangles is being kept. This is where
the PTSTAT matrix is utilized. We can use the previous
definitions of interior, border and corner triangles to
determine the number of adjacent triangles to search for.
A corner triangle has exactly one adjacent triangle, while
an interior triangle has exactly three adjacent triangles.

A border triangle, however, has the possibility of
either two or three adjacent triangles. This non-unique
determination causes considerable work in ADJSRCH and the
subroutine to be discussed in the next section. The
problem arises from the definition of the different types
of triangles. A triangle which has interior, border and
corner point counts of 1, 2 and 0 respectively, is defined
to be a border triangle (definition (3) from above).
However, it can also be classified as an interior triangle
by the number of adjacent triangles around it. This
triangle is in fact the only adjacent triangle to a
corner triangle (fig. 5.4) and is called a "hidden
interior triangle".

T-3273 76

FIG. 5.4: Hidden interior triangle

Therefore additional work must be done to identify the
triangles which are adjacent to corner triangles and then
reprocess these triangles using the fact that there are
-really three adjacent triangles.

Appendices C.2 and C.3 give pseudo-code
representations of ADJSRCH and FINDADJ, respectively.
Actual FORTRAN code for these algorithms as well as
ADJCONF are presented in appendices D.2 , D.3 and D.4 .

5.3.3.2 SURROUNDING TRIANGLE SEARCHES
The searches which involve finding all triangles

around a given point and the subroutines which perform

T-3273 77

this task are the subject of this discussion. The first
subroutine to be discussed is called PNTSRCH, and is an
extension of ADJSRCH, in that it uses the concepts that
ADJSRCH uses and extends the searching to a more extensive
level. This subroutine uses the subroutine FINDADJ which
was described in section 5.3.3.1. The second of the two
surrounding triangle search subroutines, which is called
PNTSRCHF, does not use FINDADJ. Instead triangle I.D.'s of
adjacent triangles are stored in the triangle data array
and referenced whenever adjacent triangles are to be
found.

In PNTSRCH, the MLG is searched sequentially as in the
case of the adjacent triangle search, however our search
does not directly involve triangles anymore. As we step
through each triangle in the MLG we are looking at the
points (vertices) of the triangle. In looking at one of
the vertices, PQ, of the entry triangle (section 4.5.2,
chapter 4), we need to find all triangles of the space
which have this point as a vertex.

In the simplest case, if PQ is a corner point, it will
only have one triangle surrounding it, namely the entry
triangle. The number of surrounding triangles for interior
or border points, however, is not nearly as easy to
established. This problem arises from the fact that the

T-3273 78

number of triangles which surround a point is variable.
By use of the subroutine FINDADJ, we can obtain all

triangles which are adjacent to any given triangle.
Therefore, we begin the search by finding all

triangles adjacent to the entry triangle of point P0 *
then must eliminate all triangles found to be adjacent to
the entry triangle which do not contain PQ as a vertex. We
must also eliminate all triangles which were found to
contain PQ in earlier adjacent triangle searches (for the
case of the first adjacent search the number of triangles
found before the entry triangle will be zero). The
resultant list of adjacent triangles will contain either
the next triangle to perform the adjacent triangle search
on, or the list will be empty. If the list is empty,
searching is complete for P0 e * ̂ the list is not empty, we
.must find all adjacent triangles for the triangle
remaining in the list and eliminate triangles as above.
This process must be continued until the list of
triangles, after elimination, is empty. This algorithm is
pictured in figure 5.5 .

Problems arise with the use of this algorithm because
of the circular path which the search takes around a point
and its relationship to the entry triangle. Interior
points do not experience this problem because the search

T-3273 79

path around the point always starts and ends with adjacent
triangles. Border point search paths do not start and end
with adjacent triangles. If the entry triangle is not a
border triangle then the search path will go around the
point in one direction and shut off when the first
involved border or corner triangle is encountered (fig.
5.6).

e n t r y t r ia n g le f o r
p o in t P

te r m in a t io n
t r ia n g le f o r
p o in t Pn

s e a r c h

FIG. 5.5: Surrounding triangle search for interior point Pn

T-3273 80

term ination triang le
" S fo r pomt P

s e a r c h

FIG. 5.6: Incomplete surrounding triangle search
for border point Pn

In order to eliminate this problem, a check is made to
determine if the entry triangle is a border or corner
triangle. If it is, the search is conducted in the normal
fashion. If the entry triangle is an interior triangle,
then the MLG is searched using the fundamental "index
offset" search until a border or corner triangle
containing the border point is found. From this point the
surrounding triangle search is conducted in the normal
fashion (fig. 5.7).

T-3273 81

c o m m e n c e m e n t t r i a n g le
f o r p o m t Pn s e a r c h

t e r m in a t io n t r i a n g le
f o r p o in t P s e a r c h

e n t r y t r i a n g le f o r
p o m t P

FIG. 5.7: Readjustment of commencement triangle
for border point Pn search

Once again, as in the case of the adjacent triangle
search, points being searched upon which come about
through an entry triangle which is adjacent to a corner
triangle (hidden interior triangle) must be reprocessed
using the fact that the entry triangle in reality has
three adjacent triangles.

Pseudo-code will not be given for this subroutine as
it is very complex and would be very space consuming.
Refer to appendix D.5 for the FORTRAN code of PNTSRCH.

Optimization on PNTSRCH has not yet been done. The

T-3273 82

section of code which looks for the first occurrence of a
corner or border triangle when updating a border point
whose entry triangle is interior is an example of sections
that would benefit from optimization. As was noted, the
use of the rudimentary "index offset" search was
incorporated to find the first qualifying triangle.
However, this search does not keep track of triangles
along the way which are involved with the point in
question. Therefore when a corner or border triangle is
found the whole process of finding surrounding triangles
must be repeated.

In the models used for this study, model size was
small enough to hide the time consumption of this section
of code. If the model were to be increased to a sizable
magnitude, the number of border points becomes small
relative to the number of interior points but, time
consumed in "reinventing the wheel" could be better spent
processing more points. This is one area of improvement to
be considered in future optimization.

The subroutine PNTSRCHF uses stored information about
adjacent triangles instead of calling on the subroutine
FINDADJ to calculate the adjacent triangles. This
subroutine is used as a comparison between the methods of
calculating adjacent triangles using the MLG (thus

T-3273 83

reducing the amount of information being stored) .and the
method of storing all needed information about adjacent
triangles (thus reducing calculation time). The triangle
I.D.'s of all adjacent triangles are stored with each
individual triangle's information in the triangle array.
Thus producing large amounts of redundant data.

The PNTSRCH and PNTSRCHF algorithms are identical
except when adjacent triangles are to be obtained. PNTSRCH
uses FINDADJ to calculate the adjacent triangles, while
PNTSRCHF references the triangle data array.

5.3.4 POINT MOTION
This section of the model execution family of

algorithms applies the desired flow to the points of the
space. As was described in section 4.3 of chapter 4, there
are three possible flow equations. Modified Uniform
Strain, Modified Parabolic flow in x and Random flow.
Point motion is executed by a call to the subroutine
MOVEPNT which in turn calls the individual point motion
subroutines, STRAIN, PARABOL and RANDOM which are on the
level below MOVEPNT. Calls to MOVEPNT are made at the end
of each time step (time starts at t=0) so that execution
of all sorting and searching is done at the start of the
next time interval for the data of the previous timestep.

T-3273 84

5.4 DATA OUTPUT ALGORITHMS
This particular family of algorithms produce output of

data from program execution. This family is comprised of
only one subroutine member which is called OUTDATA. Calls
are made upon this subroutine passing a variable to
distinguish the type of output desired.

There are three main categories of output, graphical,
numerical partition, and statistical. Graphical output is
used in the program DATAPLOT which plots triangle and
point migration for all of the possible flows. Numerical
partition data is used to watch the migration of data
within the MLG. Finally, statistical output is generated
for comparison testing which will be presented in chapter
6. The statistical data includes index offset values for
different runs using both the adjacent triangle search
(ADJSRCH) and the surrounding triangle search (PNTSRCH),
as well as CPU timings for all subroutines (both
initialization and model execution).

T-3273 85

CHAPTER 6 - RESULTS AND CONCLUSIONS

6.1 INTRODUCTION
Results of the MLG performance in various test

situations will be presented in this chapter along with
conclusions that can be drawn from these results. Both
results and conclusions will be intermixed throughout the
chapter. An overview of the study and generalized
conclusions will be given at the end along with future
directions for the study of the MLG and its application to
Lagrangian techniques. Results to be given in this chapter
are as follows :

1. Use of the MLG is found to be superior with respect
to search lengths when compared to the use of a list data
structure.

2. No significant difference is detected between
average offsets when regular and irregular initial grid
configurations are used.

3. The computational cost of the MLG sort subroutine
is N , the number of cells in the MLG.

4. Large sort sweep iteration counts are evident in
the first two or three timesteps. After this point, counts
decrease and remain relatively stable.

5. The centroid and the average coordinate attributes

T-3273 86

are optimal processing attributes with respect to the four
attributes tested in this study.

6. CPU reduction is evident when using PNTSRCHF as
opposed to using PNTSRCH.

6.2 MLG vs. LIST
In this section we will discuss the advantages that

the MLG holds over the List data structure in the area of
search lengths.

The following definitions will be used in the
foregoing discussion:

Total number of record searches
in each of the searching algorithms.

- Number of triangle records searched for each individual point or triangle in
each of the search algorithms.

- Number of triangles present in the
space.

Number of points present in the space.

In the case of the list data structure let us assume
that the data structure is constructed of two, 2
dimensional arrays, namely the POINT and the TRIANGLE
arrays. In the POINT array each record contains the three
coordinates of the specific point while the TRIANGLE array

Define

Ntot

Ntrs

Nt

NP

T-3273 87

contains in each of its records the vertex (point) I.D.'s
of its three vertices. The MLG data structure has been
completely specified in earlier chapters and sections
(section 3.3, chapter 3) and will not be explained at this
time.

We now discuss the amount of searching required by
both the list and MLG data structures in order to find all
adjacent triangles around each triangle of the space.

In the case of use of the list data structure, for
each triangle in the space Tm# the number of triangle
records which must be searched is:

Ntrs = Nt - 1 (1)

This is assuming that the number of adjacent triangles
for each triangle is not known.

Using (1) from above, the total number of triangle
record searches made in order to find the adjacent
triangles to all triangles of the space is:

N tot = Nt (Nt - 1)
= Nt2 - Nt (2)

In using the MLG data structure, the maximum number of
triangle records searched is calculated using the average
of the maximum index offsets. Define 0m to be the maximum

T-3273 88

index offset, so that the maximum number of triangle
records searched in finding the adjacent triangles around
triangle Tm is:

N trs = ((2 • Ojp,) + 1) 2 - 1 (3)

since the triangle Tm is not searched. And by (3), the
maximum total number of triangle record searches conducted
in order to find the adjacent triangles to all triangles
of the space is:

Ntot = Nt Ntrs
= N t (((2 ’ 0m) + 1)2 - 1) (4)

The use of the MLG will be advantageous only if:

N t2 - N t >_ N t (((2 - 0m) + 1)2 - 1)

or after simplification

(Nt1/2 - l)/2 > 0m (5)

As an example, if 1000 triangles were present in the
space, a maximum index offset of 15 would give us close to
equal search lengths between the two data structures.

Now let us discuss searches for triangles surrounding
the points of the space. In the case of the list data

T-3273 89

structure, when finding all triangles which surround the
point Pn# the number of triangle records searched is:

^trs ~ ^t (G)

simply because the number of triangles which contain the
point Pn as a vertex is unknown, thereby forcing us to
search the entire triangle list.

By (6), the total number of triangle records searched
in order to find the triangles which surround all points
of the space is:

^tot = Mp Ntrs
= Np Nt (7)

In working with the MLG searching algorithm, PMTSRCH,
in looking for surrounding triangles, since index offsets
in the i and j directions may not be symmetrical, we must
adjust our record search counts previously defined. Let us
further define the following variables:

0mi - Maximum index offset in the i
direction.

0mj - Maximum index offset in the j
direction

The number of triangle record searches conducted to
find all surrounding triangles around point Pn is

T-3273 90

formulated to be:

N trs = ((2 • 0m -£) + !) • ((2 • 0m j) + 1) - 1 (8)

since the entry triangle for point Pn is n°t searched. The
total number of triangle record searches conducted in
order to find the surrounding triangles for all points of
the space is:

^tot = Np * Ntrs
= V (((2 ’ °mi) + 1) • ((2 « 0m j) + 1) - 1) (9)

Again, if the use of the ML G is to be to our advantage we
must have (from (7) & (9)):

Np * Nt >.
Np • (((2 • 0mi) + !) • ((2 ’ 0m j) + 1) - 1)

or after simplification

Nt/4 > (0mi + 1/16) • (0mj + 1/16) (10)

In the case of symmetrical offsets:

Given 0mi = 0m j = 0m
then N t /4 >_ (om + l/l6)2

or

(1/2).(nl/2 - 1/8) > 0m (11)

T-3273 91

The above operational count derivations using the MLG
data structure depend entirely on the quantities 0m# omi
and 0mj. If these index offsets are small enough, then the
time and effort spent on the development of the MLG will
be well worth it.

Rigorous mathematical bounds for the maximum index
offsets for various types of flows and various types of
processing attributes have not yet been determined. For
now empirical proof will produce the ground work for a
more stable definition of the exact numbers 0m# omi and
0mj on which the operational counts above depend.

One point needs to be made before we continue our
discussion. The Uniform Strain flow equations presented in
chapter 4 were found to be of little significance in
testing the effectiveness of the MLG. This is evident when
looking at plots of the point space through time. Shown in
Table 6.1 are actual sort sweep iteration counts for a
sample of 12 program executions using Uniform Strain point
motion. It is obvious from these figures that data
movement in the MLG is virtually non-existent after the
first time step. Therefore, data pertaining to Uniform
Strain point motion will not be incorporated into the
results given below.

T-3273 92

Therefore, there exist in this study two different
types of fluid flows as well as four different types of
processing attributes which can be used. A total of 24
programs runs were executed. The 24 runs were separated
into 3 series. Within each series 8 runs were conducted
using all possible combinations of flows and processing
attributes. The mean offsets for each timestep were summed
together to produce one entry for each execution per
series. Results of these runs are presented in table 6.1 .

If we round the total column mean to the nearest
integer and use it as the variable Om i-n equation (5) we
have :

(Ntl/2 - i)/2 > 2 (12)
with 0 m = 2

- and for solving for N t we obtain

Nt > 25

T-3273 93

Table 6.1s Sort sweep iteration counts for 12
executions involving Uniform Strain Flow.
(Three series of four executions)

Execution t=0 t=l t=2 t=3

Series 1
Execution

1
2
3
4

18
20
18
19

Series 2
Execution

1
2
3
4

20
19
19
19

Series 3
Execution

1
2
3
4

19
19
19
22

T-3273 94

Table 6.2: Offset results of 24 program executions
with 4 timesteps per execution.

(Adjacent triangle search)
(Irregular initial grid configuration)

Table entries are the sums of average
mean offsets for each individual

execution with 4 timesteps/execution.
NI, N2 and N3 indicate number of total timesteps

per column, (one column corresponds to one series)

Flows and Attribute
Attributes Nl=32 N2=32 N3=32 Mean

Random
Centroid
Vertex
Avg. Coord.
Side Bisector

Parabolic
Centroid
Vertex
Avg. Coord.
Side Bisector

6.523 6.344
8.984 8.865
6.094 6.245
7.058 6.867

6.276 6.510
9.122 9.126
6.501 6.461
7.163 7.310

6.000 1.572
8.677 2.211
6.478 1.568
6.881 1.734

6.640 1.619
8.864 2.259
6.131 1.591
7.467 1.828

Column totals 57.721 57.728 57.138
Column means 1.804 1.804 1.786
Total for all columns - 172.587
Total column mean - 1.798

NOTE: refer to table 6.3 for sample variances.

T-3273 95

Therefore, if our model is using more than 25
triangles and the maximum index offset, 0m# is on the
order of 2, the use of the MLG will be advantageous over
the use of the list data structure. In reality the number
of triangles will be much larger than 25. So the cost in
search lengths is greatly decreased by use of the MLG in
searching for adjacent triangles.

If we concentrate on comparing only the search lengths
involved in using the MLG versus using the list, putting
aside the cost of upkeep of the MLG, the MLG far out
performs the list.

Using the fact that all initial grids in the
experimenta 1 runs contained at least 7 60 triangles, the
number of triangle record searches conducted to find all
adjacent triangles in the space using the list data
-structure would be (from (2)):

N tot = Nt2 - Nt
= 576,840

Whereas, using (4) and an average maximum index offset
of 2 for each triangle, we have (12):

N tot = N t • (((2 • 0m) + 1)2 - 1)
= 18,240

T-3273 96

which is approximately a 97% reduction in the list, search
length. This argument of course uses an average index
offset in the place of a maximum index offset, but only a
very small fraction of the triangles in these experimental
runs deviated from this average. This is evident when
examining the variances of mean offsets for a sample of
individual executions (table 6.3).

Table 6.3: Variances about mean offsets for 8 program
executions.(Adjacent triangle search)

(4 timesteps for each execution)
Mean Offset Variances

Flows and
Attributes t=0 t=l t=2 t= 3

Random
Centroid 2.466 2.331 2.133 2.136
Vertex 1.378 0.956 0.737 0.722
Avg. Coord. 0.627 0.581 0.564 0.568
Longest Bis. 0.770 0.462 0.439 0.387

Parabolic
Centroid 0.435 0.323 0.454 0.869
Vertex 2.478 0.726 0.855 1.232
Avg. Coord. 0.580 0.403 0.456 0.633
Longest Bis. 0.671 0.393 0.437 0.658

As for the search involving surrounding triangles
around space points, average index offsets for both the i

T-3273 97

and j directions were obtained through the same series of
program executions only using the surrounding triangle
search subroutine (table 6.4 & 6.4a).

Table 6.4: Offset results for 24 program executions with
4 time steps per execution.
(Surrounding triangle search)
(Irregular initial grid construction)

Table entries are the sums of i and j
mean offsets for each individual

execution. (4 timesteps/execution)

Flows and
Attributes

Nl =
i

= 32
j

N2=
i

= 32
j

N3=
i

= 32
j

Random
Centroid
Vertex
Avg. Coord.
Longest Bis.

4.112
4.746
4.026
4.354

4.145
5.229
4.204
4.237

4.152
4.609
4.214
4.468

4.180
4.953
4.186
4.330

4.154
4.717
4.116
4.398

4.172
4.993
4.302
4.508

Parabolic
Centroid
Vertex
Avg. Coord.
Longest Bis.

4.400
5.300
4.559
4.513

4.171
5.377
4.161
4.371

4.531
5.337
4.596
4.499

4.297
5.178
4.218
4.420

4.570
5.262
4.469
4.725

4.201
5.053
4.197
4.356

Column Totals 36.010 35.895 36.406 35.762 36.411 35.782
i Total - 108.827
i Mean - 1.134
j Total - 107.439
j Mean - 1.119

T-3273 93

Table 6.4a: Attribute Means from table 6.4

Table entries are the sums of i and j components
of each row of table 6.4, divided by 12 (4 timesteps per

series and a total of three series).

Flows and Attribute means std. dev.
Attributes i j i j

Random
Centroid
Vertex
Avg. Coord.
Side Bisector

1.035
1.173
1.030
1.102

1.040
1.265
1.058
1.090

.0067

.0351

.0204

.0175

.0071

.0514

.0173

.0341
Parabolic
Centroid
Vertex
Avg. Coord.
Side Bisector

1.125
1.325
1.135
1.145

1.106
1.300
1.043
1.111

.0935

.1212

.0914

.0952

.0240

.0843

.0153

.0188

If we once again round up the mean i and j offsets
-obtained in table 6.4, we have for the variables 0m ̂ and
0mj # the values 2 and 2 respectively.

If we use these variables in equation (10) we obtain:

Nt/4 > (33/16)2 _ 4

and solving for we 9et

N t > 16

T-3273 99

Thus, if the number of model triangles is larger than
or equal 16 we will be reducing search lengths. If we use
(7) and (9) and the fact that the minimum number of
triangles present in these executions, Nt, is 730, and the
minimum number of points present, Np, is 406, we obtain,
first of all, the total number of triangle record searches
when using the list:

Ntot = 296,380 records

while the number of triangle records searched in the MLG
is :

Ntot = 9,744 records

This represents again a 97% reduction in the list
search length. And once again, the above argument relies
on an average index offset obtained from experimentation.
The variances of the individual executions are on the sa five
order of magnitude as the variances shown in table 6.3,
Therefore variances from the surrounding triangle search
will not be given here.

What is to be noted from the above discussion is that
overwhelming reductions in search lengths are accomplished
by the incorporation of the MLG. Search length figures
derived above prove this.

T-3273 100

6.3 DIFFERENCES IN INITIAL GRID CONFIGURATIONS
The use of regular and irregular initial grid

configurations was incorporated in this study so as to be
a check on the independence of MLG performances with
respect to initial grid construction. In other words, we
would like to have a measure of the MLG's performance on a
regular grid as well as an irregular grid so as to
determine if the MLG's performance deteriorates with an
increase of irregularity in the grid space. Table 6.5
gives sums of mean index offsets for 24 executions
consisting of 3 series which use all combinations of flows
and processing attributes. Table 6.5a gives the attribute
(row) means for these executions. Each attribute mean is
calculated by summing the individual i and j components of
each row and then dividing each of these sums by 12 (3
series of 4 time steps each). A regular initial grid
configuration was constructed and used in these
executions.

T-3273 101

Table 6.5: Offset results for 24 program executions with
4 time steps per execution.
(Surrounding triangle search)
(Regular initial grid construction)

Table entries are the sums of i and j
mean offsets for each individual

execution. (4 timesteps/execution)

Flows and Nl=32 N2=32 N3=32
Attributes i j i j i j

Random
Centroid
Vertex
Avg. Coord.
Longest Bis.

Parabolic
Centroid
Vertex
Avg. Coord.
Longest Bis.

4.000 4.131
4.644 5.134
4.000 4.267
4.201 4.333

4.375 4.233
5.164 5.410
4.377 4.305
4.430 4.419

4.000 4.089
4.623 5.284
4.006 4.307
4.243 4.391

4.348 4.208
5.180 4.963
4.311 4.200
4.488 4.560

4.000 4.338
4.628 5.144
4.000 4.235
4.239 4.274

4.463 4.250
5.167 5.331
4.323 4.161
4.493 4.409

Column Totals 35.191 36.232 35.199 36.002 35.313 36.142
i Total - 105.703
i Mean - 1.101
j Total - 108.376
j Mean - 1.129

T-3273 102

Table 6.5a: Attribute Means from table 6.5

Table entries are the sums of i and j components
of each row of table 6.5, divided by 12 (4 timesteps per

series and a total of three series).

Flows and Attribute means std. dev.
Attributes i j i j

Random
Centroid
Vertex
Avg. Coord.
Side Bisector

1.000
1.157
1.001
1.057

1.046
1.296
1.067
1.083

.0

.0100

.0011

.0088

.290

.0975

.0127

.0477
Parabolic

Centroid
Vertex
Avg. Coord.
Side Bisector

1.098
1.292
1.084
1.117

1.057
1.308
1.055
1.115

.0980

.1309

.0699

.0737

.0309

.1120

.0231

.0342

In examining the attribute means given in table 6.5a
with the attribute means give in table 6.4a it can be seen
that the differences in the means is very insignificant.
Also when comparing standard deviations between attributes
using regular and irregular initial grids it is noted that
these standard deviations are very small.

As a sight conclusion from looking at these offset
means and standard deviations, it can be seen that the

T-3273 103

means of executions performed on regular initial grids do
not seem to differ from mean of executions performed on
irregular initial grids.

6.4 COST OF THE MLG SORT
In the above examination, we did not take into

consideration the cost of upkeep on the MLG. The sorting
routine which was described in earlier sections and
chapters is an order N algorithm (N being the number of
cells in the MLG), which is very cost efficient in the
attempt to eliminate unneeded computations while still
provide fast data access. Following is proof that the 2
dimensional MLG sort routine developed by J.P. Boris is of
order N (Boris,85).

Let us make the following definitions:

Define N - number of cells in the MLG.
^ii - number of MLG cell interchanges in all i directional vectors.

- number of MLG cell interchanges in all j directional vectors.
- number of MLG cell interchanges in

all k directional vectors.
MLG dimension in the i direction.

Dj MLG dimension in the j direction.
MLG dimension in the k direction

(D% = 1, 2-Dimensional model).

T-3273 104

Now

N ii = (D i - 1) X (Dj) x (Dk)
N i j = (Di) X (Dj - 1) X (Dk)
N ik = (Di) X (Dj) X (Dk - 1)

and for one iteration sweep through the MLG the total
number of cell interchanges, N^i, is:

Nti = Nii + Nij + Nik

and after simplification

Nti = (3 Di Dj Dk) - (Dj Dk)
- (Di Dk)
- (Di Dj)

= (3 N) - N ((1/Di) + (l/Dj) + (1/Dk)) (13)

Now let d = (1/Di) + (l/Dj) + (l/Dk)

SO

N ti = (3 N) - (d N)

where 1 < d < 3 ,

d -► 1 when D^ and Dj become large
and d -» 3 when Di and Dj -►I

As will be seen in the results of the next section.

T-3273 105

the number of sweep iterations is r e l a t i v e l y low
throughout the program execution except for the first one
or two time steps. This occurs because the initial sort of
the MLG may require much data movement across the grid in
order to find the proper residing place for the data. But
for the most part, sweep iterations for each timestep are
relatively low.

If we define N g£ to be the average sweep iteration
count for then the cost of the MLG sort subroutine is:

COST = N si ((3 N) - (d N))

And as can be seen, this is an order N sorting
algorithm.

6.5 SORT SWEEP ITERATION COUNTS
The number of sweeps which are made through the MLG

while sorting, plays an important role in the evaluation
of the MLG and the sorting techniques used on it. If large
sort sweep iteration counts are common throughout program
execution, the cost of maintaining the MLG becomes less
desirable. Fortunately, sort sweep iteration counts are
relatively low throughout program execution, with the
exception of a few initial timesteps.

The same program executions performed in section 6.2

T-3273 106

involving adjacent triangle searches produced data about
sort sweep iteration counts for each of the individual
executions. Table 6.6 summarizes the results of these
runs.

Table 6.6: Sort sweep iteration count results of 24
program executions with 4 timesteps per
execution.

Table entries are total execution sweep iteration
counts for each execution

attribute mean = (NI + N2 + N3)/l2

Flows and Attribute
Attributes Nl=32 N2=32 N3=32 Mean

Random
Centroid 32 32 37 8*417
Vertex 37 34 35 8.833
Avg. Coord. 32 34 35 8.417
Longest Bis. 39 37 51 10.538

Parabolic
Centroid 52 50 52 12.833
Vertex 48 47 46 11.750
Avg. Coord. 57 46 50 12.750
Longest Bis. 54 50 51 12.917

Column totals 351 330 357
Column means 10.969 10.313 11.156
Overall column total - 1038
Overall column mean - 10.813

The overall column mean from Table 6.6 is misleading.

T-3273 107

This mean is averaging large counts which are present in
the first one or two timesteps. Table 6.7 shows counts for
the first and second timesteps for the same executions in
Table 6.6 for only one series. As can be seen, the
averages for these two timesteps are well above the
overall mean count obtained in table 6.6, and in fact most
of the mean for the two timesteps given in table 6.7 is
contributed by the first timestep in all runs.

Table 6.7: Sort sweep iteration counts for 8 executions.
(timesteps t=0 and t=l)

Table entries are sweep iteration counts for each
indicated timestep

Flows and
Attributes t=0 t=l row mean

12.000
13.500
13.000
15.000

14.000
14.000
13.500
14.000

Column totals 158 60
Column means 19.750 7.500

Random
Centroid 19 5

. Vertex 20 7
Avg. Coord. 19 7
Longest Bis. 21 9

Parabolic
Centroid 20 8
Vertex 20 8
Avg. Coord. 19 8
Longest Bis. 20 8

As can be seen from tables 6.6 and 6.7, the numbers of

T-3273 108

sort sweep iterations are large for the first one or two
timesteps, but in as little as one timestep they decrease
drastically

Presented in appendix E.l and E. 2 are computer
generated results concerning program executions using
random and parabolic point motion for 8 timesteps. In
reference to appendix E.l and E.2, it can be seen that
after the first timestep for each of the flows, the sweep
iteration counts decrease dramatically, and in general,
are very well behaved. The parabolic data does present
local increases in iteration counts, but this is explained
by the build up of potential position changes in the
timesteps previous, until enough point movement causes
global point and data interchanges, thus increasing
iteration counts.

6.6 CENTROID AND AVERAGE COORDINATE ATTRIBUTES
Different processing attributes produce different

results when looking at average index offsets in searching
for triangles. This section of the results will examine
the four processing attributes of the study and show that
the centroid and average coordinate attributes are
superior to the remaining two.

Tables 6.8 and 6.9 give summaries of mean offsets for

T-3273 109

adjacent and surrounding triangle searches which were
given in tables 6.2 and 6.4a above.

Table 6.8: Mean attribute offsets for 24 program executions
(adjacent triangle search)

Flows and Attribute
Attributes means

Random
Centroid 1.572
Vertex 2.211
Avg. Coord. 1.568
Side Bisector 1.734

Parabolic
Centroid 1.619
Vertex 2.259
Avg. Coord. 1.591
Side Bisector 1.828

Table 6.9: Mean attribute offsets for 24 program executions
(surrounding triangle search)

Flows and Attribute means
Attributes i j

Random
Centroid 1.035 1.040
Vertex 1.173 1.265
Avg. Coord. 1.030 1.058
Side Bisector 1.102 1.090

Parabolic
Centroid 1.125 1.106
Vertex 1.325 1.300
Avg. Coord. 1.135 1.048
Side Bisector 1.145 1.111

T-3273 110

As can be seen by examining tables 6.8 and 6.9, the
mean offsets for the centroid and average coordinate
processing attributes are significantly lower than the
mean offsets for the vertex attribute and the longest
bisector attribute.

6.7 CPU REDUCTION USING PNTSRCHF
PNTSRCHF is a subroutine much like PNTSRCH, in that it

also searches for surrounding triangles in the point
space. The difference between the two subroutines is that
in PNTSRCHF when searching for adjacent triangles, calls
are not made to FINDADJ. Information about adjacent
triangles is stored rather than derived as in the case of
PNTSRCH. Therefore, three more arrays of dimension NUMTRI
x 3 are needed to store information about these adjacent
triangles. The time reduction accomplished by not relying
on FINDADJ to calculate adjacent triangles is very
apparent. Appendices E.3 and E .4 contain computer
generated data showing, among other things, CPU time
requirements for both PNTSRCHF (Analysis (stor)) and
PNTSRCH (Analysis (srch)). The magnitude of the times are
on the the order of 10-20 times greater for PNTSRCH than
they are for PNTSRCHF. This characteristic is evident
through all executions produced.

T-3273 111

What this is saying is that the time difference
between searching for adjacent triangles (in looking for
surrounding triangles) and having the adjacent triangles
already available to us is large in magnitude. However,
the price we must pay in order to save this time is to
require more main memory storage. Three additional arrays
at NUMTRI elements per array requires a great deal of
memory when the number of triangles in the space
increases.

6.8 CONCLUSIONS
This study has conducted many different tests

concerning the performance of a newly developed data
structure. The MLG, which was originally developed for
space point motion models has been extended to a 2
dimensional figure model for use in modeling transient
hydrodynamic fluid flows.

Different types of triangle attributes have been
tested in order to find one or two which will partition
data into minimal independent data sets, therefore
enabling the use of multiple processing techniques.

Two triangle attributes were found to partition data
quite compactly with respect to the measure of index
offsets. Therefore, the incorporation of multi-processing

T-3273 112

techniques in the future is very possible.
As for the upkeep of the MLG, an efficient order N

sort algorithm was introduced and tested. It was found to
be relatively easy to adjust after point motion in the
space had violated monotonicity. Also, as time progressed
through the program executions, the MLG structure adapted
itself to the data it contained to the extent that large
numbers of sort iterations were not needed to keep the
MLG functional.

Finally, the performance of the Mi,G under different
initialization schemes was consistent, implying that
flexibility in the MLG is evident.

Overall, the MLG performance studied and recorded in
this report, suggests that this data structure will
eliminate many data management problems which presently
plague highly transient hydrodynamic simulation models

6.9 FUTURE DIRECTIONS
This study has established the MLG as a very good

candidate for use as a data structure in highly transient
hydrodynamic simulation problems. Some areas were, however
not investigated and deserve to be mentioned. This study
did not incorporate grid reconstruction after point motion
corruption of grid connections. This is one area that is

T-3273 113

strongly required in order to maintain a reliable
mathematical model.

One more area worth expanding upon is the process of
establishing a reliable maximum index offset requirement
for data access. This study could only produce mean
offsets to be used in place of a maximum. When the
characteristics of the MLG become better known then the
ability to nail down a concrete maximum index offset will
follow. And once this absolute maximum can be established,
data partitioning in order to utilize multi-processing
computers will be obtained.

Optimization of search procedures as noted in section
5.3.3.2 is one more area where optimization will increase
MLG performance.

Finally, the extension of the MLG to a three
dimensional model must be accomplished in order to apply
it to real life simulation problems.

T-3273 114

REFERENCES CITED
Bell J.L., 1982, "Report on interview with Marty

Fritte about Free Lagrangian models", personal interview -
no publication, PP. 1-16.

Bell J.L., Patterson G.S., 1985, "Data Organization in
Large Numerical Computations", to be published, PP. 11-12.

Boris J.P., 1985, "A Vectorized 'Nearest Neighbor'
Algorithm of Order N using a Monotonie Logical Grid", NRL
Memorandum Report 5 5 7 0, PP. 9-27, Laboratory for
Computational Physics, Naval Research Laboratory,
Washington D.C. .

Fritts M.J., Boris J.P., 1979, "The Lagrangian
Solution of Transient Problems in Hydrodynamics using a
Triangular Mesh", Journal of Computationa1 Physics, PP.
173-215, Naval Research Laboratory, Washington D.C. .

Lambrakos S.G, Boris J.P., 1985, "Geometric Properties
of the Monotonie Logical Grid Algorithm for Near Neighbor
Calculations", technical

T-3273 115

APPENDIX A
This appendix contains computer generated plots of

initial grid configurations constructed by the program
MLG. There are two main types of possible initial grids,
regular and irregular. Each of these types are broken down
into two subgroups, symmetrical and slightly deviated. The
plots consist of only triangles, however implicitly these
triangles are created from the points of the space.
Therefore a point exists (but is not plotted) at each of
the triangle vertices.

Each of the four possible initial grids are presented
in the following subsections:

SUBSECTION # INITIAL GRID CONFIGURATION

A.4

A . 1
A.2
A.3

Regular symmetric
Regular deviated
Irregular symmetric
Irregular deviated

T-3273 116

SUBSECTION A.l - REGULAR SYMMETRIC
F ol lo wing is a regular symmetric initial grid

containing 196 points and 338 triangles.

OBS. S P A C E
A v g . i o f f s e t 1.010 A v g) o f f s e t 1.056

200 00 *00.00 600 00 800.00 1200.00 1400 00 1800 00

R a n d o m f l o w I n i t . G r i d S p r e a d 100

T-3273 117

SUBSECTION A.2 - REGULAR DEVIATED
F ollowi ng is a regular deviated initial grid

containing 196 points and 338 triangles.

OBS. S P A C E 0t
A v g . o f f s e t 0.000

200.00 ♦oooo 1000 00 1200 00 1*00 00 1800 00
R a n d o m F l o w / n i l . d e v . 25 I n i t . G r i d S p r e a d 100

T-3273 118

SUBSECTION A.3 - IRREGULAR SYMMETRIC
Following is an irregular symmetric initial grid

containing 216 points and 390 triangles.

OBS. S P A C E 0t
A v g . o j f a e t 0.000

1200 00200 00 *00 00 600 00 800 00 1000 00 1*00 00 180000

J t a n d o m F l o w V-nil. G r i d S p r e a d 100

T-3273 119

SUBSECTION A.4 - IRREGULAR DEVIATED
Following is an irregular deviated initial grid

containing 200 points and 358 triangles.

OBS. S P A C E 0t
A v g . o f f s e t 0.000

100 *00 00 1200 00 1400 00 1600 00 1800.00

J t a n d o m F l o w I n i t d e v . <15 I n i t . G r i d S p r e a d 100

T-3273 120

APPENDIX B
Appendix 3 contains computer generated plots which

show point (and triangle) motion whithin the space using
three different flow equations, Modified Uniform Strain
flow. Modified Parabolic flow in x and Random flow. Plots
consist of only triangles, but implicitly points are
present (but not plotted) at all triangle vertices.

All flows are plotted over three timesteps not
including time t=0 (time t= 0 is the initial grid stage).
The time increment for all flows is 5 units.

The following subsections contain plots of the
individual flows:

SUBSECTION # FLOW
B.1-B.4 Uniform Strain
B.5-B.8 Parabolic in x
B.9-B.12 Random

T-3273 121

SUBSECTION B.1-B.4 - UNIFORM STRAIN FLOW
Following are computer generated plots for Uniform

Strain flow used in MLG. Four plots are present including
time t = 0. There are 196 triangles and 111 points present
in each plot frame.

OBS. S P A C E 0t
A v g . o f f s e t 0.000

160.00 560 00 640 00 720 00
U. S. F l o w I n i t G r i d S p r e a d 100

T-3273 122

OBS. S P A C E
A v g . o f f s e t 0.000

A

•a

"E
u 400.00 800 00 1200.00 1400 00

X
U S f l o w I n i t d e v . I n i t . G r i d S p r e a d 100

T-3273
123

OBS. S P A C E t =
A v g o j j s t e t 0.000

gXk
X

i
1000 00200 00 400.00 600 00 800 00 1200 00 1600 00 1800 00

X
U.S. F l o w I n i t . d e v I n i t . G r i d S p r e a d 100

T-3273 124

OBS. S P A C E t =

A v g o j J s e t 0.000

i

%

200.00 600 00 BOO 00 1000 00 1200 00 1400.00 1800.00
X

U S . F l o w I n i t d e v . I n i t G r i d S p r e a d 100

T-3273 125

SUBSECTION B.5-B.8 - PARABOLIC FLOW
Following are computer generated plots for Parabolic

flow used in MLG. Four plots are present including time
t=0. There are 190 triangles and 108 points present in
each plot frame.

OBS. S P A CE 0t
A v g . o f f s e t 0.000

160 00100 60.00 240 00 320 00 400.00 480 00 640 00

P a r a b F l o w I n i t . G r i d S p r e a d 100

T-3273 126

OBS. S P A C E t =
A v g . o f f s e t 0.000

i

•a

720.00100 180 00 *80.00
X

Parab Plow I n i t de v . I n i t G r i d S p r e a d 100

T-3273 127

OBS. S P A C E t = 2
A v g o f f b c t 0 000

800.00600 00

J m t G r i d S p r e a d 100P a r a b F l o w I n i t d e v

T-3273 128

OBS. S P AC E t =
A v g o f f s e t 0 000

"ti
e

300 00 700.00
X

P a r a b F l o w I n i t d e v I n i t . G r i d S p r e a d 100

T-3273 129

SUBSECTION B.9-B.12 - RANDOM FLOW
Following are computer generated plots for Random flow

used in MLG. Four plots are present including time t=0.
There are 200 triangles and 113 points present in each
plot frame.

OBS. S P A C E 0t
A v g o j j s e t 0.000

320 00 400 00 480 00 960 0080.00 160 00 640 00

/nil dev. I n i t G r i d S p r e a d 100

T-3273 130

OBS. S P A CE

80.00 160.00 240.00 32000 400 00 560.000.00 480 00 640.00

J t a n d o m F l o w I n i t . G r i d S p r e a d 100I n i t d e v

T-3273 131

OBS. S P A C E
.̂ Ivq. o f f s e t 0.000

320 00 400.00

R a n d o m . F l o w J n i t d e v I n i t . Gr x d S p r e a d 100

T-3273 132

OBS. S P A CE t =
A v g o f f s e t 0 000

160 00

R a n d o m F l o w I n i t G r i d S p r e a d 100

T-3273 133

APPENDIX C
This appendix contains pseudo-code for three

subroutines of the driver program MLG. The appendix is
divided into three subsections which are:

SUBSECTION # SUBROUTINE PSEUDO-CODE
C.l MLGSORT
C .2 ADJSRCH
C.3 FINDADJ

T-3273 134

SUBSECTION C.l - PSEUDO-CODE FOR MLGSORT
Following is the pseudo-code for the subroutine

MLGSORT which is called upon by the driver program MLG
each timestep in order to sort the MLG into MLO. The
pseudo-code consists of three sections corresponding to
the three directional vector sweeps that must be
performed.

Program MLGSORT

——— section 1 ——
 this section is done for all models being used ---

 loop through all i directional vectors ---
k = 1
do while k ^ MLG dimension in k

j = 1
do while j ^ MLG dimension in j

1 = 1
do while 1 ^ 2

i = 1
do while i ^ MLG (dimension in i) - 1

if (x coordinates of MLG array
elements at indexes (i,j,k) &

(i+l,j,k) are out of order) then
switch MLG cell contents

3273 135

end if
i = i + 1

end do (i)
1 = 1 + 2

end do (1)
j = j + 1

end do (j)
k = k + 1

end do (k)
— check to see if any swaps were made ---

if (model is one dimensional and no MLG cell switches
are made) then
done

else if (model is one dimensional and at least one
switch was made) then
go back to section 1, k loop
and re-execute looping

end if

— section 2 ---
— this section is done if the model is at least 2-D ---

— loop through all j directional vectors ---
k = 1
do while k ^ MLG dimension in k

i = 1

T-3273 136

do while i ^ MLG dimension in i
1 = 1
do while 1 ^ 2

j = 1
do while j ^ MLG (dimension in j) - 1

if (y coordinates of MLG array
elements at indexes (i,j,k)

&
(i,j+1,k) are out of order)

then
switch MLG cell contents

end if
j = j + 1

end do (j)
1 = 1 + 2

end do (1)
i = i + 1

end do (i)
k = k + 1

end do (k)
- check to see any swaps were made ---

if (model is two dimensional and no MLG cell switches
were made) then
done

else if (model is two dimensional and at least one
switch was made) then

T-3273 137

go back to section 1, k loop and re­
execute looping

end if

section 3 ---
this section is reached only if model is 3-d ---

loop through all k directional vectors ---
i = 1
do while i ^ MLG dimension in i

j = 1
do while j ^ MLG dimension in j

1 = 1
do while 1 ^ 2

k = 1
do while k ^ MLG (dimension in k) - 1

if (z coordinates of MLG array
elements at indexes (i,j,k) &

(i,j,k+l) are out of order)
then

switch MLG cell contents
end if
k = k + 1

end do (k)
1 = 1 + 2

end do (1)

T-3273 138

j = j + 1
end do (j)
i = i + 1

end do (i)
 check to see if any swaps were made ---
if (model is three dimensional and no MLG cell

switches were made) then
done

else
go back to section 1, k loop and re-execute

looping
end if
Program end (MLGSORT)

T-3273 139

SUBSECTION C.2 - PSEUDO-CODE FOR ADJSRCH
The following pseudo-code represents the subroutine

ADJSRCH which is called upon by the driver program MLG.
This subroutine searches the MLG for adjacent triangles.
ADJSRCH steps through each triangle of the MLG, all the
while determining the adjacent triangles for each of the
triangles it encounters. ADJSRCH calls upon the subroutine
FINDADJ to determine if triangles which it finds are
truely adjacent to the triangle that it is presently
working on. When hidden interior triangles are
encountered, the MLG inedex of the triangle adjacent to
the hidden interior triangle is recorded (in FINDADJ) and
then reprocessed in section 2.

Program ADJSRCH

——— section 1 ——
 looping through MLG in a sequential pattern ---
 (all j directional vectors) ---

 j is the inner most loop therefore producing ---
 update sequences sweeping through j ---
-— directional vectors ---

TRICOUNT = 0
k = 1
do while k ^ MLG dimension in k

3273 140

1 = 1

do while i ^ MLG dimension in i
j = 1
do while j ^ MLG dimension in j

TRICOUNT = TRI COUNT + 1
 don't process "ghost" triangles ---

if (TRICOUNT î NUMTRI) then
 find adjacent triangles to triangle

ALPHA(i , j , k) = Tm using FINDADJ.
FINDADJ will keep track of corner
triangles for later reprocessing
(section 2) ---

call FINDADJ (Tm)
end if
j - j + 1

end do (j)
i = i + 1

end do (i)
j = j + 1

end do (j)
- section 2 ---
- Reprocess hidden interior triangles. All hidden
- triangles and their MLG indices were recorded
- previously in FINDADJ.

do while (there are still corner triangles to be
reprocessed)

T-3273 141

 find the adjacent triangle to the current
 corner triangle. This will be a hidden
 interior triangle

call FINDADJ (Tm)
 now reprocess the triangle using 3 as the
 number of adjacent triangles to look foe

call FINDADJ (Tm)
end do (more corner triangles)

Program end (ADJSRCH)

T-3273 142

SUBSECTION C.3 - PSEUDO-CODE FOR FINDADJ
This is the final subsection of appendix C. It

contains the pseudo-code for FINDADJ. This subroutine
calculates the number of adjacent triangles to search for
and records the MLG indices for corner triangles to be
used by both ADJSRCH and PNTSRCH in reprocessing hidden
interior triangles.

Program FINDADJ
NUMBER_CORNERS = 0

 this series of conditionals involve determining ---
 if the general triangle is corner, border or ---
 interior. Summations are used (not given here) ---
 to determine trh triangle position — —

if (triangle Tm is an interior triangle) then
NUMBER_ADJ = 3

else if (triangle Tm is a border triangle) then
NUMBER_ADJ = 2

else
 triangle must be a corner triangle ---

NUMBER_ADJ = 1
 record MLG indices for future processing — —

store MLG indices of triangle
NUMBER_CORNERS = NUMBER_CORNERS + 1

end if

3273 143

end if

— reset NUMBER_ADJ to 3 if we are reprocessing ---
— hidden interior triangles ---

if (triangle Tm is a hidden interior triangle) then
NUMBER_ADJ = 3

end if
— start with index offset of one for the search -—

TOPROW = min ((j index of Tm) + 1» MLG dim. in j)
BOTROW = max ((j index of Tm) - l, l)
RIGCOL = min ((i index of Tm) + 1, MLG dim. in i)
LEFCOL = max ((i index of Tm) - l, 1)
FOUND_COUNT = 0

— start searching the offset for adjacent triangles ---
do while FOUND_COUNT i NUMBER_ADJ

ROW = BOTROW
do while ROW î TOPROW

COL « LEFCOL
do while COL ^ RIGCOL

call ADJCONF
if (these triangles are adjacent)

then
FOUND_COUNT = FOUND_COUNT + 1
store triangle I.D. of triangle
found

T-3273 144

end if
COL = COL + 1

end do (COL)
ROW = ROW + 1

end do (ROW)
— increase the offset by one for the next offset search

(if the next offset is needed) ----
TOPROW = min (TOPROW + 1 , MLG dimension in j)
BOTROW = max (BOTROW - 1 , 1)
RIGCOL = min (RIGCOL + 1 , MLG dimension i n i)
LEFCOL = max (LEFCOL - 1 , 1)

end do (FOUND_COUNT ^ NUMBER_ADJ)
Program end (FINDADJ)

T-3273 145

APPENDIX D

This appendix is subdivided into 5 subsections.
Presented in each subsection is the FORTRAN code for the
various subroutines developed in chapter 5.

All code in this study was written on a VAX 3600
machine. Coding was carefully done so as to make it as
portable as possible. Complete portability of any program,
however, is harder to ache i v e as the complexity of
algorithms increase. Segments of code which are not
portable will be noted if they occur. Also, most of the
code for compiling statistics on performance have been
edited out of these subroutines in order to reduce the
size of the code printed out. Most of the code which
compiles the results is simple counting and summing code,
while timing code is VAX dependent.

The subsections arc as follows:

SUBSECTION # SUBROUTINE
D.l MLGSORT
D.2 ADJSRCH
D.3 FINDADJ
D.4 ADJCONF
D.5 PNTSRCH

T-3273 146

SUBSECTION D.l - CODE FOR MLGSORT
Following is the code for the subroutine MLGSORT. The

code has incorporated with it the capability of expansion
to three dimensions, although the models being used in
this study only deal with two dimensions. As can be seen,
all looping is coded to handle sorting in all three
dimensions. When the expansion of model dimensionality is
completed, this subroutine will be readily executably as
is.

subroutine MLGSORT
* Sorting of resultant movements from previous movement
* subroutines to obtain monotonie logical order.
* This sort incorporates a RED-BLACK algorithm in order
* to vectorize the code. This subroutine is used
* no matter which attribute the user chooses to
* characterize the triangle with.
* In MLGSORT, the grid is "sorted" first in the x
* direction,
* secondly in the y direction, and then thirdly in the z
* direction. Each "sort" consists of only interchanging
* consecutive array elements (not a complete sort). After
* each full sweep through all directions, it is checked to
* see if a swap was made. If a swap occured, the sweep
* must be re-executed.
* Determination of number of exchanges to be made

NUMEXCHG=NGRIDY*NGRIDZ*(NGRIDX-1)
: +NGRI DX*NGRIDY* (NGRIDZ-1)+NGRIDX*NGRIDZ* (NGRIDY-1)

158 FLAG=0
*==== SECTION 1 ==== =

T-3273 147

Sweep through all vectors in first direction
This applies to 1,2, or 3 dimensional models

do 210 k=l,NGRIDZ
do 200 j=l,NGRIDY

do 180,1=1,2
do 175 i=l,NGRIDX-1,2

* numerical determination if cells are out of order.
* FLAG is increased by one every time MLG cells are
* in order.

DIFF=ALPHA(i+1,j,k ,4)-ALPHA(i,j,k,4)
W=sign(0.5,DIFF) + 0.5
FLAG=FLAG+W
COMP=l-W

* swap MLG cell contents if they are out of order
do 160 n=l,NUMPAR

TEMP1=W*ALPHA(i,j,k,n)
TEMP2=COMP*ALPHA(i,j,k,n)
ALPHA(i,j,k ,n)=TEMP1+COMP*ALPHA(i+1,j,k,n)
ALPHA(i+1,j,k ,n)=W*ALPHA(i+1,j,k ,n)+TEMP2

-160 continue
175 continue
180 continue
200 continue
210 continue
* If it is a one dimensional model, make sure grid is
* sorted. If the grid is not sorted, repeat the sweep,
* else
* return to calling program. If it is a two dimensional
* model, sort in next direction, (direction of NGRIDY)

T-3273 148

if(NDIM.eq.l.and.FLAG. eq.NUMEXCHG) then
return

else
if (NDIM.eq.l.and.FLAG.l t.NUMEXCHG) then

go to 158
end if

end i f

*==== SECTION 2 == ===
* If model is 2-D then sweep through
* all vectors of the second dimension

do 410 k=l,NGRIDZ
do 400 i=l,NGRIDX

do 360 1=1,2
do 350 j=l,NGRIDY-1, 2

* numerical determination if cells are out of order.
* FLAG is increased by one every time MLG cells are
* in order.

DIFF=ALPHA (i , j+1, k , 5) -ALPHA (i , j,k,5)
W= sign(0.5, DIFF) + 0.5
FLAG=FLAG+W
C0MP=1-W
S WAP CNT (TI ME) = S WAP CNT (TI ME) + COMP

* swap MLG cell contents if they are out of order
do 345 n=l,NUMPAR

TEMP1=W*ALPHA(i,j,k ,n)
TEMP2=COMP*ALPHA(i,j,k,n)
ALPHA(i,j,k ,n)=TEMP1+COMP*ALPHA(i,j+l,k,n)
ALPHA(i,j+1,k ,n)=W*ALPHA(i,j+1,k,n)+TEMP2

345 continue
350 continue
360 continue
400 continue

T-3273 149

410 continue
* If it is a two dimensional model, make sure grid is
* sorted. If the grid is not sorted, repeat the sweep,
* else
* return to calling program. If it is a three dimensional
* model, sort in next direction.

if (NDIM.eq.2.and.FLAG.eq.NUMEXCHG) then
return

else
if(NDIM.eq.2.and.FLAG. 1 t.NUMEXCHG) then

go to 158
end i f

end i f

*==== SECTION 3 =====
* If model is 3-D then sweep through
* all vectors in the third direction

do 440 i=l,NGRIDX
do 430 j=l,NGRIDY

do 425 1=1,2
do 420 k=l,NGRIDZ-1,2

* numerical determination if cells are out of order.
* FLAG is increased by one every time MLG cells are
* in order.

DIFF=ALPHA (i , j , k+1, 6) -ALPHA (i, j,k,6)
W=sign(0.5, DIFF) + 0.5
FLAG=FLAG+W
C0MP=1-W
SWAP CNT(TIME)= S WAP CNT(TIME)+ COMP

* swap MLG cell contents if they are out of order
do 415 n=l,NUMPAR

TEMP 1=W*ALPHA(i , j , k , n)
TEMP2=COMP*ALPHA(i,j,k,n)
ALPHA(i,j,k ,n)=TEMP1+COMP*ALPHA(i,j,k+l,n)

T-3273 150

ALPHA(i , j , k+1, n) =VJ*ALPHA(i , j , k+1, n)+TEMP2
415 continue
420 continue
425 continue
430 continue
440 continue

* if a swap was made in either i, j, or k dir. then the
* grid must be re-checked, (i.e. loop to the top of the
* sort process)

if (FLAG. 1 t.NUMEXCHG) then
go to 158

end if
return
end

T-3273 151

SUBSECTION D.2 - CODE FOR ADJSRCH
The following code is the subroutine ADJSRCH. The code

will run strictly with two dimensional models. The
extension to three dimensions will cause much added code
and code complexity.

subroutine ADJSRCH
* This subroutine searches the MLG to find adjacent
* triangles for all triangles of the space.

logical NUMFLG,CORFLG
integer CURLIST(3,4)
NUMFLG=.true. 1 calculate # adj tri's
CORFLG=.true. icalculate all corner tri's
TRICNT=0
do 300 k=l,NGRIDZ

do 200 i=l,NGRIDX
do 100 j=l,NGRIDY

T RICNT=T RICNT+1
if (TRI CNT.le.NUMTRI) then

* call to F I NAD J in order to find adjacent triangles of
* the triangle at i, j and k indices of the MLG

call
: FI NDADJ (i, j,k,NADJ, CURLIST, NUMFLG, CORFLG)

end if
100 continue
200 continue
300 continue

T-3273 152

* === section 2 ===
* reprocess hidden interior triangles

do 400 1=1,NUMC0R
i=C0RNER(1,2) 1 corner is a common block array
j=C0RNER(1,3) icontaining corner triangle info.
k=C0RNER(l,4) ICORNER is filled in FINDADJ.
NUMFLG=.false.
CORFLG=.false.
NADJ=1

* find the adjacent triangle to a corner triangle
call FINDADJ (i, j, k, NADJ, CURLIST, NUMFLG, CORFLG)
i=CURLIST(NADJ,2)
j=CURLIST(NADJ,3)
k=CURLIST(NADJ,4)
NUMFLG=.false.
CORFLG=. f al se. i# of adj. set to 3 for hidden
NADJ=3 1 interior triangles.

* find all three adjacent triangles to the hidden interior
* triangle

call FINDADJ (i, j,k, NADJ, CURL I ST, NUMFLG, CORFLG)
400 continue

return
end

T-3273 153

SUBSECTION D.3 - CODE FOR FINDADJ
The code for FINDADJ follows and is strictly a two

dimensional code. In order to upgrade this subroutine to
three dimensions, a good deal of work would be required.
However, in two dimensional models this code is very
efficient in determining triangle position with respect to
the grid boundaries and in actually obtaining the triangle
l.D.'s of the adjacent triangles.

subroutine FINDADJ(I, J, K, N, CUR, NFLG, CFLG)

* This subroutine finds all adjacent tri's to the current
* triangle. The first step is to calculate the number of
* adjacent triangles to look for and then to look until
* the number of triangles found equals the analytical
* number calculated.

logical L0G1,L0G2,L0G3,YORN,NFLG,CFLG
integer CUR(3,4), ICNT,BCNT, CCNT, LE FT COL
integer BOTROW,RIGHTCOL,TOPROW

* summation of point position counters if NFLG in calling-
* program is set to true then the number of ad j triangles
* will be calculated. If CFLG is set to true in the
* calling program the corner triangles will be
* accumulated.

if(NFLG) then icalculate the number of adj tri
ICNT=0
BCNT=0
CCNT=0
do 100 1=1,3

I CNT = I CNT+PTSTAT (ALPHA(I, J , K, 1), 1) isum int.
BCNT=BCNT+PTSTAT(ALPHA(I,J ,K,1),2) ibor. &

T-3273 154

CCNT=CCNT+PTSTAT(ALPHA(I,J ,K,1),3) Icor. pnts.
100 continue
* determination of triangle position (border, interior, or
* corner)

L0G1=(ICNT.eq.3.or.(ICNT.eq.2.and.BCNT.eq.1))
L0G2=(CCNT.eq.1.and.BCNT.eq.2)
LOG3=(BCNT.eq.2.and.ICNT.eq.1)
if(LOGl) then 1 interior tri
N=3
else
if(LOG2) then 1 corner tri

N=1
* check to see if current triangle is in the list of
* corner triangles.

if (CFLG) then
NM=0
do 200 l = l,NUMCv,x

if (inc(ALPHMl, J,K,NUMPAR)) .eq.CORNER(l,l))
: NM= 1

200 continue
i f (NH.eq.O) then icor. tri not in list

NUMCOR=NUMCOR+1
CORNE R (NUMCOR,1) = i nt(ALPHA(I,J,K,NUMPAR))
CORNER(NUMCOR,2)=I
CORNER(NUMCOR,3)=J
CORNER(NUMCOR,4) = K

end if
end if

else
N-2 1 border triangle

end if 1 (end of corner tri) 1
end if 1 (end of interior tri) 1

T-3273 155

end if 1 (end of calculation of # adj tri) i

* initialize the first index offset
TOP ROVJ= mi n0(J+1, NGRIDY)
BOTROW=maxO(J-1,1)
LE FT COL= ma x 0(1-1,1)
RIGHTCOL=minO(1+1,NGRIDX)
do 500 1 = 1, maxO (NGRIDX-1,NGRIDY-1,NGRI DZ-1)

*** searching the offset for adjacent triangles
do 400 COL=LEFTCOL,RIGHTCOL

do 300 ROW=BOTROW,TOPROW
BOUND=ALPHA(COL,ROW,K,NUMPAR)
if((ROW.ne.J.or.COL.ne.I).and.

: BOUND, le.NUMTRI) then
call ADJCONF (I, J, K, YORN) ‘confirm sub.
if(YORN) then
BORDCNT=BORDCNT+1
CUR(BORDCNT,1)=int(ALPHA(COL,ROW,K,NUMPAR))
CUR(BORDCNT,2)=COL
CUR(BORDCNT,3)=ROW
CUR(BORDCNT,4)=K

end i f
end if

300 continue
400 continue
*** check to see if search should continue

if(BORDCNT.eq.N) then
return

end if
* * * adjust search boundaries for next offset

T-3273 156

TOP ROW= mi nO(TOPROW+1,NGRIDY)
BOTROW=maxO(BOTROW-1,1)
LEFTCOL=maxO(LEFTCOL-1,1)
RIGHTCOL=minO(RIGHTCOL+1,NGRIDX)

500 continue
end

NOTE : The matrix PTSTAT is defined to be a BYTE
integer data type which is an 8 bit representation. This
variable declaration is VAX dependent and is not standard
to fortran. '

T-3273 157

SUBSECTION D.4 - CODE FOR ADJCONF
This code simply confirms if two triangles are

adjacent to one another. The MLG indices corresponding to
the triangle being tested are passed as arguments while
the indicies of the general triangle are passed in a
common block. The logical variable YORN is set to true if
the two triangle are adjacent or set to false otherwise.

subroutine ADJCONF(i, j,k,YORN)
* This is a subroutine to determine if two triangles are
* adjacent. The MLG indices of the general triangle are
* passed using a common block while the indices of the
* triangle being tested are passed as aguments.

logical YORN
integer i,j,k

* looping through vertices of the triangle to find the
* first pair of vertices that match

YORN=.false,
do 1000 1=1,3

do 900 m=l,3
if (ALPHA (COL, ROW, k,m).eq.ALPHA(i,j,k,l)) then

* a pair of vertices were found so look for one more in
* the vertices that remain.

do 300 n=1+1,3
do 700 nl=l,3

if(ALPHA(COL,ROW,k ,nl)
: .eq. ALPHA(i,j,k,n)) then

YORN=.true. 1 YORN is true
return 1 if adjacent

T-3273 158

700
800

900
1000

end if
continue

continue
end if

continue
continue
return
end

T-3273 159

SUBSECTION D.5 - CODE FOR PNTSRCH
The following code finds all triangles surrounding a

given point.The code is separated into 2 sections. Section
1 processes information in the normal fashion while
section 2 reprocesses hidden interior triangles and the
points which are its vertices. The coding for section 2
will not be given since it resembles the code of section
1. The important issue is the code which determines all
surrounding triangles.

subroutine PNTSRCH
* This subroutine determines all triangles which surround
* the points in the space. This subroutine is comprised of
* two parts. The first part processes all points in the
* space in the same manner. The second part processes all
* points that are contained in hidden interior triangles.
* A hidden interior triangle is a triangle which is
* adjacent to a corner triangle and which is classified as
* a border triangle when in fact it is an interior
-* triangle with three adjacent triangles.

integer CURLIST (3,4), POINT, TRI CNT, ORIGID,CURTRI
integer TRI ID,SUM,TOPROW,BOTROW,LEFTCOL, RIGHTCOL
integer USEDLIST(50)
logical NUMFLG,CORFLG

*** zeroing of point processed flag
do 100 i=l,NUMPTS

PT(i,4)=0
100 continue

T-3273 160

* SECTION 1
*** start of search loop

NUMCOR=0
C0RFLG=.true.
NUMFLG=.true.
TRICNT=0

icalculate # adj tri's
iand corner tri's in this
isection

* looping through the MLG indices
do 2200 k=l,NGRIDZ

do 2100 i=l,NGRIDX
do 2000 j=l,NGRIDY

TRICNT=TRICNT+1
i f (TRI CNT. 1 e.NUMTRI) then

ORIGID= int(ALPHA(i, j,k ,NUMPAR))
do 1900 1=1,3
POINT = int(ALPHA(i,j,k ,1))
if (PT(POINT,4).eq.O) then iPOINT not
PT(P0INT,4)=1.0 iprocessed yet
NUMUSED=0

*** diff. process is to be done if POINT is a border
- *** point. Must make sure to enter a border point by a
*** border or corner triangle triangle.

if(PTSTAT(POINT,2).eg.1) then
SUM=0
do 400 mn=l, 3

if(SUM.It.2) then
*** set initial expansion borders

TOPR0W= mi nO(j+1,NGRIDY)
B OT ROW= ma x 0(j-1,1)
LEFTCOL= maxO(i-1,1)
RIGHTCOL=minO(i+1,NGRIDX)

T-3273 161

*** searching the expansion for first border
*** triangles

do 900 mm=l,
: maxO (NGRI DX-1, NGRI DY-1,NGRI DZ-1)

do 800 COL=LEFTCOL,RIGHTCOL
do 700 RO W= B OT ROW, T OP ROW

BOUND=ALPHA (COL, ROW, k , NUMPAR)
if((ROW.ne.j.or.COL.ne.i).and.

: BOUND, le.NUMTRI) then
do 600 m=l, 3

if(TRI(ALPHA(COL,ROW,k,
: NUMPAR),m).eq.POINT)
: then

* sum up PTSTAT values for triangle vertices to determine
* triangle type

SUM=0
do 500 mn= 1, 3

SUM=SUM+
: PTSTAT(ALPHA(COL,
: ROW,k,mn),2)

500 continue
i f(SUM.eq.2) then

IFIND=COL
JFIND=ROW
KFIND=k
CURT RI = i nt(ALPHA(COL,

: ROW, k, NUMPAR))
goto 10

end if i(border tri)
end if I (same POINT)

600 continue
end if 1(not ORIGID tri)

T-3273 162

700 continue 1(1oop on ROW)
800 continue !(loop on COL)
*** increase expansion if no border triangle found

TOPR0W=mi nO(TOPROW+1,NGRIDY)
BOTROW=maxO(BOTROW-1,1)
LEFTCOL=max0(LEFTCOL-1,1)
RIGHTCOL=minO(RIGHTCOL+1,NGRIDX)

900 continue !(1oop on expansions)
else loriginating triangle is bord

IFIND= i
JFIND= j
KFIND=k
CURTRI = ORIGID

end i f
else IPOINT is not border point

IFIND= i
JFIND=j
KFIND=k
CURTRI=ORIGID

end if I(end POINT id. .bord,inter*)
* initialize the current triangle list
10 do 1100 11=1,3

do 1000 mm=1,4
CURLIST(11,mm)=0

1000 continue
1100 continue

* find all adjacent triangles to the current triangle
call FINDADJ (IFIND,JFIND,KFIND,

: NADJ,CURLIST, NUMFLG,CORFLG)
* illiminate any adjacent tri.'s that are in USEDLIST

do 1400 11=1,3

T-3273 163

1200
1300
1400
* find
* if no

- 1800

1900

2000
2100

do 1300 mm=l,NUMUSED
if(CURLIST(11,1).eq.

USEDLIST(mm)) then
do 1200 nn=l,4

CURLIST(11,nn)=0
continue

end i f
continue

continue
triangle with side in "common" with CURTRI
triangles are found then search is complete

do 1800 11=1,NADJ
TRIID=CURLIST(11,1)
if (TRI I D.ne.O) then

if(TRI(TRIID, mm). eq.POINT) then
IFIND=CURLIST(11,2)
JFIND=CURLIST(11,3)
KFIND=CURLIST(11,4)
USEDLIST(NUMUSED+1)=CURTRI
CURTRI=TRIID
NUMUSED=NUMUSED+1
goto 10

end if
end if

continue
end if !(end processing POINT)
continue I (end pro. points in ORIGID tri)

end if !(end processing tri's in MLG)
continue i(end j looping)

continue l(end i looping)
2200 continue !(end k looping)

T-3273 164

*=== SECTION 2 ===
* code not to be given
*= = = = = = = =: = = =: = = = = = =

NOTE: Section 2 code resembles the code of the first
section except for the fact that a different subset of the
MLG triangles are being processed, the hidden interior
triangles.

T-3273 165

APPENDIX E
In this appendix computer generated output for 4

executions of MLG.for are given. They are divided into 4
subsections and are as follows:

SUBSECTION DATA
E.l Random flow data
E.2 Parabolic flow data
E .3 CPU time data
E.4 CPU time data

T-3273 166

SUBSECTION E.l
Computer generated data for Parabolic Flow over 8

timesteps is given on the following page. Data includes
swap iteration counts for the sorting algorithm, maximum
index offsets, mean index offsets and variances about
these means.

T-3273 167

> 1 lOTN © œ i c «new o m © m w © V o o©f> fN o o o to© OOvna» o o m © © w o o OOer* o o m m •*© o o

r -1 ir>m O' OWCD m m w © v > © ODO WO o c
O'*» o o o o o w m o o

r> o o m o r-m o o OO
CDIf) O o •^N «*o OO

© « m m mco o — m r*»mo o m o w o O © o oo'*) o o o o f-m mr- o om o w o o m o o o o o©m o o o o

m i mm eec P»W® mmw o m o ©CD CD W o ow o o o ©w m w o oo o m o m w o o o o©w o o ##o o o

w i m m © o o © m w w m w o m o o oo m m © o o o o in> o oo o m o w ® o o o o©m o o •^o ##o o o

m i m m > o m © m w w m w o m o 0-4 m w o oO'*) o o o o w © o oo o o o o o
O'm o o #40 #40 o o

m i m m O — l w « 4 m w m w o m o O-* ®#4 o oO'*» © o o o f-w wee o om » o o m o #*m o o o o
o o #40 >40 o o

i mm » e > wmw o m o O O
om m r- o o o o o

w O o m o O O o oCD
O o •40 o o

o i mm W OVN m-nm wmw o m o m o O'er o o
om m 4 m o o o ww © o o o

o > o m o o o 0 4 o oX I mm • o o
1 om i 4 m o o •40 4 0 o o

o i m o i »
m—i i i ■

I i
i i H u u u u Il II II 11 II II u u u Il II Il II Il II• iI i

o i u u i
m— i I c » * *

m I i to to to
i i V o

C W) i i u a
-c e c x i I c z 4 © 4
4 4 0 0 i < 0)4U 4 W 4 — > 1 « I m e 4 e 104(6 to-mto W i M to
o 4-4 w wm « i u v) a4 W O C 1 M 1 ® c «> u >. W 1 4 | a * u e v © * e 0 X 0 o x © to = to e toe1 = W 1 4 4 ® 16 16 16 4 16 4 161 -4® 1 w a © 4 e 4 B 4 4 E m 4 E X <4 © 4 ©
e c-4-o o 1 0 4 | u » u !6 16 (6 © 6 o ■ e e4 • 0 « 4 -4 i a o i = to 4 4 e 4 e = 4 > C 4 >

Il Ifl II W 4-0 V) 1 C 1 4 » © ® 16 O 16 X ©16 X © o x 4 ® — »
II — II > C 01 r — = 1 O I 1 © 4 4 4 ® 4 16 4 -6 4 16 fee 16 e 6 =1 4.-4 | 4 tn 4 16 £ 4 (0 E 4 ifl E = 4 = 4 = 4u e » o- 2 f 4 4 I 10 U 4 U4 U4 e o ©
•1—< II 3 * 4 = * — 1 0 4 1 V 16 a a® > * = 4 * = 4 * = 4

4 0 0) ID 4 4-0 1 1 4 4 16 4 3 4 3 4 3
II C “ i a x 4 4 e 4 O 4 C u o U © u o

■4U. C' 4 C-—U I C O # 0 4 50 tO 4 •c a to v a to T ato © a © C © a•o O H » C-3 1 1 — r 4 T 416U 1 4Û.I < «*» 1 4 4 Ca— o o 4 1 1 © o o — © 4 o — o © •O © 5 ©1 4 4 I S 3 e © B 3 V U u£ O O 1 16 ID I (C * 1 3 4 a 34 a 3 4 a 4 = ■me •X =3 O w4 01 4 4 1 4 4 I * * 3 e « a * e * 6 © 6O (64 c © 4 4 1 4 4 | © C 1 © © U > | 4 © 4 | C — c —
= 4 C 4 w 4 4 e * i e = o i X 5 » 1 x a » i X = 3 1 6 4 © 4 ■c -.

Il T II « (6 0) O *6 C C 1 C = 1 3 3 1 3 3 O > 1 1 3 1 <63 1 *6 3 • © T © T © 6
H a. h x a .u a .- I —- 1 — 1 SEX 1 z Z 4 4 1 X** * 1X X 4 1X © # M X » X » X »

T-3273 168

SUBSECTION E.2
Computer generated data for Random flow over 8

timesteps is given. Data includes swap iteration counts
for the sorting algorithm, maximum index offsets, mean
index offsets and variances about these means.

T-3273 169

It « * il « m ii II >»M
91 II
Il VM
II CD
II It ii r u
•I OM
It W l l

II +> It
M V M
II

e I u v m w rxoD r*-w% o m o n«o o oo o V rr«r o o o w o omo> o e> m o o o o o o c
«o o o O O O O o o

r-1 mrN sc o w mrsfv V I N W o m o *TfN o o
o o O sC rs#v o o o »«r o om o o o m e o o o o o ose o o «40 «40 o o

o I m o o ose 0 0 4 " v o w o m o w o m o o oo o m r- o w o o o ww o o
m o o o m o o o o o o oSC o o «40 «40 o o

m i m o o w«4 ooom w ow o m o m o ■ w o o
o o o o om o o mm o o

o o m o o o o o o o
r-

o o «40 «40 o o

w i m o r- ose «« w o w o m o r»v o oo o o o m o o o m w o om ^ o o m o o o o o o o
o o «40 «40 o o

m i m o o W«4 o m o w o w o m o or» o oo m w o m o o o m w o oo o m o o o o o o o
o o «40 «40 o o

o i m o \C o o o m w o w o m o m o r-w o oo m o m o m o o o m m o om o o o o o o o o oo o o «40 o o

«4 i m o « m o w o w o m o m o o oo m o •e o m o o o m m m y o oo o m o o o o o o o
o o •40 «40 o o

o i mto r- o r- to—to WT4W o m o o o
om CD O » tow o o o o o

o o mo o o O — o o
X • m o i o »

I om i o o «40 —o o o
o I m y i e
to—« i I

i i
a

X
I I
I I ** ii ii Il II II ii ii ii Il II II ii ii ii Il II Il II Il II

o
I 1

X
to— I I c 01 O’ 0)

i I w w w
I I V o

S V) I I u a
T5 e . c x • • c z x e x

«4 "O O i I W«4 e w
L, «s er>— — « I •DC x 0> «0— to WmW WJrf w
3 — Ld I i W V uoi a

«-> W> 3C I «) i U tft e 3 01 » e
& e x e n 0 * 0 0 * 0 0 * 0 w c w c w c

1 c W 1 1C 1C IB «4 IC X IB x B
«3 . OX £ — e-m — e z — e

e C«4T) O 1 0-4 1 uie u 1C 1C IB o a O E O E
■ex«< 4 i a e n S V) X X 3 X « Cx • e x •
W 4-0 V) 1 C 1 «■ 4» O IB * O IB X O IB * — 01 — « — O’
C e 3 <43 1 "O C 1 O — x IB x IB x IB ICC ICC ICC

a x 10 x WE x WE X w B CX CX Cx
S 3 » E 10 U x VX VX o o O

3 u c » — i e — i a c v • » CX » CX V C x
S) IB — -i 3 i i te ■ou— X x T x x iC X 3 X 3 X 3

tr. «4— 0 3 w u X S Z x — O — O — c VO VO V o
«< 1 e u c—tr « e e i 0*4 01 en x v ato •CC.W t aw o'a » a OC
TJ e o i- <e o-3 t • X IB X IB X IB

1 — 0 2 i mtt t — c *«4 C
o « I i oo O O ai O ©X Ox ©x ■O 0) TJ W *5 oiB O B 3 S 3 V u

e E 3 1 ic X UL. x x x e 3 x a SXC. 3 x a — c ■me * c
o o 01 01 o E Oi e v e a; B B
■OT3 a o i a e u • i —a — i — a — i C — C x c —
C 3 B 5 1 e = y i x e o i * c 3 1 * E O l B X B x B x
«B i v o «e c r IC C # 3 3 • 3 3 0 * 1 * 3 1 IC 3 1 IB 3 1 0) 1 e> b O V
acjsua-J—-■ z -= 1 z z w x 1 I Z x , Z Z X | Z z x , T. » Z » z »

T-3273 170

SUBSECTION E .3
Computer generated CPU data for Parabolic flow over 8
steps is given.

om o * o tr o o
CD 55

o o

522
VO

mtx

o o

5S
o o

p. om S5 OO o r-
-MPS 55

o o

o o

fNp»-

mo

##o

OO

OO

o o

o ^ oo o w o o OfN

o o fWN O'T

mo

mes#wO
OO

OO

OO

in
om
f-m

om
V o

om
w n

oc o o
o o

o o

o o

om

o o

mr-

m o

«"40

o o

o o

o o

OvO om occ o v
f-m
o o

o o

mco
t—m

o o

om m v
##o

o o

«wo
o o

o o

o — 03 omf-m om o oo o com —o oo
o o o o — o o o o o

___ o o Ovc OCD om o om r»v — o mr- oomm#w o o r-v — o ooo o oK i mm • o o oo oo o o oo• o m io • m3 i
m## • • u u u1 •1 •l l © o m Os© OCD o m oX • 1 v«-* 3V mr- —© 3o I Mil | ft © © © o o o v s©V — o o o
m— 1 1 S E E-> 1 © 1 o o oo OO oo oo1 © I u m w m m mz w • N • ft r-— 3moo o cx 1 >* I«4 oo 1 — 1

t It 1 0 0 — 00
O «wwwA-n © o o o o © oo o m om o o

W V) o c 1 Alt I e o —\C m v o o• U V • *■> 1 o — o oo —e oo
• C A 1

•* Q. T 19-v# g o o o o o o o oo ooC C— 3 O 1 O— 1 ©
w — i a.31 C w «

1 C 1
II AH » S0>S«4C i ©m i A w— C
II vw M i «— •* i U A A©
•1 AM W « 3 3 3 © w w —B o
II >*1l CEwCO — • ©w | A JC u A ©
H ^ II W a o) 43 ̂W-O • 1 u © 3 W A A > u
II ^ M C c
II C M v̂ Uu 0> u C-^O • e © i A A ■© © A AT c
II * H 3 O*-» O-J E • xcn >.>> 3
•1 II 1 xx 1 A U u V U
•1 01 II > r -3 O U • i © 3 X w © A t > It w © ©w
II E II E i2u O w -)UC cc
II «* M E o © I © C t <t m • — c *o— ©V- A — a.— ZXxXLL
h H II ©
Il II «0*9wC O*"»** i ww « © © © — © m" © • ©
M 3 M C w C ^ w * * B 3 E 3 5 •t = t = W E 3 3 3 - ? | V
u a. u <e t © © ft c c • C C I CwU U — _) - C— C - C - > > > > > 1 >H u H 36a. J^-3 — — x — r e — Zo­ X — X — a.— x x x x x 1 3

T-3273 171

SUBSECTION E.4
Computer generated CPU data for Random flow over 8

timesteps is given.

o<n o w 1 o r- o<e o o
f-vO V —4 O'IN &>3D
o o omn irnn o o

oo 0-4 o>e otfi O S
eer- OfN oo
oo -*o
oo OO oo oo

oo oo O S O S O V
r-ir oo OS' »>r-
oo m o -40 oo
oo oo oo oo oo

or- oo O S ov
r-m oo OS' o r-oo mo rno oo
oo oo oo oo oo

0-0 oo os or—mm
r-ir> mso mo OC»' or-oo mo oui mo oo
oo oo oo oo oo

rsi mosr- eoc
rxr>*o oo

X 1 lti’n i
lc m I

. . . o o OO o o o o o o

o i m o i
om • i

! !
X

ra
c

ra
c

ta
c

K « i « om om om 0 —4 OCD o
X • « r-m o o VO 1N^ m

O • u m i re e> o> o o vm m v #wO OO tN
om i i ■ EE

m
! s : J

o o o o o o o o OO

C M i - « re
Tl e c x • >< i 0 V 0 -4 O

■ — «
U l re i o o o o o
D> — — w wm 1 C 1 0 ^ 0 om O-N o*< o v o o

— re oc i re re i e o P-ODfN r»<N OQD fWV om
U V ?' i — i 0 0 9 o o WO w o
re mm g tn i c re i
a. re re — c OOO o o ##5 o o o o o o

C Cm-o a 1 Om | &
O X — m
4) m-o «

1 3 .0 1
1 C 1 . C w

V ©W
e

Il M II c re c x c « "9 re i re WW C
M m II e 1 mm 1 u 9) 9)0)
u n u BO OE 1 — — 1 e 3
« ><11 9 -C C m 1 O— I re X r. o> a
II -4 II w re—— a 1 1 u o 3 w tn ui > u
u re u M — mCC 1 — 1 c c w * * o
II Cll m 1 » u cm 15 i a e i V T — e> TJ © 95 95 r c
u w n ■n eom re o-> i i E * W) X X 9
ii u 1 majC re 9) U V u u e> u
II W II Xs-C S u • i e> SIT w T 95 V 95 f t > % VO ^ ©w
II 1 II e © w . j u s s r
Mm ii C E O i re re i re re i • o * - O*- 9Î*- V5 #- E'w xa-w ^ a .
II I— II o a i — — i to >> X re
Il II •Com C C— — i — — i e Q> 0) — a ^ 4) • a> • • • • • -
MOM c = i - — i a v e * « t e wS »
Il CL. II e re » o re c c 1 c C 1 Cw-J ■) - •J - c— c — Cw > > » » > I >
M U II x x a- J —— a**-* KH *♦ - a.*- * * * * * 3

