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ABSTRACT

This thesis investigates a newly proposed dynamic 
data structure designed to address several problems which 
arise in certain types of large scale physical simulation 
problems. The particular simulation problems studied are 
in the area of Hydrodynamics and involve a "Free 
Lagrangian" numerical method, developed by M.J. Fritts and 
J.P. Boris (Fritts & Boris,78).

This thesis offers a fundamental solution to the 
following problem inherent to the above mentioned 
numerical method. The numerical method uses a triangular 
connectivity. Data partitioning of the triangles is 
necessary to take advantage of parallel processing or 
multiple memory levels, but such partitioning has been 
virtually impossible due to the fact that an inappropriate 
list data structure is being used (Bell & Patter son, 8 5Jt. 
The access pattern of a list is random, and therefore 
eliminates vectorization of numerical computations.

A vectorized "Nearest Neighbor" algorithm, developed 
by Jay P. Boris of the Naval Research Laboratory 
(Boris,35), which utilizes modern parallel processing 
computer architectures is introduced and analyzed with 
respect to the solution of problems stemming from use of
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the list data structure.
The algorithm is a dynamic data structure known as a 

Monotonie Logical Grid (MLG). The MLG lends itself to 
vectorization, and is partitionable to take advantage of 
multi-processor environments. In addition the MLG uses 
indexes of main memory arrays and contiguous memory 
locations to reduce partic1e-to-partic1e relationship 
calculations and near neighbor search times.

The MLG's structure is derived from and contains 
spatial relationships similar to the relationships of the 
simulation grid it represents. Since particle movement may 
violate the laws that govern the structure of the MLG, 
algorithms used to update the MLG are also investigated. 
Finally, new algorithms which utilize the properties of 
the MLG to search for neighboring elements are introduced 
and analyzed.
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INTRODUCTION

Simulation models in the area of transient 
hydrodynamics which contain free surfaces, fluid 
interfaces, and fluid boundaries are approached most 
readily by means of Lagrangian methods using a rectangular 
mesh (Fritts & Boris,78). However, Lagrangian methods 
have, in the past, been restricted to "well behaved" flows 
since point movement will, in time, distort the 
differencing mesh to the extent of inaccurate numerical 
calculation and deterioration of the numerical method 
being used. Physical phenomenon modeled include breaking 
waves (smooth waves which turn turbulent) and shear flow 
(the interface between two different fluids which are 
moving parallel to each other with different velocity 
magnitudes ).

M.J. Fritts, J.P. Boris and W.P. Crowley have 
introduced a new meshing technique which uses triangles as 
general mesh connections. Certain geometric properties of 
the triangle make their use advantageous over polygons of 
larger order. One advantage is the relatively easy 
restructuring of the mesh after point movement has caused 
point crossing or disconnection. Another advantage is the 
ability of the triangle to cover a surface with less cusps
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and local irregularities as well as handle exterior fluid 
borders, interior object borders, and fluid interfaces.

Unfortunately management of point data for the 
triangular Lagrangian mesh still lacks the efficiency and 
speed demanded by real life problems. The use of the 
triangular mesh is in conjunction with a finite difference 
numerical method, which means that information about 
neighboring points and neighboring triangles must be 
readily available for point information updates. Since the 
triangular mesh may at times be very irregular in 
composition, there is no clear cut mapping between the 
grid points and a data structure that will render data 
quickly and efficiently. For instance if we are 
considering simulating a flow in two dimensions, there is 
no apparent mapping between the triangles of the flow 
space and a two dimensional "array" which would contain 
information about the flow.

Consequently, a list data structure is used to store 
point information. The list data structure is applicable 
in this case from the viewpoint that point updating is not 
required to be sequential. Only information about points 
and triangles near the point in question need be present 
during updates. Unfortunately, searching this list for 
information about any given point or triangle is very time
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consuming and ior large simulation problems (10? - 10^ 
points), is intolerable.

Jay ?. Boris of the Naval Research Laboratory has 
developed an algorithm which proposes to eliminate the 
forgoing problem as well as utilize performance intensive 
machine attributes such as vectorization and parallel 
processing.

The algorithm is based on a data structure known as a 
Monotonie Logical Grid (MLG). This data structure bridges 
the gap between the tesselated flow space and its 
structural representation in the data base, as well as 
lending itself to vectorization of numerical operations 
and parallel processing. The MLG gives us the mapping 
necessary to go between the flow space and the data 
structure while still preserving the spatial relationships 
.between points in the space. As will be demonstrated 
later, because of the definition of the MLG, point 
movement in space implies an actual physical movement of 
data in the data base, giving us a dynamic data structure.

The Free Lagrangian Grid uses a special finite 
difference numerical method as the underlying mathematical 
model. Adjacent cell computation in a regular finite 
difference method now becomes adjacent triangle (or 
totality of triangles around a point) computation. Spatial
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relativity is inherent to the MLG data structure, 
therefore reducing search times and search lengths for 
adjacent or surrounding triangles quite substantially by 
localizing spatially related data.

We will investigate several different characteristics 
of the MLG, as well as different governing schemes, in 
order to optimize its performance. One such scheme is the 
method of determining and maintaining the partitioned data 
sets. This involves determining which triangle attribute 
(i.e. triangle center, one particular vertex, etc.) will 
determine the best partition of data for parallel 
processing. One characteristic of the MLG to be studied 
is the preservation of spatial relationships between 
points in the space with respect to the data present in 
the data base. Test results of MLG performance show that 
the spatial "nearness" of one point to another point in 
the space is reflected and very apparent in the data base.

This locality of data is then applied to reducing the 
amount of time spent and length of search conducted in 
order to determine adjacent and bordering triangles. Test 
results show that overall the MLG produces much reduced 
search lengths for neighboring and bordering triangle 
information.
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Algorithms have also been developed, and will be 
explained in later chapters, which use the data locality 
of the MLG and certain geometric properties of triangles 
to conduct searches of the database to find triangles for 
point update computations. In these algorithms a 
comparison is made between a scheme using more main memory 
storage and a scheme using more CPU time requirements. 
Results show that the scheme using more main memory 
storage decreases the search times involved in finding 
adjacent triangles, whereas the scheme involving less 
storage obviously increases search times while decreasing 
main memory requirements.

Although the physical models developed in this study 
are quite fundamental and at times seem to be quite well 
behaved, the algorithms produced were developed with 
.emphasis on independence of data partitioning relative to 
the intricate particulars of the flow equation being used. 
In other words when the algorithms were developed, special 
care was taken not to construct code which depended on the 
flows to be tested.

And, as fluid motion changes, certain telltale traits 
of the motion might demand that certain parameters being 
used to partition the data be changed. This change in 
parameters is handled efficiently by the algorithms
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developed and thusly add to the flexibility of the MLG.
Overall test results obtained from this study support 

the use of the MLG as a data structure for highly 
transient hydrodynamic simulation problems that require 
preservation of locally related spatial information (e.g. 
finite difference numerical methods) in order to establish 
partitionable data sets which will take advantage of 
supercomputer attributes such as parallel processing and 
vectorization of computations.

Certain limits are put upon the tests conducted in 
this study. In the Free L a g r a n g i a n  models, the 
reconstruction of a corrupted grid is very important in 
maintaining a reliable mathematical model. The algorithms 
developed for this study do not reconstruct a grid if 
triangle inversion (crossing of triangle sides) occurs, 
nor do they reconstruct triangles in order to maintain 
even grid resolution. The reason for this is that the 
algorithms for grid bookkeeping are complex and too 
difficult to incorporate into this study at the present 
time.

Therefore, all flows applied to the points of the 
space are restricted so as to produce small scale movement 
in the space for up to approximately 5-8 time steps.
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CHAPTER 1 - THE FREE LAGRANGIAN MODEL

1.1 INTRODUCTION
In modeling highly transient fluid flow in 

hydrodynamics, Lagrangian methods have been extensively 
used and developed. The need for a dynamic meshing grid, a 
grid which actual follows fluid flow, as well as a method 
for simplification of the numerical equations (elimination 
of the term which accounts for fluid movement through the 
grid), were some of the factors in the motivation behind 
the Lagrangian grid.

Jay P. Boris, Marty J. Fritts, and W.P. Crowley have 
been conducting research in the development of meshing 
grids for use in these difficult hydrodynamic simulation 
problems. One particular result of their work which is the. 
fundamental building block of this study is a meshing 
technique called the Lagrangian grid (Fritts & Boris,79).

1.2 THE LAGRANGIAN GRID
Lagrangian methods for solutions to fluid flow 

problems differ from conventional differencing methods in 
that the reference point of the observer changes between 
the two methods. In a conventional finite difference 
method using a "fixed grid" mesh, the observation space is 
tesselated into a regular two, or three dimensional
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lattice with orthogonal connections between lattice points 
(fig. 1.1). Once the simulation has begun, points move 
through the mesh while the observer calculates point 
interactions relative to the the stationary meshing grid. 
Relationships between points of the space are related to 
the grid cell in which they happen to be at any given time 
in the simulation run.

In L a g r a n g i a n  methods, the m e s h i n g  grid is 
constructed using the actual points, or a subset of 
points, being monitored in the observation space as the 
grid cell connections (fig. 1.2). When point movement in 
the observation space takes place the meshing grid cells 
move and distort in conjunction with the observation 
points. Thus, the observers reference point moves relative 
to the points of the fluid flow.

As can be seen in figures 1.3 and 1.4, if fluid flow 
were to create the situation indicated, difficult grid 
resolution representation is forced on the fixed grid 
mesh. For example, point migration to one section of the 
grid would eventually cause more than one point to be 
present in a single grid cell. Because of the use of a 
finite difference numerical method the resolution of the 
grid would have to be increased over the entire grid as a
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FIG. 1.1: Typical 2-D fixed lattice grid

G* 1.2: Typical rectangular 2-D Lagrangian grid
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FIG 1.3: Point migration in a fixed lattice grid

FIG. 1.4: High and low sectional point resolution
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FIG. 1 5: Point migration in a rect. Lagrangian grid

FIG. 1.6: Sectional point resolution in Lagrangian grid 
one particular area.
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result of the need for grid resolution increase, in this 
Alternately, the Lagrangian grid conforms to the fluid 

flow (fig. 1.5 and 1.6) making grid resolution related to 
rectangular area. In reference to figures 1.5 and 1.6, 
large area in a certain rectangle indicates low resolution 
of points in that particular section of the grid. Thus, 
grid resolution is localized, meaning fine resolution in 
one area of the grid does not imply fine resolution 
throughout the grid. Therefore, representation of the grid 
resolution as given by the Lagrangian model need not 
suffer in one section of the grid because of point 
movement to another, as is the case in the use of the 
fixed meshing grid. This is not to say that the fixed grid 
method does not have its place in transient hydrodynamic 
simulation problems. If point movement throughout the 

-space is well behaved and restricted to small incremental 
migrations over time then the fixed grid method would 
suffice as a meshing scheme. Unfortunately, the method 
breaks down when point movement is drastic and grid 
resolution is variable and quite diverse throughout the 
grid.

One obvious drawback to the use of a rectangular 
Lagrangian mesh is that over time, the mesh becomes
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distorted to the extent that point motion could, and most 
likely would, cause crossing of rectangle sides (fig. 
1.7). This s i t u a t i o n  renders the grid useless. 
Restructuring of the grid (i.e. reconnection or 
reconfiguration of points in order to "uncross or 
reconnect" rectangle sides) is a logical step in 
rectifying the problem.

This approach however, is difficult to achieve because

FIG. 1.7: Grid corruption due to point motion

of the topology of the rectangular mesh. The addition or 
deletion of grid points in hopes of correcting the 
misshaped grid may not be possible with the insertion or 
deletion of one or more points in the grid. In fact the 
determination of the number of points to add or delete, as 
well as the sides to add or delete, may be quite difficult 
to establish.
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Another drawback to the use of a rectangular mesh is 
the representation of complex boundaries and structures. 
The topology of the rectangular mesh is such that 
irregularities may be present in boundary or free surface 
representations of the fluid, thereby presenting less than 
desirable curvature or resolution.

Finally, "Rectangular mesh approaches appear to 
suffer a serious 'even-odd' or computational-mode 
instability..." (Fritts & Boris,79) which necessitates a 
form of numerical dampening, in turn destroying the 
reversibility of the simulation.

1.3 THE FREE LAGRANGIAN GRID
Geometric properties of the triangle offer a path 

around the difficulties of grid restructuring and boundary 
representation inherent to a rectangular mesh. As a 
Lagrangian mesh distorts with point movement through time., 
restructuring of the grid is imperative, and a triangular 
mesh lends itself to relatively easy restructuring. Boris, 
Fritts, and Crowley are credited with the idea of a 
triangular Lagrangian mesh called a Free Lagrangian Grid 
(Fritts & Boris,79).

The Free Lagrangian grid offers an answer to the grid 
reconstruction problem. As the triangular mesh becomes
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distorted, r e s t r u c t u r i n g  of grid points or the 
insertion/deletion of triangles and points becomes 
relatively easy. Insertion of just one point into the grid 
can be accomplished with the guarantee that a triangular 
mesh can be redefined. This argument involves three cases. 
Case one involves the insertion of a point outside the 
boundary established by the points in the space. All that 
is needed to create at least one triangle are the two 
nearest points to the inserted point. From there, more 
triangles may be created using points near the new point 
as long as no triangle sides are crossed in the creation 
(fig 1.3).

FIG. 1.8: Point insertion - boundary exterior

Case two and three are the basis of two grid update 
routines to be discussed shortly and involve the insertion



T-3273 16

of a point onto an existing triangle side and insertion of 
a point on the interior of an existing triangle, 
respectively.

As the Free Lagrangian grid moves in time and becomes 
distorted the possibility of triangle inversion, or side 
intersection, becomes greater. As an example, this sort of 
situation is present when long narrow triangles border 
larger triangles. When this "mismatch" of triangle areas 
occurs the numerical method used becomes less accurate 
because of the difference in relative areas. One method of 
solution is a special reconnection algorithm (Fritts & 
Boris,79). In the algorithm it is noted that "every non­
boundary line uniquely specifies its bordering triangles". 
Once the two bordering triangles are established, the two 
possible diagonals of the quadrilateral that is formed are 
computed and the shortest of the two are used as the new
border 1

FIG. 1.9; Triangle reconstruction
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If a change in grid resolution is need e d , the 
insertion or deletion of points as well as reformulation 
of triangles in the grid will produce the desired results. 
Point insertion or deletion can be accomplished in at 
least two ways. First of all consider the case of 
increasing grid resolution. One method is called Triangle 
Side Bisection (Fritts & Bor is,79), ( fig. 1.10).

One obvious advantage to the side bisection insertion 
method is the increase in accuracy of curve representation 
at fluid boundaries and interfaces. This comes as a result 
of shorter line segment lengths which in turn produce 
finer curvature.

Insertion of points within the boundaries of a 
triangle is another method of grid resolution increase and 
is called Triangle Trisection (Fritts & Boris,79), (fig.
,1.1 1) .

As for point deletion from the grid (decrease in grid 
resolution), the procedures are the inverses of the 
insertion methods, be it triangle side bisection or 
triangle trisection.

As can be seen there are no ambiguous considerations 
to be made when restructuring a triangular mesh. If more 
triangles are needed in a section of the space in order to 
increase grid resolution, then point addition, and



T-3273 18

consequently triangle addition, in that section will 
achieve the desired resolution. The same is true for a 
decrease in grid resolution, accomplished by point and 
triangle deletion.

Now that the grid configuration is set up, certain 
definitions concerning the grid for purposes of numerical 
computations must be made as well as an overview of the 
numerical method and the demands it makes on data 
management.

FIG. 1.10s Side bisection
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FIG. 1.11 : Triangle trisection

1.4 THE NUMERICAL METHOD
One particular model built around simulation problems 

-in transient hydrodynamics is a model called SPLISH which 
is currently being developed by Fritts and Boris. The 
numerical method used in this model is called an implicit 
finite difference method on a Lagrangian grid (Bel1,82).

Examples of physical phenomenon modeled by SPLISH are 
breaking waves, shear flow (involving the interface 
between two fluids with parallel velocity vector fields 
but different magnitudes), Rayleigh-Taylor instabilities, 
droplet burning, and air flow over hydrofoils.
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These different types of phenomena exhibit highly 
t r a n s i e n t  f l u i d  flows in which the n u m e r i c a l  
representation can be quite difficult to model. Thus the 
Lagrangian grid was used in hopes of eliminating some of 
the computational problems which arise from these types of 
flows. SPLISH has certain data management requirements 
which will be quite useful in testing the proposed data 
structure to be studied within this report.

In actuality the Free Lagrangian grid is used in this 
particular model (SPLISH) because of its ability to 
represent fluid boundaries, interfaces, and object 
surfaces with higher accuracy than grids using polygons of 
higher order. With the types of fluid motion just 
mentioned, the need for change in resolution throughout 
the grid is also present and is handled sufficiently by 
the triangular grid.

The number of attributes concerning general fluid 
flow simulations which are of interest to the scientist 
vary from application to application. One such study may 
require knowledge about "ideal" fluid characteristics such 
as vertex velocities and triangle velocities, while 
another study may require magnetic fields, charges, 
currents, resistivities and plasma densities in order to 
model the phenomenon correctly (Bel1,82). But as stated in
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(Bel 1,32), the number of attributes to be used by a 
simulation model may vary between models but, the data 
management remains very similar.

The scale of the space being monitored also varies 
from problem to problem. In one situation the overall 
dimensions may be on the order of centimeters while in 
another the scale may be in thousands of meters. This 
slight inconvenience is handled by normalizing the 
variables so that scale is no longer a problem, "exactly 
the same behavior is seen on different scales for 
different problems" (Bell,82).

SPLISH also handles a variety of boundary conditions, 
from rigid bottom boundaries to periodic vertical 
boundaries to free surface boundaries at the top of the 
grid. Bottom boundaries may consist of ocean bottom 
topography in modeling ocean currents or it may be the 
earth's surface in modeling atmospheric patterns. The top 
boundaries may be, in the same models, the ocean surface 
or one of many levels of the atmosphere, respectively.

As of yet SPLISH is only a two dimensional model 
using cross-sectional planes of a three dimensional domain 
as the observation space. In the future the model is to be 
extended to three dimensions and revised in order to 
handle more complicated flows such as viscous and
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compressible fluids and reactive flow such as burning 
elements or chemical reaction.

1.5 THE MATHEMATICAL METHOD
SPLISH uses a specia1 finite difference numerica1 

method in which differencing is done over triangular cells 
within the mesh. Traditional finite difference methods 
difference over a regular grid mesh. Thus the mathematical 
equations must be reformulated in terms of the Free 
Lagrangian representation of the space. There are three 
main equations in the Lagrangian formulation. They are 
conservation of mass, conservation of vorticity and 
Euler’s laws of motion (Bell,82 , Fritts & Boris,79). As 
with most finite difference algorithms, future values to 
be calculated for one grid cell depend on the neighboring 
cells around it. Therefore, data management must provide a 
route to information about surrounding triangles.

In modeling highly transient hydrodynamics, the Free 
Lagrangian method has created the definition of a Vertex 
Cell. The vertex cell, used in vertex velocity 
calculations, is created by taking all triangles around a 
point and calculating all three side bisectors for each 
triangle. The intersection of these bisectors locates the 
triangle’s centroid (assuming mass is constant throughout
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the triangle) and divides the triangle into six equal-area 
sub-triangles. Once the surrounding triangles have been 
divided, two sub-triangles from each of the triangles 
surrounding the central point are combined to form the 
vertex cell. A typical vertex cell is shown in figure 
1.12.

FIG. 1.12s Typical vertex cell

1.6 DATA MANAGEMENT REQUIREMENTS 
The Lagrangian formulation of finite difference 

numerical methods requires the formulation of vertex cells 
for each vertex update. Therefore knowledge about
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triangles that surround points of the space is one 
requirement put upon the data management process.

This particular numerical method also requires 
information about triangle areas and centroids. This 
requirement is handled readily by the fact that only 
information about triangle verticies is needed to 
calculate a triangle's area or centroid. In other words, 
to obtain any particular triangle's area or centroid one 
need only have the coordinates of the verticies of the 
triangle. Information about other triangles is not needed.

In the "rotation" part of the numerical method, 
triangles are checked to make sure that vorticity, or 
rotational flow, is conserved throughout the grid. In 
other words, all triangles must be constrained to conserve 
vorticity from one time step to another. This involves the 
determination of the triangles which surround any given 
triangle as well as which of the verticies are connected 
(Bell,82).

When it comes to the reconstruction of triangle sides 
and the insertion or deletion of grid points, knowledge 
about neighboring triangles is again a requirement before 
determining positions for alterations. For instance, if a 
triangle is determined to be too large (in terms of area), 
then its neighboring triangles must be determined in order
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to implement either the side bisection insertion or the 
triangle trisection methods. Similarly, if resolution 
needs to be increased along a border or fluid interface, 
then information about which triangles lie on the border 
(relative position with respect to the overall grid) needs 
to be gathered along with the information about which side 
of the triangle actually lies along the border.

This list of data management requirements is in no 
way exhaustive. The purpose of the forgoing discussion is 
to present a common prerequisite of the candidate data 
management facilities. The common factor between the data 
management requirements is the accessibility of knowledge 
about neighboring triangles and neighboring points. A 
spatial relationship inherent to the data structure would 
give quick and efficient data retrieval and would meet the 
requirements of the Free Lagrangian Method.

Unfortunately, a very costly data structure in term's 
of access time and search lengths is presently being used. 
A list or linked list data structure is currently being 
used to store point and triangle information. There is no 
preservation of data locality in a list structure, 
therefore, when looking for spatially related data, 
searching must be conducted through the entire list.

A linked list may be the answer to this problem, but
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updating of the list and pointers must be performed for 
all insertions and deletions of points in the space which 
come about from grid restructuring and resolution changes. 
This idea becomes very complicated when simultaneous
deletions and additions are made and if the list of
triangles or points is large, the time involved in
updating the list becomes less desirable.

Because of the lack of data locality the hope of even 
slightly reducing the search lengths by using a
partitioned subset of the total data set is abolished.

Arguments to the effect that the list data structure 
is used because point or vertex updating is not required 
to be sequential with respect to the point space are 
understandable, but this argument completely ignores the 
spatial relationships between the points of the space of 
.which the L a g r a n g i a n  n u m e r i c a l  m e t h o d  re q u i r e s 
information.

The problem of excessive access times as well as 
oversized search lengths to find needed information has 
hindered the numerical method to the point that a 
different data structure which will reduce the time spent 
searching and re-searching long lists must be found.
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CHAPTER 2 - THE MONOTONIC LOGICAL GRID

2.1 INTRODUCTION
Jay P. Boris of the Naval Research Laboratory in 

Washington D.C. has introduced a data structure which 
eliminates major problems with the list data structure 
approaches used in the past. The data structure is called 
a Monotonie Logical Grid (MLG).

The MLG gives us preservation of spatial 
relationships within the data structure, therefore 
allowing the data management processes to obtain data 
quickly in order to service the computational routines 
being used.

In the MLG, searching begins at a record containing a 
triangle which is close to the triangle being searched 
upon, so the length of the search is reduced by the 
elimination of looking at unrelated data. Since spatially 
related data is localized in the MLG, search lengths are 
cut back because searching the entire list is no longer 
necessary. Therefore, independent subsets of the list are 
established by storing data in the MLG. The independence 
of these data sets, in turn, allows us to perform multiple 
processing.

One obvious difference in the "shapes" of the data



T-3273 28

structures is that the MLG uses a data structure which is 
similar to the spatial data it contains. If the simulation 
model is run in a three dimensional space then the MLG 
takes the form of a three dimensional array. The same is 
true for two and even one dimensions.

As for the placement of the data into the data 
structure, the method is not random as in the case of the 
list structure. The placement, and subsequent storage, of 
data into the MLG is completely dependent on spatial 
attributes of the elements being stored.

2.2 DEFINITION OF A MONOTONIC LOGICAL GRID
Boris gives the following definition of an MLG 

(Boris,85)s

For N particles in three dimensions, the 
arrays of object locations, X(i,j,k), Y(i,j,k) and 
Z( i# j#k), constitute an MLG if and only if:

X(i, j,k) < X(i+1, j,k) for 1 < i < NX-1
Y(i, j,k) < Y( i, j+1, k ) for 1 < j < NY-1 (1.0)
Z(i,j,k) < Z(i,j,k+1) for 1 < k < NZ-1

where NX, NY and NZ are the number of points in 
the x, y and z directions respectively.
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In other words, if the point positions are stored in 
three dimensional arrays, then all x directional vectors, 
X( i, j,k) for all 1 < i < NX with fixed j and k, would be 
monotone increasing with an increase in the index i. All y 
directional vectors Y(i, j,k) for all 1 < j < NY with 
fixed i and k, would be monotone increasing with an 
increase in the j index. And all z directional vectors, 
Z( i, j, k ) for all 1 < k < NZ and fixed i and j, would be 
monotone increasing with an increase in the k index.

2.3 PROPERTIES OF THE MLG 
Implicitly the definition for the MLG states that if 

the ordering defined by the inequalities 1.0 of section
2.2 is not present in the data structure the point 
information must be sorted into Monotonie Logical Order 
(MLO). Figure 2.4 of section 2.4 give us the guarantee 
that MLO is always possible. An algorithm for sorting tfre 
MLG into MLO is described in section 2.4.

But first, what is to be noted from the definition of 
the MLG is that relationships between points of the space 
are present in the MLG. If point A is directly next to 
point B in the space, then by virtue of the spatial 
coordinates of the two points the information concerning 
point A is stored directly next to the information



T-3273 30

concerning point B . If a point is between point A and B 
in the space then the information about that point will 
reside in the MLG between the information about A and B . 
Also, Different point configurations will yield different 
MLG data structures. This can be seen in the situation 
that if a point C were to move past A and position itself 
lower and to the left of A, then the information about 
point C would have to "move" to a cell which was lower and 
to the left of information about point A in order to 
preserve its relative relationship to A and in order to 
conform to the inequalities (1.0). Thus sorting of MLG 
information is necessary.

Also note that the points of the space need not be 
aligned in such a regular pattern as the lattice example 
described above. If the points of the space were situated 
-.as pictured in figure 2.1 there still exists an MLG 
structure which would conform to the points of the space. 
One possible MLG configuration is shown in figure 2.2.

This MLG representation is not unique. Figure 2.3 is 
one more possible MLG structure which represents the same 
point space. Another look at the definition of the MLG 
will explain at least one situation which could create two 
possible MLG data structures for the same point 
configuration.
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FIG. 2.1: Irregular point configuration

3 4 7
2 9 5
1 8 6

FIG. 2.2: First possible MLG representation of FIG. 2.1
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3 4 7
2 5 9
1 8 6

FIG. 2.3: Second possible MLG representation of FIG. 2.1

In the case of a two dimensional model let :

Y(i,j+1) = Y(i+1,j+1) (1)
Y(i,j-1) = Y (i+1,j-1) (2)
and X (i,j) = X (i+1,j) (3)

for a fixed j such that 2 < j < NY-1 and
for a fixed i such that 1 < i < NX-1.

Note that the forgoing assumptions do not violate 
inequalities (1.0), so that we are actually looking at a
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small section of an existing MLG structure. Now if we were 
to exchange information in the following manner:

X(i, j) with X(i+l,j) and Y( i, j ) with Y( i+1, j )

then since (1)-(2) are given, monotonicity as given in 
inequalities (1.0) is not violated by the interchange 
Y( i , j ) with Y( i + 1 , j ). And since (3) is given, the 
interchange X(i, j) with X(i+1, j) does not violate 
monotonicity either. Thus we have two MLG structures 
representing one point space configuration. This situation 
does not pose any problems in distinguishing which 
structure to use. Actually, the presence of more than one 
possible data structure gives us the flexibility of 
optimizing MLG's to the particular data set being used. It 
is quite possible that one MLG configuration would yield 
-better results (with respect to maximum index offsets) in 
vectorization and partitioning than would another MLG 
configuration of the same data.

When the number of points in the space becomes larger, 
so does the number of possible MLG configurations. The 
proof given above only involved a small section of an MLG. 
The existence of this situation in other sections of the 
MLG is quite probable, thus increasing the number of 
possible MLG data structures for the global data set. As a
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result, optimization of MLG structures is a topic which is 
still under research and which will most likely advance 
the use of the MLG quite drastically.

S.G. Lambrakos and J.P. Boris have conducted work in 
the area of optimization of MLG structures (Lambrakos & 
Boris,85). In their work they have established and defined 
certain properties of the MLG which are used in 
determining proper MLG representation of data.

One such definition is of a Nearest Neighbor Template 
(NNT). The NNT is defined to be the section or partition 
of the MLG surrounding a particular target cell, "... a
finite set of small index offsets in the MLG which 
correspond to the near neighbors in space." (Lambrakos & 
Boris,85). In their work testing was conducted concerning 
the size of the NNT and its relationship to the 
operational cost of the sorting and calculation routines 
of the MLG algorithm. It was found that search lengths are 
directly related to the size of the NNT. A large NNT will 
produce larger search lengths, while a smaller NNT will 
produce smaller search lengths.

2.4 AN ORDER N MLG SORTING ALGORITHM
Point movement in the grid necessitates sorting of the 

MLG in order to retain MLO. J.P. Boris has developed an
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algorithm of order N for sorting the MLG into MLO
(Boris,85).

If the motion of the points in the space is large
(i.e. large numbers of points passing each other within 
the timestep) then the possibility of violating 
monotonicity (section 2.3 inequalities (1.0)) are quite 
high; as is the number of points that actually interchange 
relative positions. In the same instance, if point
movement in the grid is small, the possibility of 
violations, along with the actual number of violations, 
decrease. We shall now follow this general observation in 
analyzing the algorithm offered by Boris.

Boris first offers a vector sort routine which scales 
as N log (N) (Boris,85). In the algorithm, all N object 
locations must be sorted into increasing Z order. Next, 
.the first NY X NX object locations are to be sorted into 
increasing Y order while keeping the k index equal to 1.

Now within the first NY X NX objects which are sorted 
into increasing Y order, sort the first NX into increasing 
X order while keeping the j index equal to 1 and indexing 
these NX object locations such that i=l,...,NX. Once the 
first NX of the first NY X NX object locations are sorted 
then continue with the next NX objects, until all NY X NX 
objects are sorted accordingly.
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The next step is to increment the k index to 2 and 
conduct the sorting in a similar manner on the next NY X 
NX object locations. This step is repeated until all NZ
"planes" (each of size NX X NY) are sorted.

Two problems accompanying this algorithm are, its 
computational cost and the fact that if point motion is 
large in a certain section of the point domain then, 
certain cell information may have to cross a large section 
of the MLG in order to find its correct position 
(Boris,85) (fig. 2.4).

I MY x M X  j

—  M X — |
----------- MZ x NY x M X ------------

FIG. 2.4: Order N log N sort algorithm

As an alternative Boris offers another algorithm which 
scales as N. In the algorithm the concept of 
dimensionality is kept in the sort. In other words, if the 
simulation model is two dimensional, then sorting will be
done on a two dimensional array (the MLG resembles a two
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dimensional array for 2-D models). Each row in the MLG is 
defined to be an i directional vector, while each column 
is defined to be a j directional vector (fig 2.5).

2 - D
MLG

i
FIG. 2.5: i and j directional vectors used in sorting

The first step is to sort all i directional vectors 
into increasing X order. This sort does not rely on any 
relationships between different vectors (i.e. X(i,j,k) as 
related to x (i#jm ,kn ) where j ^ jm and k 4 kn ). In other 
words while fixing both the j and k indexes sort all 
object locations ( 1 < i < NX) in increasing X order
without regard to object locations in vectors around the 
current i directional vector. The same technique is used 
for all j and k directional vectors.
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Boris also gives us an efficient algorithm for 
determining if consecutive array elements are out of 
order. The algorithm follows.

In order to determine if two consecutive elements are 
in increasing order, first calculate the sign of the 
difference of the the two object locations and assign it 
to the number s = 0.5 . Next calculate the weights w and 
(1-w) as w = s + 0.5 and (1-w) = s - 0.5 respectively. Now
w = 1 and (1-w) = 0 when the two object locations are in
increasing order while w = 0 and (1-w) = 1 when they are 
not.

Once the order of object locations has been determined 
then the following four operation statements will swap
data if consecutive object locations in an i directional
vector are out of order and will leave the information 
_ intact if they are not:

T( i,j,k) = w x X(i,j,k)
U( i,j,k) = (1-w) x X(i,j,k )
X( i,j,k) = T (i,j,k ) + (1-w) x X(i+l,j,k)
X( i+1,j,k ) = w x X(i+l,j,k) + U(i,j,k)

where T(i,j,k) and U(i,j,k) are temporary storage 
variables. This swap procedure can be conducted on all
adjacent elements in the MLG for all i,j and k directional
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vectors.
Underlying this sort algorithm is the technique of 

sweeping through the grid for each sort iteration. When, 
for instance, all i directional vectors are being sorted 
only adjacent elements are swapped. The technique of 
reiterating through the vector until all positions are in 
order is not done. One sweep is made through all i 
directional vectors exchanging only adjacent elements that 
are out of order. Next all j directional vectors are swept 
through and finally all k directional vectors. A count is 
kept of the number of actual element swaps. If this count 
is non-zero the entire sweep through all directions is 
repeated.

Further optimization of this sort routine can be 
achieved in determining local areas within the MLG grid 
:which do not need sorting thereby avoiding many unneeded 
calculations. Bookkeeping involved with this idea, 
however, becomes quite sophisticated and may not return 
sufficient benefits to warrant the coding of the 
algorithms.

In looking at the relative motion of the points in 
the space with respect to the resultant amount of sorting 
required as a consequence of that motion, one observation 
made by Boris about the magnitude of the number of sort
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iterations needed to establish MLO, “Almost all of the 
grid restructuring occasioned by particles passing each 
other occurs in the first two or three vectorized 
iterations." (Boris,85), is supported by test results 
conducted in this study. The number of sort iterations is 
generally low. The term generally is used because cases 
have arisen in which a noticeable increase in the number 
of sort iterations was recorded for several timesteps 
within particular test runs. This discrepancy can be 
explained when looking at the particular flow equations 
being used to perturb the points.

Sort iteration counts remain low, (5 - 10), in 
sections of consecutive timesteps until point motion 
triggers either minor global, or major localized point 
passing, which would in turn necessitate an increase in 
-sort operation counts. Such situations will be presented 
in the result chapter of this study.

Originally the MLG was developed to monitor points 
moving about in a spatial domain. Data about the points 
was stored in the MLG and dynamically moved about in 
conjunction with the motion of the corresponding points.

This study will extend the model of the MLG to handle 
two dimensional figures (triangles). This is accomplished 
by characterizing the triangles with one particular point.



T-3273 41

while storing information about the triangle as a whole in 
the MLG.
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CHAPTER 3 - REPRESENTATION OF THE FREE LAGRANGIAN GRID 
USING THE MLC '

3.1 INTRODUCTION
The MLG model introduced by J.P. Boris was developed 

for points moving about in space. This chapter discusses 
the extension of the point model to a 2-D figure model.

We will discuss storing point data in the MLG versus 
storing triangle data, as well the minimum amount of data 
which can be stored in the MLG.

3.2 POINT DATA V S . TRIANGLE DATA
The Free Lagrangian numerical method discussed earlier 

requires information about the triangles which surround 
points in the real space as well as information about 
adjacent triangles of the space.

If we were to store point data in the MLG, we would 
lose information about the vertices (points) which 
determine triangles of the space. For instance, if we
were required to find all vertices of the triangle Tm ' we 
would have to resort back to searching a list containing
triangle data in order to relate the triangle Tm to its 
vertices, because the MLG does not contain any information 
about triangle-vertex relationships. This is exactly the 
problem we are trying to overcome.
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On the other hand, storing information about triangles 
in the MLG allows us to relate point and triangle data 
directly. For example, if we need to determine the 
coordinates of all verticies of a triangle, we would 
simply use the triangle I.D. stored in the MLG as the 
index reference to the array containing triangle 
information. Once we have found the correct position in
the triangle array we can use the vertex I.D.1s as index
references to the point array.

3.3 MINIMUM MLG STORAGE REQUIREMENTS
The next step in the transformation of the MLG point 

model is to determine the minimum amount of data which 
needs to be stored. Since triangle data is being stored, 
the triangle I.D., in the least, must be stored. As will
be seen in the next section, the coordinates of the
"triangle processing attribute" must also be stored in 
order for us to sort the MLG. All other references to data 
can be made using the triangle I.D. as the array index.

Therefore, the minimum amount of data needed in the 
MLG is comprised of the triangle identification number, 
and the coordinates of the "triangle processing 
attribute". Data such as point coordinates and triangle 
vertex I.D.'s can be stored in arrays outside the MLG, and
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referenced using the MLG triangle I.D. as the array index.
The MLG takes the form of a four dimensional array. 

The first three dimensions are the i, j and k indices of 
the MLG cells, while dimension 4 contains the triangle 
data. Following are the data positions in the fourth 
dimension of the MLG cell at (i,j,k ):

Dimension 4: Triangle attribute storage
Position 1: x coordinate of triangle processing

attribute
Position 2: y coordinate of triangle processing

attribute
Position 3: z coordinate of triangle processing

attribute
Position 4: Triangle I.D. of triangle at (i,j,k )

In the initial development of this study the author 
stored triangle vertex I.D.'s in the MLG in addition to 
all of the above outlined data. It was thought that the 
triangle vertices were needed in the MLG when referencing 
the point array for point coordinates, but was later found 
not to be the case.

3.4 EXTENSION OF THE POINT MLG MODEL TO
REPRESENTATION OF TRIANGLE DATA

We must now determine how to apply two dimensional 
figures (triangles) to a point MLG model. This is easily
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accomplished by characterizing each triangle using one 
particular point of the triangle. For instance, we could 
characterize all triangles of the space by their 
centroids, or by the vertex which has the smallest x 
coordination.

We will call this characterization point the "triangle 
processing attribute". All sorting which was discussed in 
the preceding chapter will now be performed on the 
triangle processing attribute.

There are many possible triangle processing attributes 
which could be used. Only four were chosen. These four 
attributes will be discussed in detail in later chapters. 
For now the four triangle processing attributes are:

1. Triangle centroid
2. Triangle vertex with the smallest x coordinate
3. Average vertex coordinates
4. Midpoint of the longest triangle side bisector
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CHAPTER 4 - MLG TEST PARAMETERS

4.1 INTRODUCTION
In order to test the MLG and its adaptation to a Free 

Lagrangian grid certain tests were developed that indicate 
the usefulness of the MLG in searching for adjacent and 
surrounding triangles. The following test procedures and 
parameters were developed in order to test key issues such 
as search times and lengths and partitionability of the 
data stored in the MLG.

The process of testing algorithms involves the
establishment of execution parameters in accordance with 
each issue being examined. For instance, when examining 
the partitionability of data stored in the MLG, different 
flow equations (fundamental, non-conservative equations) 
are used to "move" data about in the MLG, therefore 
testing the sort and search algorithms in relation to 
locality of spatially related information in the MLG. In 
addition, both regular and irregular initial grid
configurations are used in testing the MLG performance.

The reason for the varying initial grid configuration 
is to correlate data accessibility between different 
initial grid shapes, thus determining the difference 
between data partitioning using regular and irregular
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initial grid constructs.
Different partitioning schemes have been developed in 

order to establish which triangle attributes make the best 
triangle processing attributes. The calculation of 
operation counts and the determination of maximum index 
offsets in searching algorithms will establish which 
attributes are optimal.

4.2 INITIAL GRID CONFIGURATIONS
Appendix A gives plots of all initial grid 

configurations used in the testing of the MLG. These 
initial grids are broken.down into two main categories, 
regular and irregular grids.

Regular initial grid construction is performed in a 
predetermined manner using a special technique for placing 
points and triangles into a regular pattern. All points 
are initially placed at lattice positions in a two 
dimensional space. From here triangles are formed using 
these points as verticies. The pattern formed by these 
triangles is very regular and constant throughout the 
grid. Appendices A.1 and A.2 show examples of both a 
"symmetric" and a "slightly deviated" regular initial 
grids.

Irregular initial grid construction carries the
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regular grid construction phase one step further by adding 
a random number of points to randomly determined pre­
existing triangles in the space. The method of inserting 
more points is the Triangle Trisection method (section
1.3) and the number of triangles trisected is taken to be 
a predetermined percentage of space triangles present from 
the regular grid construction phase. In other words, if it 
is desired to tesselate 90% of the regular grid into an 
irregular pattern and if 100 triangles were constructed in 
the regular grid construction phase, then there will be 
190 triangles present in the initial irregular grid after 
all construction is complete. Appendices A.3 and A.4 show 
examples of "symmetric" and "slightly deviated" irregular 
initial grids.

Initialization of the grid into either a regular or 
irregular configuration is done in order to compare 
sorting and searching results obtained from the use of 
both the regular and irregular schemes. Any differences in 
the results will suggest partiality by the MLG to initial 
grid configuration, thereby reducing the flexibility of 
the MLG.

"Symmetric" and "slightly deviated" initial grid 
options are used as an extra deviation to the initial grid 
construction. The amount of deviation of point placement
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from the regular lattice grid positions is variable and 
can be changed from one execution to another. This added 
initial deviation produces different grids through the 
duration of executions and thusly eliminates the
dependence between flows and processing attributes and the 
initial grid structure. For example, if consecutive
executions use a "slightly deviated" irregular initial 
grid construction the correlation between the execution 
runs is not dependent on the use of the same initial grid.

4.3 PARTICLE MOVEMENT EQUATIONS
Movement of points and triangles in the point space 

causes the movement of data in the MLG. As was seen 
earlier, sorting of the MLG will preserve the data
locality within the data structure, thus making data
access quicker and more efficient.

In order to test the MLG and its dynamic 
representation of the point space, different particle 
movement equations are used to observe data movement in 
the MLG. Three types of particle movement were developed 
and tested.

The vector equations modeling these three flows are as 
follows :
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1. Modified Uniform Strain Flow

px(t+l) = px(0) e<_bt> + Px(t)
py (t+1) “ Py(0) e(bt) + Py(t)

2. Modified Parabolic Flow in X

px(t+l) = px(0) + fc(yo - Py(t))2 
py(t+l) = Py(0) 

where Yq is a constant.

3. Random Flow

Px (t+1) = Px (t) + ri
Py ( t+1 ) = Py ( t ) + t2

where r^ and r^ are randomly generated, uniformly 
distributed, numbers in a predetermined interval.

px(t) and Py(t) are the x and y components of the 
point coordinates at any time t. Appendix B shows a11 
three particle movement results, B.1-B.4 picture the 
Uniform Strain flow, B.5-B.8 the Parabolic flow and B.9- 
B .12 the Random flow.

As can be seen from the plots of the point space and 
the triangular interconnections, the Parabolic and Random 
flows distort the grid sufficiently enough to warrant 
further investigation into the adaptability of the MLG to
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these different flows. The plot of the Uniform Strain 
flow, however, shows that point motion governed by these 
vector equations does not produce enough distortion in the 
triangular connections to disrupt the MLG data to any 
large extent.

In fact, numerical results show that very little 
physical change occurs in the MLG as a result of Uniform 
Strain point motion in the space.

4.4 DATA PARTITIONING SCHEMES
Several triangle attributes have been tested in order 

to classify one or two of them as being the best 
processing attribute. First of all an explanation of the 
triangle processing attribute.

As stated above (section 3.3), positions 1, 2 and 3 of 
an MLG cell contain the x, y and z components of the 
triangle processing attribute, respectively. The triangle 
processing attribute is defined to be one certain "point" 
of the triangle on which all sorting will be done. 
Therefore if the triangle processing attribute is defined 
to be the triangle centroid, then the coordinates of the 
centroid will be stored in positions 1-3 of the MLG 
triangle attributes and the sorting of the MLG cells will 
use these three coordinates as the sort criterion. Thus
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when sorting all i directional vectors the following 
comparison:

X(i,j,k) < X(i+l,j,k)

will take the form:

MLG(i, j,k,l) < MLG(i+l, j,k,l)

where MLG(i, j,k,n) is the cell at i, j,k in the MLG 
data structure. Likewise, sorting j and k directional 
vectors would involve the use of elements in positions 2 
and 3 respectively.

Since there are many attributes of the triangle which 
could be used as processing attributes, only a few were 
chosen. These few were chosen so as to give different 
insight to the relative shape of the triangle they 
-represent. For instance, if triangles in a particular 
point space are forced to become elongated (long and 
narrow) then the processing attribute defined to be the 
midpoint of the longest bisector would also give 
information about relative dimensions of the sides of the 
triangle. In other words, the point being used for the 
processing attribute will be somewhat skewed from the 
center towards the long end of the triangle, thereby 
representing the majority of the triangle as being farther
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away from the center than would a processing attribute 
defined to be the triangle centroid. The triangle centroid 
in this instance would lead us to believe that the 
triangle is centralized more around its center point than 
is really the case.

Four triangle attributes were chosen to be used as 
processing attributes and they are:

1. Triangle centroid (assuming mass is constant)
2. Vertex with the smallest x coordinate
3. Midpoint of the longest side bisector
4. Average vertex coordinate value

Attribute 1 (triangle centroid) was chosen for the
fact that the triangle could be generalized close to its 
center (fig. 4.1).

FIG. 4.1: Triangle centroid
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If the flow is such that large differences in triangle 
areas are not present in the space then the triangle 
centroid would sufficiently represent the state of the 
triangle. As a matter of fact, this particular attribute 
works quite well in the processing of a wide variety of 
shapes and sizes of triangles. This choice of points has 
proven to be one of the best of the four, in most 
combinations of flows.

If flow is random and triangle distortion is difficult 
to predict then attribute 2 (vertex) should represent the 
space sufficiently (fig. 4.2).

X

FIG. 4.2: Vertex containing the smallest x coordinate

However, as will be seen, this attribute causes a loss 
in the information about the general shape of the
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triangle. Information about only one of the vertices does 
not give us a general description of the triangle. The 
triangle could be very elongated and all we will know is 
the position of the vertex with the smallest x coordinate. 
This attribute has proven to be the poorest of the four 
choices.

If point motion causes elongation of the space 
triangles then attribute 3 (longest bisector midpoint) 
will reflect the state of the triangle sufficiently (fig.
4.3), and testing shows that this is the case. However, if 
triangle shapes evolve to the point that triangle sides on 
the average are close in magnitude then extra work is 
being done calculating the midpoint, when the triangle 
centroid could be used with less computation.

FIG 4.3: Midpoint of the longest side bisector
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Finally, attribute 4 (average coordinate) was chosen 
to average out the vertex coordinates and give a mean 
representation of the triangle (fig. 4.4).

FIG. 4.4: Average vertex coordinates

This approach dampens differences in side lengths 
giving us an average positional location for the 
coordinates of the triangle. This type of attribute can be 
applied to triangles of varying shapes, giving similar MLG 
representation to various triangles of different shapes. 
This choice of attributes has shown to be quite good, and 
as will be shown later is one of two attributes that give 
similar good results.

4.5 MLG SEARCHING ALGORITHMS
Once the flow and attribute parameters have been set 

up the issue of determining how well the MLG performs with
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respect to searching must be addressed. What search 
algorithms will test the MLG model as if it were being 
used in real time applications?

The Free Lagrangian model requires point and triangle 
mesh update procedures to use information about 
neighboring points and triangles. The vertex cell defined 
in chapter 1 requires information concerning all triangles 
around a point, while the triangle mesh bookkeeping 
algorithms require information concerning adjacent 
triangles.

This then will be the basis of developing searching 
algorithms which will aid in data access processes. In 
this chapter we will only develop the evaluation criterion 
for searching out adjacent and surrounding triangles. The 
next chapter will develop the actual algorithms used.

4.5.1 ADJACENT TRIANGLE SEARCH
First of all, we will develop the criterion for 

determining the accessibility of information about 
adjacent triangles.

The MLG used in this study is related to a two 
dimensional array. Let us define an "index offset of m" to 
be all MLG cells MLG(i,j,k ,n ) such that :
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io " * _< i < io + *
io " * < i < io + *
k o - n i < k < k o + m

where i0# j0 and k0 are the MLG indices of the central 
cell.

A typical index offset of 1 is pictured in figure 4.5. 
In the case that i0, jo or ko is equal to 1 then the index 
offset of 1 would only include the central cell as the
outermost cell in the direction of the MLG boundary
(figure 4.6).

In searching for adjacent triangles a measurement will 
be made as to the magnitude of the index offset in order 
to find all adjacent triangles to the triangle contained 
in the central cell. Since the MLG offers us data 
locality, index offsets measure the relative closeness of 
spatial data within the MLG. We will then use thi-S 
measurement in evaluating MLG performance in adjacent 
triangle searches
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FIG. 4.5: Typical symmetric index offset of 1
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FIG. 4.6: Index offset of 1 at MLG boundaries
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using different processing attributes as well as different 
flows. Once all adjacent triangles have been found for 
each MLG cell (triangle), an average index offset will be 
determined. This average, along with analysis of 
individual maximum and minimum cell index offsets and the 
variance of the offsets around their mean will be the 
basis of determining which processing attribute works best 
with certain point flow equations.

4.5.2 SURROUNDING TRIANGLE SEARCH
Now, we will define the procedures for the evaluation 

of algorithms which search for all triangles around a 
given point. These algorithms are more complex than their 
adjacent triangle counterparts, however segments of the 
adjacent triangle search carry over to the surrounding 
triangle searches, making this search algorithm somewhat 
related to the more fundamental adjacent triangle 
algorithm.

As for searching for all triangles around a given 
point, again a measurement of index offsets will be taken 
for each point. These index offsets will then be averaged 
over all points of the space. This average along with 
analysis of maximum offsets in the i, j and k directions 
and the variance of the offsets around their respective
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means will be the basis of evaluation in this search.
The measuring of offsets in searching for triangles 

around a point differs from the adjacent triangle "index 
offset of m" definition given above. First of all, points 
are processed by stepping through the MLG, triangle by 
triangle, and processing all unprocessed points which 
appear as part of the present triangle. While stepping 
through each triangle, when points that have not been 
processed are encountered the triangle which contains them 
is recorded as being the "entry triangle" for that 
particular point. For instance, if the unprocessed point 
pn is present in triangle Tm of the MLG then triangle Tm 
will be defined to be the "entry triangle" for point Pn • 
Since every triangle in the space has a unique MLG 
reference index, the i, j and k indices of the entry 
.triangle then become the target cell indices. In other 
words, if triangle Tm has an MLG index reference of

i0 »jo'^o*n ) then the target cell indices become iQ, jQ
and k0 e

From this point a record is kept of the maximum index
offset needed in all three of the i, j and k directions in
order to find all triangles which share the point in 
question. This in turn is the measurement which we will 
use to evaluate the performance of the MLG in the case of
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surrounding triangle searches. Figure 4.7 pictures a 
typical i index offset of 2 and j index offset of 1 for a 
point Pn contained in triangle Tm at the MLG index 

(*o#io)•
Each point will have associated with it a maximum i, j 

and k index offset, which suggests that index offsets may 
! i i I I I— I- - - - - - - 1- - - - - - - 1- - - - - - - J_ _ _ _ _ _ 1 _ _ _ _ _ _ I _

Jo+ 1 

Jo

Jo" 1

l0 -  2  l0 -  1 'o lo +  1 V  2

FIG. 4.7: i index offset of 2, j index offset of 1

not be symmetric in the i, j and k directions as is the 
case in searching for adjacent triangles. This difference 
in defining performance measurements around index offsets 
arises from the algorithm being used to perform the actual 
searching. This algorithm is to be developed in the next 
chapter.
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4.6 SUBROUTINE CPU TIMINGS
One final evaluation tool has been incorporated in 

testing the performance of the MLG. Benchmark timings 
(CPU) have been established within all subroutines of the 
MLG test program. The actual CPU requirements of the 
sorting and searching subroutines will be used in 
comparisons between flows and between processing 
attributes in order to help in the narrowing down or 
simplification of establishing the optimal processing 
attributes with respect to the parameters used in this 
study. As will be seen in later chapters, time consumption 
figures for similar flows vary noticeably between uses of 
different processing attributes, suggesting that certain 
triangle attributes are truly superior to others.

Different combinations of flows, initial grid 
.configurations, and searching techniques have been used in 
an extensive series of test runs of the MLG algorithm and 
the subroutines used to aid in testing the MLG 
performance. Future chapters will discuss the actual 
combinations of parameters used and will give results of 
the test runs, giving CPU timing comparisons, operation 
count comparisons and index offset comparisons.
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CHAPTER 5 - ALGORITHMS

5.1 INTRODUCTION
In this chapter the algorithms used in testing the 

performance of the MLG will be developed. An overall view 
of all relevant algorithms used in the driver program 
MLG.FOR will be given. These algorithms consist of three 
general types.

Type one is a family of initialization procedures. 
Model parameters such as model size, time duration, time 
step size, plot and numerical data output confirmation, 
and certain flow constants are established by non­
interactive initialization. Interactive input accounts for 
the input of flow type, type of searching to conduct, 
initial grid configuration and the particular processing 
attribute to be used in sorting.

Type two is a family of model execution algorithms. 
These algorithms are comprised of routines which, for each 
timestep, adjust the processing attribute of each MLG 
cell, sort the MLG, apply motion to the point space and 
search the space for either adjacent or surrounding 
triangles. These algorithms account for most of the 
execution run time of the driver program as a whole.

Finally, type three is the family of output
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algorithms. These algorithms handle output of plot data, 
statistical data accumulated from searching algorithms and 
CPU timings obtained from the separate routines.

5.2 INITIALIZATION ALGORITHMS
The initialization family of algorithms can be further 

broken down into two sub groups, interactive and non­
interactive .

Four execution parameters are read in from the user in 
the interactive section of program initialization. These 
four parameters are:

1. Initial grid configuration
2. Point flow equation
3. Triangle processing attribute
4. Type of searching to conduct on the data base

Non-interactive initialization routines consist of the 
initialization of equation parameters, model size, point 
and triangle arrays, and the initialization of output 
files.

5.2.1 INITIAL GRID CONSTRUCTION
In the initialization of the triangular grid, 

triangles are set up in a regular configuration (section
4.2 and appendices A .1 & A.2) . If the interactive
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parameter for initial grid construction specifies the use 
of an irregular initial grid, the regular triangle space 
is then tesselated into an irregular configuration.

GRIDFRAC, is a non-interactive parameter which 
determines the maximum fractional part of the regular grid 
which will be irregularly tesselated in this step. The 
maximum of, GRIDFRAC X NUMTRI (where NUMTRI is the number 
of triangles in the space) and a randomly generated number 
in the interval (1 , NUMTRI), is taken to be the fraction 
of the initial regular grid which will receive additional 
tesselation.

This incorporation of randomness is used in order to 
produce random tesselation patterns and thus give us the 
facility to compare similar runs (with respect to 
processing attributes, point flows and searching schemes) 
-on different initial grids. This can be useful in 
examining differences in a processing attribute's mean 
performance on dissimilar grids.

Additionally, the number of triangles will not change 
during execution of MLG.FOR . The reason for this is that 
the algorithms needed for the bookkeeping of insertions or 
deletions of triangles and points are too complex at this 
stage to incorporate. Therefore after initial grid 
construction, triangle and point interconnections are not
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broken and the number of triangles as well as the number 
of points are kept constant. In keeping with this 
convention, point flow equations have been formulated such 
that point motion does not become extremely radical, 
therefore keeping the grid uncorupted for as many 
timesteps as possible.

5.3 MODEL EXECUTION ALGORITHMS
In this section we will discuss algorithms which are 

used in the actual model execution stage of the program. 
These algorithms consist of the adjustment of triangle 
processing attributes, sorting of the MLG into Monotonie 
Logical Order (MLO), searching the MLG for adjacent or 
surrounding triangles and the application of motion to the 
space points.

5.3.1 PROCESSING ATTRIBUTE ADJUSTMENTS
These particular algorithms, whose subroutine names 

consist of ADJCENT, ADJTRI, ADJAVG, and ADJLONG, are used 
to adjust any coordinates of the processing attributes 
which may have changed from the previous timestep due to 
point motion.

ADJCENT recalculates each triangle's new centroid 
using the updated point array.

Adjustment of the vertex with the smallest x
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coordinate is performed by the subroutine ADJTRI. All 
vertices of . the triangle are compared in order to 
determine the vertex which, after point motion, has the 
smallest x coordinate.

ADJAVG is a subroutine used to adjust the average 
values of all vertices in a particular triangle. The 
coordinates of each triangle are gathered from the updated 
PT array and averaged in each dimension (x, y and z).

Similarly, the ADJLONG subroutine recalculates each 
side bisector of each triangle and determines the midpoint 
of the longest one.

5.3.2 MLG SORTING ALGORITHM
Basic concepts of the sort algorithm called MLGSORT 

were presented in section 2.4 of chapter 2. Appendix C.l 
shows pseudo-code for MLGSORT. Actual FORTRAN code for 
MLGSORT is given appendix D.l

This algorithm incorporates a cut down version (with 
respect to iteration sweeps) of a bubble sort. Vectorized 
sweeps, as a result of the use of a red-black algorithm 
are made through all dimensions of the space, thus giving 
us the benefit of vectorized calculations and possible 
multiple processing since dimensional sorts are 
independent of vectors of the same dimension (section 2.4,
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chapter 2).

5.3.3 MLG SEARCH ALGORITHMS
Two separate searching algorithms are to be presented. 

The first algorithm (adjacent triangle search) will be the 
building block for the second (surrounding triangle 
search). First of all let us discuss certain conventions 
and arrays which are utilized in both algorithms.

A matrix of dimension NUMPTS X 3 called PTSTAT, where 
NUMPTS is the number of points in the space, is utilized 
in determining the position of the triangle with respect 
to the boundaries of the triangular grid. This array 
contains three attributes pertaining to each point of the 
space. The attributes are stored in positions 1-3 of the 
second dimension while dimension 1 indexes the point I.D..

The particular attributes of the point relate to the 
position which the point holds relative to the boundary of 
points in the space. An entry of 1 in the first position 
of dimension 2 indicates that the point is interior to the 
point boundaries, an entry of 1 in position 2 indicates 
the point is considered to be a border point and an entry 
of 1 in position 3 indicates the point is a corner point.

An interior point is defined to be any point such that 
each triangle side which stems from it belongs to exactly
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two triangles of the space (fig. 5.1).

FIG.5.1: Interior point A

A corner point is defined to any point which 
stemming from it only two triangle sides (fig. 5.2).

FIG. 5.2: Corner point B

has
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All other points of the space are defined to be border 
points (fig 5.3).

FIG. 5.3: Border point C

Also:

Ei = l PTSTAT(n,i) = 1 , for all n 1 < n < NUMPTS

The above summation equation is evident by the fact that 
it is impossible for a point to be defined in two ways. 
For example, if a point is defined to be an interior point 
then it is impossible for that same point to be defined as 
a boundary point.

The information obtained by summing the different 
positions of the PTSTAT matrix over all points (vertices)
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of a particular triangle will tell us what type of a 
triangle we are dealing with.

There are also three definitions of triangles which 
are similar to the definitions of points. They are 
interior, border, and corner triangles. Following are the 
definitions for the classification of triangle types :

Let

INTf,RIOR_SUM - vertices of Tm) PTSTAT ( i , 1 )
BORDER_SÜM - £(all vertices of Tm) PTSTAT(i,2)
CORNER_SUM = £(all vertices of Tm) PTSTAT(i,3)

then if
INTERIOR_SUM = 3 and BORDER_SUM = 0 and CORNER_SUM = 0

then triangle Tm is defined to be an interior
triangle. (1)

Also if
INTERIOR__SUM = 2 and BORDER_SUM = 1 and CORNER_SUM = 0

then triangle Tm is defined to be an interior
triangle. (2)
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And if
INTERIOR_SUM = 1 and BORDER_SUM = 2 and CORNER_SUM = 0

then triangle Tm is defined to be a border
triangle. (3)

And finally if 
INTERIOR_SUM = 0 and BORDER_SUM = 2 and CORNERJSUM = 1

then triangle Tm is defined to be a corner
triangle. (4)

5.3.3.1 ADJACENT TRIANGLE SEARCH 
ADJSRCH is a subroutine which uses the data locality 

of the MLG in order to determine and calculate which 
triangles are adjacent to any given triangle. This 
subroutine, as well as the subroutine used to find 
surrounding triangles around points, utilize the "close" 
storage of data in the MLG with respect to neighboring 
triangles in the space. Also the concept of the "index 
offset" developed in section 4.5.1 will be utilized 
within.

The adjacent triangles to each of the triangles in 
the space are determined using a sequential access pattern 
looping over the MLG indices i, j and k. Since the MLG 
data structure physically resembles a three dimensional
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matrix, the looping indices loop through the real space 
dimensions x, y, and z, with y being the inner most index, 
x the next level up and z the outer most index. The 
result of this order of looping produces update sweeps 
through all y directional vectors of the MLG.

Now for each triangle Tm being updated index offsets 
of consecutive magnitude (i.e. 1,2,3,...) are searched
until all triangles which are adjacent to it are found. 
FINDADJ, a subroutine one level down from ADJSRCH, 
determines current index offset magnitudes of the search 
being conducted for triangle Tm » as well as the particular 
MLG index reference, i0# j0 and k0 , of the triangle to be 
determined as either adjacent or not adjacent to triangle

For each index offset, all triangles whose MLG index 
references fall within the bounds of the offset are 
.checked to see if they are adjacent to triangle Tin„ This 
is done by calling upon the subroutine ADJCONF which is 
yet another level below FINDADJ.

ADJCONF simply confirms or rejects the hypothesis of 
triangle Tm being adjacent to the triangle at the MLG 
index reference (iQ , jQ , kQ ).

As for FINDADJ, this subroutine must also determine 
the number of adjacent triangles which it must look for 
while searching on each individual triangle, since no
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record of adjacent triangles is being kept. This is where 
the PTSTAT matrix is utilized. We can use the previous 
definitions of interior, border and corner triangles to 
determine the number of adjacent triangles to search for. 
A corner triangle has exactly one adjacent triangle, while 
an interior triangle has exactly three adjacent triangles.

A border triangle, however, has the possibility of
either two or three adjacent triangles. This non-unique 
determination causes considerable work in ADJSRCH and the 
subroutine to be discussed in the next section. The 
problem arises from the definition of the different types 
of triangles. A triangle which has interior, border and 
corner point counts of 1, 2 and 0 respectively, is defined 
to be a border triangle (definition (3) from above).
However, it can also be classified as an interior triangle 
by the number of adjacent triangles around it. This 
triangle is in fact the only adjacent triangle to a 
corner triangle (fig. 5.4) and is called a "hidden
interior triangle".
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FIG. 5.4: Hidden interior triangle

Therefore additional work must be done to identify the 
triangles which are adjacent to corner triangles and then 
reprocess these triangles using the fact that there are 
-really three adjacent triangles.

Appendices C.2 and C.3 give pseudo-code
representations of ADJSRCH and FINDADJ, respectively. 
Actual FORTRAN code for these algorithms as well as 
ADJCONF are presented in appendices D.2 , D.3 and D.4 .

5.3.3.2 SURROUNDING TRIANGLE SEARCHES
The searches which involve finding all triangles 

around a given point and the subroutines which perform
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this task are the subject of this discussion. The first 
subroutine to be discussed is called PNTSRCH, and is an 
extension of ADJSRCH, in that it uses the concepts that 
ADJSRCH uses and extends the searching to a more extensive 
level. This subroutine uses the subroutine FINDADJ which 
was described in section 5.3.3.1. The second of the two 
surrounding triangle search subroutines, which is called 
PNTSRCHF, does not use FINDADJ. Instead triangle I.D.'s of 
adjacent triangles are stored in the triangle data array 
and referenced whenever adjacent triangles are to be 
found.

In PNTSRCH, the MLG is searched sequentially as in the 
case of the adjacent triangle search, however our search 
does not directly involve triangles anymore. As we step 
through each triangle in the MLG we are looking at the 
points (vertices) of the triangle. In looking at one of 
the vertices, PQ, of the entry triangle (section 4.5.2, 
chapter 4), we need to find all triangles of the space 
which have this point as a vertex.

In the simplest case, if PQ is a corner point, it will 
only have one triangle surrounding it, namely the entry 
triangle. The number of surrounding triangles for interior 
or border points, however, is not nearly as easy to 
established. This problem arises from the fact that the
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number of triangles which surround a point is variable.
By use of the subroutine FINDADJ, we can obtain all 

triangles which are adjacent to any given triangle.
Therefore, we begin the search by finding all 

triangles adjacent to the entry triangle of point P0 * 
then must eliminate all triangles found to be adjacent to 
the entry triangle which do not contain PQ as a vertex. We 
must also eliminate all triangles which were found to 
contain PQ in earlier adjacent triangle searches (for the 
case of the first adjacent search the number of triangles 
found before the entry triangle will be zero). The 
resultant list of adjacent triangles will contain either 
the next triangle to perform the adjacent triangle search 
on, or the list will be empty. If the list is empty, 
searching is complete for P0 e * ̂ the list is not empty, we 
.must find all adjacent triangles for the triangle 
remaining in the list and eliminate triangles as above. 
This process must be continued until the list of 
triangles, after elimination, is empty. This algorithm is 
pictured in figure 5.5 .

Problems arise with the use of this algorithm because 
of the circular path which the search takes around a point 
and its relationship to the entry triangle. Interior 
points do not experience this problem because the search
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path around the point always starts and ends with adjacent 
triangles. Border point search paths do not start and end 
with adjacent triangles. If the entry triangle is not a 
border triangle then the search path will go around the 
point in one direction and shut off when the first 
involved border or corner triangle is encountered (fig. 
5.6).

e n t r y  t r ia n g le  f o r  
p o in t  P

te r m in a t io n  
t r ia n g le  f o r  
p o in t  Pn 

s e a r c h

FIG. 5.5: Surrounding triangle search for interior point Pn
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term ination triang le  
" S fo r pomt P

s e a r c h

FIG. 5.6: Incomplete surrounding triangle search 
for border point Pn

In order to eliminate this problem, a check is made to 
determine if the entry triangle is a border or corner 
triangle. If it is, the search is conducted in the normal 
fashion. If the entry triangle is an interior triangle, 
then the MLG is searched using the fundamental "index 
offset" search until a border or corner triangle 
containing the border point is found. From this point the 
surrounding triangle search is conducted in the normal 
fashion (fig. 5.7).
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c o m m e n c e m e n t t r i a n g le  
f o r  p o m t  Pn s e a r c h

t e r m in a t io n  t r i a n g le  
f o r  p o in t  P  s e a r c h

e n t r y  t r i a n g le  f o r  
p o m t  P

FIG. 5.7: Readjustment of commencement triangle 
for border point Pn search

Once again, as in the case of the adjacent triangle 
search, points being searched upon which come about 
through an entry triangle which is adjacent to a corner 
triangle (hidden interior triangle) must be reprocessed 
using the fact that the entry triangle in reality has 
three adjacent triangles.

Pseudo-code will not be given for this subroutine as 
it is very complex and would be very space consuming. 
Refer to appendix D.5 for the FORTRAN code of PNTSRCH.

Optimization on PNTSRCH has not yet been done. The
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section of code which looks for the first occurrence of a 
corner or border triangle when updating a border point 
whose entry triangle is interior is an example of sections 
that would benefit from optimization. As was noted, the 
use of the rudimentary "index offset" search was 
incorporated to find the first qualifying triangle. 
However, this search does not keep track of triangles 
along the way which are involved with the point in 
question. Therefore when a corner or border triangle is 
found the whole process of finding surrounding triangles 
must be repeated.

In the models used for this study, model size was 
small enough to hide the time consumption of this section 
of code. If the model were to be increased to a sizable 
magnitude, the number of border points becomes small 
relative to the number of interior points but, time 
consumed in "reinventing the wheel" could be better spent 
processing more points. This is one area of improvement to 
be considered in future optimization.

The subroutine PNTSRCHF uses stored information about 
adjacent triangles instead of calling on the subroutine 
FINDADJ to calculate the adjacent triangles. This 
subroutine is used as a comparison between the methods of 
calculating adjacent triangles using the MLG (thus
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reducing the amount of information being stored) .and the 
method of storing all needed information about adjacent 
triangles (thus reducing calculation time). The triangle
I.D.'s of all adjacent triangles are stored with each 
individual triangle's information in the triangle array. 
Thus producing large amounts of redundant data.

The PNTSRCH and PNTSRCHF algorithms are identical 
except when adjacent triangles are to be obtained. PNTSRCH 
uses FINDADJ to calculate the adjacent triangles, while 
PNTSRCHF references the triangle data array.

5.3.4 POINT MOTION
This section of the model execution family of 

algorithms applies the desired flow to the points of the 
space. As was described in section 4.3 of chapter 4, there 
are three possible flow equations. Modified Uniform 
Strain, Modified Parabolic flow in x and Random flow. 
Point motion is executed by a call to the subroutine 
MOVEPNT which in turn calls the individual point motion 
subroutines, STRAIN, PARABOL and RANDOM which are on the 
level below MOVEPNT. Calls to MOVEPNT are made at the end 
of each time step (time starts at t=0) so that execution 
of all sorting and searching is done at the start of the 
next time interval for the data of the previous timestep.
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5.4 DATA OUTPUT ALGORITHMS
This particular family of algorithms produce output of 

data from program execution. This family is comprised of 
only one subroutine member which is called OUTDATA. Calls 
are made upon this subroutine passing a variable to 
distinguish the type of output desired.

There are three main categories of output, graphical, 
numerical partition, and statistical. Graphical output is 
used in the program DATAPLOT which plots triangle and 
point migration for all of the possible flows. Numerical 
partition data is used to watch the migration of data 
within the MLG. Finally, statistical output is generated 
for comparison testing which will be presented in chapter 
6. The statistical data includes index offset values for 
different runs using both the adjacent triangle search 
(ADJSRCH) and the surrounding triangle search (PNTSRCH), 
as well as CPU timings for all subroutines (both 
initialization and model execution).



T-3273 85

CHAPTER 6 - RESULTS AND CONCLUSIONS

6.1 INTRODUCTION
Results of the MLG performance in various test 

situations will be presented in this chapter along with 
conclusions that can be drawn from these results. Both 
results and conclusions will be intermixed throughout the 
chapter. An overview of the study and generalized 
conclusions will be given at the end along with future 
directions for the study of the MLG and its application to 
Lagrangian techniques. Results to be given in this chapter 
are as follows :

1. Use of the MLG is found to be superior with respect 
to search lengths when compared to the use of a list data 
structure.

2. No significant difference is detected between 
average offsets when regular and irregular initial grid 
configurations are used.

3. The computational cost of the MLG sort subroutine 
is N , the number of cells in the MLG.

4. Large sort sweep iteration counts are evident in 
the first two or three timesteps. After this point, counts 
decrease and remain relatively stable.

5. The centroid and the average coordinate attributes
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are optimal processing attributes with respect to the four 
attributes tested in this study.

6. CPU reduction is evident when using PNTSRCHF as 
opposed to using PNTSRCH.

6.2 MLG vs. LIST
In this section we will discuss the advantages that 

the MLG holds over the List data structure in the area of 
search lengths.

The following definitions will be used in the 
foregoing discussion:

Total number of record searches
in each of the searching algorithms.

- Number of triangle records searched for each individual point or triangle in 
each of the search algorithms.

- Number of triangles present in the 
space.

Number of points present in the space.

In the case of the list data structure let us assume 
that the data structure is constructed of two, 2 
dimensional arrays, namely the POINT and the TRIANGLE 
arrays. In the POINT array each record contains the three 
coordinates of the specific point while the TRIANGLE array

Define

Ntot

Ntrs

Nt

NP
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contains in each of its records the vertex (point) I.D.'s 
of its three vertices. The MLG data structure has been 
completely specified in earlier chapters and sections 
(section 3.3, chapter 3) and will not be explained at this 
time.

We now discuss the amount of searching required by 
both the list and MLG data structures in order to find all 
adjacent triangles around each triangle of the space.

In the case of use of the list data structure, for 
each triangle in the space Tm# the number of triangle 
records which must be searched is:

Ntrs = Nt - 1 (1)

This is assuming that the number of adjacent triangles 
for each triangle is not known.

Using (1) from above, the total number of triangle 
record searches made in order to find the adjacent 
triangles to all triangles of the space is:

N tot = Nt (Nt - 1)
= Nt2 - Nt (2)

In using the MLG data structure, the maximum number of 
triangle records searched is calculated using the average 
of the maximum index offsets. Define 0m to be the maximum
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index offset, so that the maximum number of triangle 
records searched in finding the adjacent triangles around 
triangle Tm is:

N trs = ( ( 2 • Ojp,) + 1 ) 2 - 1  (3)

since the triangle Tm is not searched. And by (3), the 
maximum total number of triangle record searches conducted 
in order to find the adjacent triangles to all triangles 
of the space is:

Ntot = Nt Ntrs
= N t ( ( (2 ’ 0m ) + 1 )2 - 1 ) (4)

The use of the MLG will be advantageous only if:

N t2 - N t >_ N t ( ( (2 - 0m ) + 1 )2 - 1 )

or after simplification

(Nt1/2 - l)/2 > 0m (5)

As an example, if 1000 triangles were present in the 
space, a maximum index offset of 15 would give us close to 
equal search lengths between the two data structures.

Now let us discuss searches for triangles surrounding 
the points of the space. In the case of the list data
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structure, when finding all triangles which surround the 
point Pn# the number of triangle records searched is:

^trs ~ ^t (G )

simply because the number of triangles which contain the 
point Pn as a vertex is unknown, thereby forcing us to 
search the entire triangle list.

By (6), the total number of triangle records searched 
in order to find the triangles which surround all points 
of the space is:

^tot = Mp Ntrs
= Np Nt (7)

In working with the MLG searching algorithm, PMTSRCH, 
in looking for surrounding triangles, since index offsets 
in the i and j directions may not be symmetrical, we must 
adjust our record search counts previously defined. Let us 
further define the following variables:

0mi - Maximum index offset in the i 
direction.

0mj - Maximum index offset in the j 
direction

The number of triangle record searches conducted to 
find all surrounding triangles around point Pn is
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formulated to be:

N trs = (( 2 • 0m -£ ) + ! ) • ( (  2 • 0m j ) + 1) - 1 (8)

since the entry triangle for point Pn is n°t searched. The
total number of triangle record searches conducted in
order to find the surrounding triangles for all points of
the space is:

^tot = Np * Ntrs
= V  ((( 2 ’ °mi ) + 1) • (( 2 « 0m j ) + 1) - 1) (9)

Again, if the use of the ML G is to be to our advantage we
must have (from (7) & (9)):

Np * Nt >.
Np • ((( 2 • 0mi ) + ! ) • ( (  2 ’ 0m j ) + 1) - 1)

or after simplification

Nt/4 > (0mi + 1/16) • (0mj + 1/16) (10)

In the case of symmetrical offsets:

Given 0mi = 0m j = 0m 
then N t /4 >_ (om + l/l6)2

or

(1/2).( nl/2 - 1/8 ) > 0m (11)
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The above operational count derivations using the MLG 
data structure depend entirely on the quantities 0m# omi 
and 0mj. If these index offsets are small enough, then the 
time and effort spent on the development of the MLG will 
be well worth it.

Rigorous mathematical bounds for the maximum index 
offsets for various types of flows and various types of 
processing attributes have not yet been determined. For 
now empirical proof will produce the ground work for a 
more stable definition of the exact numbers 0m# omi and 
0mj on which the operational counts above depend.

One point needs to be made before we continue our 
discussion. The Uniform Strain flow equations presented in 
chapter 4 were found to be of little significance in 
testing the effectiveness of the MLG. This is evident when 
looking at plots of the point space through time. Shown in 
Table 6.1 are actual sort sweep iteration counts for a 
sample of 12 program executions using Uniform Strain point 
motion. It is obvious from these figures that data 
movement in the MLG is virtually non-existent after the 
first time step. Therefore, data pertaining to Uniform 
Strain point motion will not be incorporated into the 
results given below.
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Therefore, there exist in this study two different 
types of fluid flows as well as four different types of 
processing attributes which can be used. A total of 24 
programs runs were executed. The 24 runs were separated 
into 3 series. Within each series 8 runs were conducted 
using all possible combinations of flows and processing 
attributes. The mean offsets for each timestep were summed 
together to produce one entry for each execution per 
series. Results of these runs are presented in table 6.1 . 

If we round the total column mean to the nearest
integer and use it as the variable Om i-n equation (5) we 
have :

(Ntl/2 - i)/2 > 2 (12)
with 0 m = 2

- and for solving for N t we obtain 

Nt > 25
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Table 6.1s Sort sweep iteration counts for 12
executions involving Uniform Strain Flow. 
(Three series of four executions)

Execution t=0 t=l t=2 t=3

Series 1
Execution

1
2
3
4

18
20
18
19

Series 2
Execution

1
2
3
4

20
19
19
19

Series 3
Execution

1
2
3
4

19
19
19
22
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Table 6.2: Offset results of 24 program executions 
with 4 timesteps per execution.

(Adjacent triangle search)
(Irregular initial grid configuration)

Table entries are the sums of average 
mean offsets for each individual 

execution with 4 timesteps/execution.
NI, N2 and N3 indicate number of total timesteps 

per column, (one column corresponds to one series)

Flows and Attribute
Attributes Nl=32 N2=32 N3=32 Mean

Random
Centroid 
Vertex 
Avg. Coord. 
Side Bisector

Parabolic
Centroid 
Vertex 
Avg. Coord. 
Side Bisector

6.523 6.344
8.984 8.865
6.094 6.245
7.058 6.867

6.276 6.510
9.122 9.126
6.501 6.461
7.163 7.310

6.000 1.572
8.677 2.211
6.478 1.568
6.881 1.734

6.640 1.619
8.864 2.259
6.131 1.591
7.467 1.828

Column totals 57.721 57.728 57.138
Column means 1.804 1.804 1.786
Total for all columns - 172.587 
Total column mean - 1.798

NOTE: refer to table 6.3 for sample variances.
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Therefore, if our model is using more than 25 
triangles and the maximum index offset, 0m# is on the 
order of 2, the use of the MLG will be advantageous over 
the use of the list data structure. In reality the number 
of triangles will be much larger than 25. So the cost in 
search lengths is greatly decreased by use of the MLG in 
searching for adjacent triangles.

If we concentrate on comparing only the search lengths 
involved in using the MLG versus using the list, putting 
aside the cost of upkeep of the MLG, the MLG far out 
performs the list.

Using the fact that all initial grids in the 
experimenta 1 runs contained at least 7 60 triangles, the 
number of triangle record searches conducted to find all 
adjacent triangles in the space using the list data 
-structure would be (from (2)):

N tot = Nt2 - Nt 
= 576,840

Whereas, using (4) and an average maximum index offset 
of 2 for each triangle, we have (12):

N tot = N t • ( ( (2 • 0m ) + 1 )2 - 1 )
= 18,240
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which is approximately a 97% reduction in the list, search 
length. This argument of course uses an average index 
offset in the place of a maximum index offset, but only a 
very small fraction of the triangles in these experimental 
runs deviated from this average. This is evident when 
examining the variances of mean offsets for a sample of 
individual executions (table 6.3).

Table 6.3: Variances about mean offsets for 8 program 
executions.(Adjacent triangle search)

(4 timesteps for each execution)
Mean Offset Variances

Flows and
Attributes t=0 t=l t=2 t= 3

Random
Centroid 2.466 2.331 2.133 2.136
Vertex 1.378 0.956 0.737 0.722
Avg. Coord. 0.627 0.581 0.564 0.568
Longest Bis. 0.770 0.462 0.439 0.387

Parabolic
Centroid 0.435 0.323 0.454 0.869
Vertex 2.478 0.726 0.855 1.232
Avg. Coord. 0.580 0.403 0.456 0.633
Longest Bis. 0.671 0.393 0.437 0.658

As for the search involving surrounding triangles 
around space points, average index offsets for both the i
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and j directions were obtained through the same series of 
program executions only using the surrounding triangle 
search subroutine (table 6.4 & 6.4a).

Table 6.4: Offset results for 24 program executions with 
4 time steps per execution.
(Surrounding triangle search)
(Irregular initial grid construction)

Table entries are the sums of i and j 
mean offsets for each individual 

execution. (4 timesteps/execution)

Flows and 
Attributes

Nl =
i

= 32
j

N2=
i

= 32
j

N3=
i

= 32
j

Random
Centroid 
Vertex 
Avg. Coord. 
Longest Bis.

4.112
4.746
4.026
4.354

4.145
5.229
4.204
4.237

4.152
4.609
4.214
4.468

4.180
4.953
4.186
4.330

4.154
4.717
4.116
4.398

4.172
4.993
4.302
4.508

Parabolic
Centroid 
Vertex 
Avg. Coord. 
Longest Bis.

4.400
5.300
4.559
4.513

4.171
5.377
4.161
4.371

4.531
5.337
4.596
4.499

4.297
5.178
4.218
4.420

4.570
5.262
4.469
4.725

4.201
5.053
4.197
4.356

Column Totals 36.010 35.895 36.406 35.762 36.411 35.782
i Total - 108.827 
i Mean - 1.134
j Total - 107.439 
j Mean - 1.119
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Table 6.4a: Attribute Means from table 6.4

Table entries are the sums of i and j components 
of each row of table 6.4, divided by 12 (4 timesteps per 

series and a total of three series).

Flows and Attribute means std. dev.
Attributes i j i j

Random
Centroid 
Vertex 
Avg. Coord. 
Side Bisector

1.035
1.173
1.030
1.102

1.040
1.265
1.058
1.090

.0067

.0351

.0204

.0175

.0071

.0514

.0173

.0341
Parabolic
Centroid 
Vertex 
Avg. Coord. 
Side Bisector

1.125
1.325
1.135
1.145

1.106
1.300
1.043
1.111

.0935

.1212

.0914

.0952

.0240

.0843

.0153

.0188

If we once again round up the mean i and j offsets 
-obtained in table 6.4, we have for the variables 0m  ̂ and 
0mj # the values 2 and 2 respectively.

If we use these variables in equation (10) we obtain:

Nt/4 > (33/16)2 _ 4

and solving for we 9et

N t > 16
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Thus, if the number of model triangles is larger than 
or equal 16 we will be reducing search lengths. If we use 
(7) and (9) and the fact that the minimum number of 
triangles present in these executions, Nt, is 730, and the 
minimum number of points present, Np, is 406, we obtain, 
first of all, the total number of triangle record searches 
when using the list:

Ntot = 296,380 records

while the number of triangle records searched in the MLG 
is :

Ntot = 9,744 records

This represents again a 97% reduction in the list 
search length. And once again, the above argument relies 
on an average index offset obtained from experimentation. 
The variances of the individual executions are on the sa five 
order of magnitude as the variances shown in table 6.3, 
Therefore variances from the surrounding triangle search 
will not be given here.

What is to be noted from the above discussion is that 
overwhelming reductions in search lengths are accomplished 
by the incorporation of the MLG. Search length figures 
derived above prove this.
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6.3 DIFFERENCES IN INITIAL GRID CONFIGURATIONS 
The use of regular and irregular initial grid 

configurations was incorporated in this study so as to be 
a check on the independence of MLG performances with 
respect to initial grid construction. In other words, we 
would like to have a measure of the MLG's performance on a 
regular grid as well as an irregular grid so as to 
determine if the MLG's performance deteriorates with an 
increase of irregularity in the grid space. Table 6.5 
gives sums of mean index offsets for 24 executions 
consisting of 3 series which use all combinations of flows 
and processing attributes. Table 6.5a gives the attribute 
(row) means for these executions. Each attribute mean is 
calculated by summing the individual i and j components of 
each row and then dividing each of these sums by 12 (3
series of 4 time steps each). A regular initial grid 
configuration was constructed and used in these 
executions.
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Table 6.5: Offset results for 24 program executions with 
4 time steps per execution.
(Surrounding triangle search)
(Regular initial grid construction)

Table entries are the sums of i and j 
mean offsets for each individual 

execution. (4 timesteps/execution)

Flows and Nl=32 N2=32 N3=32
Attributes i j i j i j

Random
Centroid 
Vertex 
Avg. Coord. 
Longest Bis.

Parabolic
Centroid 
Vertex 
Avg. Coord. 
Longest Bis.

4.000 4.131 
4.644 5.134
4.000 4.267 
4.201 4.333

4.375 4.233
5.164 5.410 
4.377 4.305 
4.430 4.419

4.000 4.089 
4.623 5.284 
4.006 4.307 
4.243 4.391

4.348 4.208 
5.180 4.963 
4.311 4.200 
4.488 4.560

4.000 4.338 
4.628 5.144
4.000 4.235 
4.239 4.274

4.463 4.250 
5.167 5.331 
4.323 4.161 
4.493 4.409

Column Totals 35.191 36.232 35.199 36.002 35.313 36.142
i Total - 105.703 
i Mean - 1.101
j Total - 108.376 
j Mean - 1.129
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Table 6.5a: Attribute Means from table 6.5

Table entries are the sums of i and j components 
of each row of table 6.5, divided by 12 (4 timesteps per 

series and a total of three series).

Flows and Attribute means std. dev.
Attributes i j i j

Random
Centroid 
Vertex 
Avg. Coord. 
Side Bisector

1.000 
1.157 
1.001 
1.057

1.046
1.296
1.067
1.083

.0

.0100

.0011

.0088

.290

.0975

.0127

.0477
Parabolic

Centroid 
Vertex 
Avg. Coord. 
Side Bisector

1.098
1.292
1.084
1.117

1.057
1.308
1.055
1.115

.0980

.1309

.0699

.0737

.0309

.1120

.0231

.0342

In examining the attribute means given in table 6.5a 
with the attribute means give in table 6.4a it can be seen 
that the differences in the means is very insignificant. 
Also when comparing standard deviations between attributes 
using regular and irregular initial grids it is noted that 
these standard deviations are very small.

As a sight conclusion from looking at these offset 
means and standard deviations, it can be seen that the
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means of executions performed on regular initial grids do 
not seem to differ from mean of executions performed on 
irregular initial grids.

6.4 COST OF THE MLG SORT
In the above examination, we did not take into 

consideration the cost of upkeep on the MLG. The sorting 
routine which was described in earlier sections and 
chapters is an order N algorithm (N being the number of 
cells in the MLG), which is very cost efficient in the 
attempt to eliminate unneeded computations while still 
provide fast data access. Following is proof that the 2 
dimensional MLG sort routine developed by J.P. Boris is of 
order N (Boris,85 ).

Let us make the following definitions:

Define N - number of cells in the MLG.
^ii - number of MLG cell interchanges in all i directional vectors.

- number of MLG cell interchanges in all j directional vectors.
- number of MLG cell interchanges in 

all k directional vectors.
MLG dimension in the i direction.

Dj MLG dimension in the j direction.
MLG dimension in the k direction

(D% = 1, 2-Dimensional model).
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Now

N ii = (D i - 1) X (Dj) x (Dk )
N i j = (Di) X (Dj - 1) X (Dk )
N ik = (Di) X (Dj) X (Dk - 1)

and for one iteration sweep through the MLG the total 
number of cell interchanges, N^i, is:

Nti = Nii + Nij + Nik

and after simplification

Nti = (3 Di Dj Dk) - (Dj Dk)
- (Di Dk )
- (Di Dj)

= (3 N) - N ( (1/Di) + (l/Dj) + (1/Dk ) ) (13)

Now let d = (1/Di) + (l/Dj) + (l/Dk )

SO

N ti = (3 N) - (d N) 

where 1 < d < 3 ,

d -► 1 when D^ and Dj become large
and d -» 3 when Di and Dj -►I

As will be seen in the results of the next section.
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the number of sweep iterations is r e l a t i v e l y  low 
throughout the program execution except for the first one 
or two time steps. This occurs because the initial sort of 
the MLG may require much data movement across the grid in 
order to find the proper residing place for the data. But 
for the most part, sweep iterations for each timestep are 
relatively low.

If we define N g£ to be the average sweep iteration 
count for then the cost of the MLG sort subroutine is:

COST = N si ( (3 N) - (d N) )

And as can be seen, this is an order N sorting
algorithm.

6.5 SORT SWEEP ITERATION COUNTS
The number of sweeps which are made through the MLG 

while sorting, plays an important role in the evaluation
of the MLG and the sorting techniques used on it. If large
sort sweep iteration counts are common throughout program 
execution, the cost of maintaining the MLG becomes less 
desirable. Fortunately, sort sweep iteration counts are 
relatively low throughout program execution, with the 
exception of a few initial timesteps.

The same program executions performed in section 6.2
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involving adjacent triangle searches produced data about 
sort sweep iteration counts for each of the individual 
executions. Table 6.6 summarizes the results of these 
runs.

Table 6.6: Sort sweep iteration count results of 24 
program executions with 4 timesteps per 
execution.

Table entries are total execution sweep iteration 
counts for each execution 

attribute mean = (NI + N2 + N3)/l2

Flows and Attribute
Attributes Nl=32 N2=32 N3=32 Mean

Random
Centroid 32 32 37 8*417
Vertex 37 34 35 8.833
Avg. Coord. 32 34 35 8.417
Longest Bis. 39 37 51 10.538

Parabolic
Centroid 52 50 52 12.833
Vertex 48 47 46 11.750
Avg. Coord. 57 46 50 12.750
Longest Bis. 54 50 51 12.917

Column totals 351 330 357
Column means 10.969 10.313 11.156
Overall column total - 1038
Overall column mean - 10.813

The overall column mean from Table 6.6 is misleading.
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This mean is averaging large counts which are present in 
the first one or two timesteps. Table 6.7 shows counts for 
the first and second timesteps for the same executions in 
Table 6.6 for only one series. As can be seen, the 
averages for these two timesteps are well above the 
overall mean count obtained in table 6.6, and in fact most 
of the mean for the two timesteps given in table 6.7 is 
contributed by the first timestep in all runs.

Table 6.7: Sort sweep iteration counts for 8 executions. 
(timesteps t=0 and t=l)

Table entries are sweep iteration counts for each
indicated timestep

Flows and
Attributes t=0 t=l row mean

12.000
13.500
13.000
15.000

14.000
14.000 
13.500
14.000

Column totals 158 60
Column means 19.750 7.500

Random
Centroid 19 5

. Vertex 20 7
Avg. Coord. 19 7
Longest Bis. 21 9

Parabolic
Centroid 20 8
Vertex 20 8
Avg. Coord. 19 8
Longest Bis. 20 8

As can be seen from tables 6.6 and 6.7, the numbers of
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sort sweep iterations are large for the first one or two 
timesteps, but in as little as one timestep they decrease 
drastically

Presented in appendix E.l and E. 2 are computer 
generated results concerning program executions using 
random and parabolic point motion for 8 timesteps. In 
reference to appendix E.l and E.2, it can be seen that 
after the first timestep for each of the flows, the sweep 
iteration counts decrease dramatically, and in general, 
are very well behaved. The parabolic data does present 
local increases in iteration counts, but this is explained 
by the build up of potential position changes in the 
timesteps previous, until enough point movement causes 
global point and data interchanges, thus increasing 
iteration counts.

6.6 CENTROID AND AVERAGE COORDINATE ATTRIBUTES 
Different processing attributes produce different 

results when looking at average index offsets in searching 
for triangles. This section of the results will examine 
the four processing attributes of the study and show that 
the centroid and average coordinate attributes are 
superior to the remaining two.

Tables 6.8 and 6.9 give summaries of mean offsets for
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adjacent and surrounding triangle searches which were 
given in tables 6.2 and 6.4a above.

Table 6.8: Mean attribute offsets for 24 program executions 
(adjacent triangle search)

Flows and Attribute
Attributes means

Random
Centroid 1.572
Vertex 2.211
Avg. Coord. 1.568
Side Bisector 1.734

Parabolic
Centroid 1.619
Vertex 2.259
Avg. Coord. 1.591
Side Bisector 1.828

Table 6.9: Mean attribute offsets for 24 program executions 
(surrounding triangle search)

Flows and Attribute means
Attributes i j

Random
Centroid 1.035 1.040
Vertex 1.173 1.265
Avg. Coord. 1.030 1.058
Side Bisector 1.102 1.090

Parabolic
Centroid 1.125 1.106
Vertex 1.325 1.300
Avg. Coord. 1.135 1.048
Side Bisector 1.145 1.111
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As can be seen by examining tables 6.8 and 6.9, the 
mean offsets for the centroid and average coordinate 
processing attributes are significantly lower than the 
mean offsets for the vertex attribute and the longest 
bisector attribute.

6.7 CPU REDUCTION USING PNTSRCHF 
PNTSRCHF is a subroutine much like PNTSRCH, in that it 

also searches for surrounding triangles in the point 
space. The difference between the two subroutines is that 
in PNTSRCHF when searching for adjacent triangles, calls 
are not made to FINDADJ. Information about adjacent 
triangles is stored rather than derived as in the case of 
PNTSRCH. Therefore, three more arrays of dimension NUMTRI 
x 3 are needed to store information about these adjacent 
triangles. The time reduction accomplished by not relying 
on FINDADJ to calculate adjacent triangles is very 
apparent. Appendices E.3 and E .4 contain computer 
generated data showing, among other things, CPU time 
requirements for both PNTSRCHF (Analysis (stor)) and 
PNTSRCH (Analysis (srch)). The magnitude of the times are 
on the the order of 10-20 times greater for PNTSRCH than 
they are for PNTSRCHF. This characteristic is evident 
through all executions produced.
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What this is saying is that the time difference 
between searching for adjacent triangles (in looking for 
surrounding triangles) and having the adjacent triangles 
already available to us is large in magnitude. However, 
the price we must pay in order to save this time is to 
require more main memory storage. Three additional arrays 
at NUMTRI elements per array requires a great deal of 
memory when the number of triangles in the space 
increases.

6.8 CONCLUSIONS
This study has conducted many different tests 

concerning the performance of a newly developed data 
structure. The MLG, which was originally developed for 
space point motion models has been extended to a 2
dimensional figure model for use in modeling transient 
hydrodynamic fluid flows.

Different types of triangle attributes have been
tested in order to find one or two which will partition 
data into minimal independent data sets, therefore 
enabling the use of multiple processing techniques.

Two triangle attributes were found to partition data
quite compactly with respect to the measure of index 
offsets. Therefore, the incorporation of multi-processing



T-3273 112

techniques in the future is very possible.
As for the upkeep of the MLG, an efficient order N 

sort algorithm was introduced and tested. It was found to 
be relatively easy to adjust after point motion in the 
space had violated monotonicity. Also, as time progressed 
through the program executions, the MLG structure adapted 
itself to the data it contained to the extent that large 
numbers of sort iterations were not needed to keep the 
MLG functional.

Finally, the performance of the Mi,G under different 
initialization schemes was consistent, implying that 
flexibility in the MLG is evident.

Overall, the MLG performance studied and recorded in 
this report, suggests that this data structure will 
eliminate many data management problems which presently 
plague highly transient hydrodynamic simulation models

6.9 FUTURE DIRECTIONS
This study has established the MLG as a very good 

candidate for use as a data structure in highly transient 
hydrodynamic simulation problems. Some areas were, however 
not investigated and deserve to be mentioned. This study 
did not incorporate grid reconstruction after point motion 
corruption of grid connections. This is one area that is
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strongly required in order to maintain a reliable 
mathematical model.

One more area worth expanding upon is the process of 
establishing a reliable maximum index offset requirement 
for data access. This study could only produce mean 
offsets to be used in place of a maximum. When the 
characteristics of the MLG become better known then the 
ability to nail down a concrete maximum index offset will 
follow. And once this absolute maximum can be established, 
data partitioning in order to utilize multi-processing 
computers will be obtained.

Optimization of search procedures as noted in section 
5.3.3.2 is one more area where optimization will increase 
MLG performance.

Finally, the extension of the MLG to a three 
dimensional model must be accomplished in order to apply 
it to real life simulation problems.
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APPENDIX A
This appendix contains computer generated plots of 

initial grid configurations constructed by the program 
MLG. There are two main types of possible initial grids, 
regular and irregular. Each of these types are broken down 
into two subgroups, symmetrical and slightly deviated. The 
plots consist of only triangles, however implicitly these 
triangles are created from the points of the space. 
Therefore a point exists (but is not plotted) at each of 
the triangle vertices.

Each of the four possible initial grids are presented 
in the following subsections:

SUBSECTION # INITIAL GRID CONFIGURATION

A.4

A . 1
A.2
A.3

Regular symmetric 
Regular deviated 
Irregular symmetric 
Irregular deviated
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SUBSECTION A.l - REGULAR SYMMETRIC
F ol lo wing is a regular symmetric initial grid

containing 196 points and 338 triangles.

OBS. S P A C E
A v g . i o f f s e t  1.010 A v g  )  o f f s e t  1.056

200 00 *00.00 600 00 800.00 1200.00 1400 00 1800 00

R a n d o m  f l o w I n i t .  G r i d  S p r e a d  100
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SUBSECTION A.2 - REGULAR DEVIATED
F ollowi ng  is a regular deviated initial grid

containing 196 points and 338 triangles.

OBS. S P A C E 0t
A v g .  o f f s e t  0.000

200.00 ♦oooo 1000 00 1200 00 1*00 00 1800 00
R a n d o m  F l o w / n i l .  d e v . 25 I n i t .  G r i d  S p r e a d  100
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SUBSECTION A.3 - IRREGULAR SYMMETRIC
Following is an irregular symmetric initial grid 

containing 216 points and 390 triangles.

OBS. S P A C E 0t
A v g .  o j f a e t  0.000

1200 00200 00 *00 00 600 00 800 00 1000 00 1*00 00 180000

J t a n d o m  F l o w V-nil. G r i d  S p r e a d  100
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SUBSECTION A.4 - IRREGULAR DEVIATED
Following is an irregular deviated initial grid

containing 200 points and 358 triangles.

OBS. S P A C E 0t
A v g .  o f f s e t  0.000

100 *00 00 1200 00 1400 00 1600 00 1800.00

J t a n d o m  F l o w I n i t  d e v . <15 I n i t .  G r i d  S p r e a d  100
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APPENDIX B
Appendix 3 contains computer generated plots which 

show point ( and triangle) motion whithin the space using 
three different flow equations, Modified Uniform Strain 
flow. Modified Parabolic flow in x and Random flow. Plots 
consist of only triangles, but implicitly points are 
present (but not plotted) at all triangle vertices.

All flows are plotted over three timesteps not 
including time t=0 (time t= 0 is the initial grid stage). 
The time increment for all flows is 5 units.

The following subsections contain plots of the 
individual flows:

SUBSECTION # FLOW
B.1-B.4 Uniform Strain
B.5-B.8 Parabolic in x
B.9-B.12 Random
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SUBSECTION B.1-B.4 - UNIFORM STRAIN FLOW 
Following are computer generated plots for Uniform 

Strain flow used in MLG. Four plots are present including 
time t = 0. There are 196 triangles and 111 points present 
in each plot frame.

OBS. S P A C E 0t
A v g .  o f f s e t  0.000

160.00 560 00 640 00 720 00
U. S.  F l o w I n i t  G r i d  S p r e a d  100
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OBS. S P A C E
A v g .  o f f s e t  0.000

A

•a

"E
u 400.00 800 00 1200.00 1400 00

X
U S  f l o w I n i t  d e v . I n i t .  G r i d  S p r e a d  100
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OBS. S P A C E  t =
A v g  o j j s t e t 0.000

gXk
X

i
1000 00200 00 400.00 600 00 800 00 1200 00 1600 00 1800 00

X
U.S.  F l o w I n i t .  d e v I n i t .  G r i d  S p r e a d  100
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OBS. S P A C E  t =

A v g  o j J s e t  0.000

i

%

200.00 600 00 BOO 00 1000 00 1200 00 1400.00 1800.00
X

U S .  F l o w I n i t  d e v . I n i t  G r i d  S p r e a d  100
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SUBSECTION B.5-B.8 - PARABOLIC FLOW
Following are computer generated plots for Parabolic 

flow used in MLG. Four plots are present including time 
t=0. There are 190 triangles and 108 points present in 
each plot frame.

OBS. S P A CE 0t
A v g .  o f f s e t  0.000

160 00100 60.00 240 00 320 00 400.00 480 00 640 00

P a r a b  F l o w I n i t .  G r i d  S p r e a d  100
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OBS. S P A C E t =
A v g .  o f f s e t  0.000

i

•a

720.00100 180 00 *80.00
X

Parab Plow I n i t  de v . I n i t  G r i d  S p r e a d  100
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OBS. S P A C E  t =  2
A v g  o f f b c t  0 000

800.00600 00

J m t  G r i d  S p r e a d  100P a r a b  F l o w I n i t  d e v
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OBS. S P AC E t =
A v g  o f f s e t  0 000

"ti
e

300 00 700.00
X

P a r a b  F l o w I n i t  d e v I n i t .  G r i d  S p r e a d  100
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SUBSECTION B.9-B.12 - RANDOM FLOW
Following are computer generated plots for Random flow 

used in MLG. Four plots are present including time t=0. 
There are 200 triangles and 113 points present in each 
plot frame.

OBS. S P A C E 0t
A v g  o j j s e t  0.000

320 00 400 00 480 00 960 0080.00 160 00 640 00

/nil dev. I n i t  G r i d  S p r e a d  100
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OBS. S P A CE

80.00 160.00 240.00 32000 400 00 560.000.00 480 00 640.00

J t a n d o m  F l o w I n i t .  G r i d  S p r e a d  100I n i t  d e v
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OBS. S P A C E
.̂ Ivq. o f f s e t  0.000

320 00 400.00

R a n d o m .  F l o w J n i t  d e v I n i t .  Gr x d  S p r e a d  100
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OBS. S P A CE t =
A v g  o f f s e t  0 000

160 00

R a n d o m  F l o w I n i t  G r i d  S p r e a d  100
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APPENDIX C
This appendix contains pseudo-code for three 

subroutines of the driver program MLG. The appendix is 
divided into three subsections which are:

SUBSECTION # SUBROUTINE PSEUDO-CODE
C.l MLGSORT
C .2 ADJSRCH
C.3 FINDADJ
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SUBSECTION C.l - PSEUDO-CODE FOR MLGSORT
Following is the pseudo-code for the subroutine

MLGSORT which is called upon by the driver program MLG
each timestep in order to sort the MLG into MLO. The
pseudo-code consists of three sections corresponding to 
the three directional vector sweeps that must be
performed.

Program MLGSORT 

——— section 1 ——
  this section is done for all models being used ---

 loop through all i directional vectors ---
k = 1
do while k ^ MLG dimension in k

j = 1
do while j ^ MLG dimension in j 

1 = 1
do while 1 ^ 2  

i = 1
do while i ^ MLG (dimension in i) - 1

if ( x coordinates of MLG array
elements at indexes (i,j,k) & 

(i+l,j,k) are out of order ) then
switch MLG cell contents



3273 135

end if 
i = i + 1 

end do (i)
1 = 1 + 2  

end do (1) 
j = j + 1 

end do (j) 
k = k + 1 

end do (k)
— check to see if any swaps were made ---

if ( model is one dimensional and no MLG cell switches 
are made ) then
done

else if ( model is one dimensional and at least one 
switch was made ) then
go back to section 1, k loop 
and re-execute looping

end if

— section 2 ---
— this section is done if the model is at least 2-D ---

— loop through all j directional vectors ---
k = 1
do while k ^ MLG dimension in k 

i = 1
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do while i ^ MLG dimension in i 
1 = 1
do while 1 ^ 2

j = 1
do while j ^ MLG (dimension in j) - 1

if ( y coordinates of MLG array
elements at indexes (i,j,k)

&
(i,j+1,k) are out of order ) 

then
switch MLG cell contents

end if
j = j + 1

end do (j)
1 = 1  + 2

end do (1)
i = i + 1

end do (i)
k = k + 1

end do (k )
- check to see any swaps were made ---

if ( model is two dimensional and no MLG cell switches 
were made ) then
done

else if ( model is two dimensional and at least one 
switch was made ) then
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go back to section 1, k loop and re­
execute looping

end if

section 3 ---
this section is reached only if model is 3-d ---

loop through all k directional vectors ---
i = 1
do while i ^ MLG dimension in i

j = 1
do while j ^ MLG dimension in j 

1 = 1
do while 1 ^ 2  

k = 1
do while k ^ MLG (dimension in k) - 1

if ( z coordinates of MLG array
elements at indexes (i,j,k) &

(i,j,k+l) are out of order ) 
then

switch MLG cell contents
end if 
k = k + 1 

end do (k )
1 = 1  + 2 

end do (1)



T-3273 138

j = j + 1
end do (j) 
i = i + 1 

end do (i)
  check to see if any swaps were made ---
if ( model is three dimensional and no MLG cell 

switches were made ) then
done

else
go back to section 1, k loop and re-execute

looping
end if
Program end (MLGSORT)
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SUBSECTION C.2 - PSEUDO-CODE FOR ADJSRCH 
The following pseudo-code represents the subroutine 

ADJSRCH which is called upon by the driver program MLG. 
This subroutine searches the MLG for adjacent triangles. 
ADJSRCH steps through each triangle of the MLG, all the 
while determining the adjacent triangles for each of the 
triangles it encounters. ADJSRCH calls upon the subroutine 
FINDADJ to determine if triangles which it finds are 
truely adjacent to the triangle that it is presently 
working on. When hidden interior triangles are 
encountered, the MLG inedex of the triangle adjacent to 
the hidden interior triangle is recorded (in FINDADJ) and 
then reprocessed in section 2.

Program ADJSRCH 

——— section 1 ——
  looping through MLG in a sequential pattern ---
  (all j directional vectors) ---

  j is the inner most loop therefore producing ---
  update sequences sweeping through j ---
-—  directional vectors ---

TRICOUNT = 0 
k = 1
do while k ^ MLG dimension in k
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1 = 1

do while i ^ MLG dimension in i
j = 1
do while j ^ MLG dimension in j

TRICOUNT = TRI COUNT + 1
  don't process "ghost" triangles ---

if ( TRICOUNT î NUMTRI ) then
  find adjacent triangles to triangle

ALPHA(i , j , k) = Tm using FINDADJ. 
FINDADJ will keep track of corner 
triangles for later reprocessing 
(section 2) ---

call FINDADJ ( Tm )
end if
j - j + 1

end do (j) 
i = i + 1 

end do (i) 
j = j + 1

end do (j)
- section 2 ---
- Reprocess hidden interior triangles. All hidden
- triangles and their MLG indices were recorded
- previously in FINDADJ.

do while ( there are still corner triangles to be 
reprocessed )
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  find the adjacent triangle to the current
  corner triangle. This will be a hidden
  interior triangle

call FINDADJ ( Tm )
  now reprocess the triangle using 3 as the
  number of adjacent triangles to look foe

call FINDADJ ( Tm ) 
end do (more corner triangles)

Program end (ADJSRCH)
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SUBSECTION C.3 - PSEUDO-CODE FOR FINDADJ 
This is the final subsection of appendix C. It 

contains the pseudo-code for FINDADJ. This subroutine 
calculates the number of adjacent triangles to search for 
and records the MLG indices for corner triangles to be 
used by both ADJSRCH and PNTSRCH in reprocessing hidden 
interior triangles.

Program FINDADJ
NUMBER_CORNERS = 0

  this series of conditionals involve determining ---
  if the general triangle is corner, border or ---
  interior. Summations are used (not given here) ---
 to determine trh triangle position — —

if ( triangle Tm is an interior triangle ) then 
NUMBER_ADJ = 3 

else if ( triangle Tm is a border triangle ) then 
NUMBER_ADJ = 2 

else
  triangle must be a corner triangle ---

NUMBER_ADJ = 1
 record MLG indices for future processing — —

store MLG indices of triangle 
NUMBER_CORNERS = NUMBER_CORNERS + 1

end if
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end if

—  reset NUMBER_ADJ to 3 if we are reprocessing ---
—  hidden interior triangles ---

if ( triangle Tm is a hidden interior triangle ) then 
NUMBER_ADJ = 3 

end if
—  start with index offset of one for the search -—

TOPROW = min ( (j index of Tm) + 1» MLG dim. in j )
BOTROW = max ( (j index of Tm) - l, l )
RIGCOL = min ( (i index of Tm ) + 1, MLG dim. in i )
LEFCOL = max ( (i index of Tm) - l, 1 )
FOUND_COUNT = 0

—  start searching the offset for adjacent triangles ---
do while FOUND_COUNT i NUMBER_ADJ

ROW = BOTROW 
do while ROW î TOPROW 

COL « LEFCOL 
do while COL ^ RIGCOL 

call ADJCONF
if ( these triangles are adjacent ) 

then
FOUND_COUNT = FOUND_COUNT + 1
store triangle I.D. of triangle 
found
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end if
COL = COL + 1 

end do ( COL )
ROW = ROW + 1 

end do (ROW)
—  increase the offset by one for the next offset search 

(if the next offset is needed) ----
TOPROW = min ( TOPROW + 1 , MLG dimension in j )
BOTROW = max ( BOTROW - 1 , 1 )
RIGCOL = min ( RIGCOL + 1 , MLG dimension i n i )
LEFCOL = max ( LEFCOL - 1 , 1 )

end do (FOUND_COUNT ^ NUMBER_ADJ)
Program end (FINDADJ)
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APPENDIX D

This appendix is subdivided into 5 subsections. 
Presented in each subsection is the FORTRAN code for the 
various subroutines developed in chapter 5.

All code in this study was written on a VAX 3600 
machine. Coding was carefully done so as to make it as 
portable as possible. Complete portability of any program, 
however, is harder to ache i v e as the complexity of 
algorithms increase. Segments of code which are not 
portable will be noted if they occur. Also, most of the 
code for compiling statistics on performance have been 
edited out of these subroutines in order to reduce the 
size of the code printed out. Most of the code which 
compiles the results is simple counting and summing code, 
while timing code is VAX dependent.

The subsections arc as follows:

SUBSECTION # SUBROUTINE
D.l MLGSORT
D.2 ADJSRCH
D.3 FINDADJ
D.4 ADJCONF
D.5 PNTSRCH



T-3273 146

SUBSECTION D.l - CODE FOR MLGSORT
Following is the code for the subroutine MLGSORT. The 

code has incorporated with it the capability of expansion 
to three dimensions, although the models being used in 
this study only deal with two dimensions. As can be seen, 
all looping is coded to handle sorting in all three 
dimensions. When the expansion of model dimensionality is 
completed, this subroutine will be readily executably as 
is.

subroutine MLGSORT
* Sorting of resultant movements from previous movement
* subroutines to obtain monotonie logical order.
* This sort incorporates a RED-BLACK algorithm in order
* to vectorize the code. This subroutine is used
* no matter which attribute the user chooses to
* characterize the triangle with.
* In MLGSORT, the grid is "sorted" first in the x
* direction,
* secondly in the y direction, and then thirdly in the z
* direction. Each "sort" consists of only interchanging
* consecutive array elements (not a complete sort). After
* each full sweep through all directions, it is checked to
* see if a swap was made. If a swap occured, the sweep
* must be re-executed.
* Determination of number of exchanges to be made

NUMEXCHG=NGRIDY*NGRIDZ*(NGRIDX-1)
: +NGRI DX*NGRIDY* (NGRIDZ-1 )+NGRIDX*NGRIDZ* (NGRIDY-1 )

158 FLAG=0
*==== SECTION 1 ==== =
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Sweep through all vectors in first direction 
This applies to 1,2, or 3 dimensional models

do 210 k=l,NGRIDZ 
do 200 j=l,NGRIDY 

do 180,1=1,2
do 175 i=l,NGRIDX-1,2

* numerical determination if cells are out of order.
* FLAG is increased by one every time MLG cells are
* in order.

DIFF=ALPHA(i+1,j,k ,4)-ALPHA(i,j,k,4) 
W=sign(0.5,DIFF) + 0.5 
FLAG=FLAG+W 
COMP=l-W

* swap MLG cell contents if they are out of order
do 160 n=l,NUMPAR

TEMP1=W*ALPHA(i,j,k,n)
TEMP2=COMP*ALPHA(i,j,k,n)
ALPHA(i,j,k ,n )=TEMP1+COMP*ALPHA(i+1,j,k,n) 
ALPHA(i+1,j,k ,n)=W*ALPHA(i+1,j,k ,n)+TEMP2 

-160 continue
175 continue
180 continue
200 continue
210 continue
* If it is a one dimensional model, make sure grid is
* sorted. If the grid is not sorted, repeat the sweep,
* else
* return to calling program. If it is a two dimensional
* model, sort in next direction, (direction of NGRIDY)
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if(NDIM.eq.l.and.FLAG. eq.NUMEXCHG) then 
return 

else
if (NDIM.eq.l.and.FLAG.l t.NUMEXCHG) then 

go to 158 
end if 

end i f

*==== SECTION 2 == ===
* If model is 2-D then sweep through
* all vectors of the second dimension

do 410 k=l,NGRIDZ 
do 400 i=l,NGRIDX 

do 360 1=1,2
do 350 j=l,NGRIDY-1, 2

* numerical determination if cells are out of order.
* FLAG is increased by one every time MLG cells are
* in order.

DIFF=ALPHA ( i , j+1, k , 5 ) -ALPHA ( i , j,k,5)
W= sign( 0.5, DIFF) + 0.5
FLAG=FLAG+W
C0MP=1-W
S WAP CNT ( TI ME ) = S WAP CNT ( TI ME ) + COMP

* swap MLG cell contents if they are out of order
do 345 n=l,NUMPAR

TEMP1=W*ALPHA(i,j,k ,n)
TEMP2=COMP*ALPHA(i,j,k,n)
ALPHA(i,j,k ,n )=TEMP1+COMP*ALPHA(i,j+l,k,n) 
ALPHA(i,j+1,k ,n)=W*ALPHA(i,j+1,k,n)+TEMP2 

345 continue
350 continue
360 continue
400 continue
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410 continue
* If it is a two dimensional model, make sure grid is
* sorted. If the grid is not sorted, repeat the sweep,
* else
* return to calling program. If it is a three dimensional
* model, sort in next direction.

if (NDIM.eq.2.and.FLAG.eq.NUMEXCHG) then 
return 

else
if(NDIM.eq.2.and.FLAG. 1 t.NUMEXCHG) then 

go to 158 
end i f 

end i f

*==== SECTION 3 =====
* If model is 3-D then sweep through
* all vectors in the third direction

do 440 i=l,NGRIDX 
do 430 j=l,NGRIDY 

do 425 1=1,2
do 420 k=l,NGRIDZ-1,2

* numerical determination if cells are out of order.
* FLAG is increased by one every time MLG cells are
* in order.

DIFF=ALPHA ( i , j , k+1, 6 ) -ALPHA (i, j,k,6) 
W=sign(0.5, DIFF) + 0.5 
FLAG=FLAG+W 
C0MP=1-W
SWAP CNT(TIME)= S WAP CNT(TIME)+ COMP

* swap MLG cell contents if they are out of order
do 415 n=l,NUMPAR

TEMP 1=W*ALPHA( i , j , k , n)
TEMP2=COMP*ALPHA(i,j,k,n)
ALPHA(i,j,k ,n)=TEMP1+COMP*ALPHA(i,j,k+l,n)
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ALPHA( i , j , k+1, n ) =VJ*ALPHA( i , j , k+1, n)+TEMP2 
415 continue
420 continue
425 continue
430 continue
440 continue

* if a swap was made in either i, j, or k dir. then the
* grid must be re-checked, (i.e. loop to the top of the
* sort process)

if (FLAG. 1 t.NUMEXCHG) then 
go to 158 

end if
return
end
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SUBSECTION D.2 - CODE FOR ADJSRCH
The following code is the subroutine ADJSRCH. The code 

will run strictly with two dimensional models. The 
extension to three dimensions will cause much added code 
and code complexity.

subroutine ADJSRCH
* This subroutine searches the MLG to find adjacent
* triangles for all triangles of the space.

logical NUMFLG,CORFLG 
integer CURLIST(3,4)
NUMFLG=.true. 1 calculate # adj tri's
CORFLG=.true. icalculate all corner tri's
TRICNT=0
do 300 k=l,NGRIDZ

do 200 i=l,NGRIDX
do 100 j=l,NGRIDY

T RICNT=T RICNT+1
if (TRI CNT.le.NUMTRI) then

* call to F I NAD J in order to find adjacent triangles of
* the triangle at i, j and k indices of the MLG

call
: FI NDADJ ( i, j,k,NADJ, CURLIST, NUMFLG, CORFLG)

end if
100 continue
200 continue
300 continue



T-3273 152

* === section 2 ===
* reprocess hidden interior triangles

do 400 1=1,NUMC0R
i=C0RNER(1,2) 1 corner is a common block array
j=C0RNER(1,3) icontaining corner triangle info. 
k=C0RNER(l,4) ICORNER is filled in FINDADJ. 
NUMFLG=.false.
CORFLG=.false.
NADJ=1

* find the adjacent triangle to a corner triangle
call FINDADJ ( i, j, k, NADJ, CURLIST, NUMFLG, CORFLG)
i=CURLIST(NADJ,2) 
j=CURLIST(NADJ,3) 
k=CURLIST(NADJ,4)
NUMFLG=.false.
CORFLG=. f al se. i# of adj. set to 3 for hidden 
NADJ=3 1 interior triangles.

* find all three adjacent triangles to the hidden interior
* triangle

call FINDADJ ( i, j,k, NADJ, CURL I ST, NUMFLG, CORFLG)
400 continue

return
end
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SUBSECTION D.3 - CODE FOR FINDADJ
The code for FINDADJ follows and is strictly a two 

dimensional code. In order to upgrade this subroutine to 
three dimensions, a good deal of work would be required. 
However, in two dimensional models this code is very 
efficient in determining triangle position with respect to 
the grid boundaries and in actually obtaining the triangle 
l.D.'s of the adjacent triangles.

subroutine FINDADJ( I, J, K, N, CUR, NFLG, CFLG)

* This subroutine finds all adjacent tri's to the current
* triangle. The first step is to calculate the number of
* adjacent triangles to look for and then to look until
* the number of triangles found equals the analytical
* number calculated.

logical L0G1,L0G2,L0G3,YORN,NFLG,CFLG 
integer CUR( 3,4), ICNT,BCNT, CCNT, LE FT COL 
integer BOTROW,RIGHTCOL,TOPROW

* summation of point position counters if NFLG in calling-
* program is set to true then the number of ad j triangles
* will be calculated. If CFLG is set to true in the
* calling program the corner triangles will be
* accumulated.

if(NFLG) then icalculate the number of adj tri
ICNT=0
BCNT=0
CCNT=0
do 100 1=1,3

I CNT = I CNT+PTSTAT ( ALPHA( I, J , K, 1 ), 1 ) isum int. 
BCNT=BCNT+PTSTAT(ALPHA(I,J ,K,1 ),2) ibor. &
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CCNT=CCNT+PTSTAT(ALPHA(I,J ,K,1 ),3) Icor. pnts. 
100 continue
* determination of triangle position (border, interior, or
* corner)

L0G1=(ICNT.eq.3.or.(ICNT.eq.2.and.BCNT.eq.1))
L0G2=(CCNT.eq.1.and.BCNT.eq.2)
LOG3=(BCNT.eq.2.and.ICNT.eq.1)
if(LOGl) then 1 interior tri
N=3
else
if(LOG2) then 1 corner tri 

N=1
* check to see if current triangle is in the list of
* corner triangles.

if (CFLG) then 
NM=0
do 200 l = l,NUMCv,x

if (inc(ALPHMl, J,K,NUMPAR) ) .eq.CORNER(l,l) ) 
: NM= 1

200 continue
i f (NH.eq.O ) then icor. tri not in list 

NUMCOR=NUMCOR+1
CORNE R (NUMCOR,1) = i nt(ALPHA(I,J,K,NUMPAR)) 
CORNER(NUMCOR,2)=I 
CORNER(NUMCOR,3)=J 
CORNER(NUMCOR,4) = K 

end if
end if

else
N-2 1 border triangle

end if 1 ( end of corner tri ) 1 
end if 1 (end of interior tri) 1
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end if 1 (end of calculation of # adj tri) i

* initialize the first index offset
TOP ROVJ= mi n0( J+1, NGRIDY)
BOTROW=maxO(J-1,1)
LE FT COL= ma x 0(1-1,1)
RIGHTCOL=minO(1+1,NGRIDX)
do 500 1 = 1, maxO (NGRIDX-1,NGRIDY-1,NGRI DZ-1)

*** searching the offset for adjacent triangles
do 400 COL=LEFTCOL,RIGHTCOL

do 300 ROW=BOTROW,TOPROW
BOUND=ALPHA(COL,ROW,K,NUMPAR) 
if((ROW.ne.J.or.COL.ne.I).and.

: BOUND, le.NUMTRI) then
call ADJCONF ( I, J, K, YORN ) ‘confirm sub.
if(YORN) then
BORDCNT=BORDCNT+1
CUR(BORDCNT,1)=int(ALPHA(COL,ROW,K,NUMPAR)) 
CUR(BORDCNT,2)=COL 
CUR(BORDCNT,3)=ROW 
CUR(BORDCNT,4 )=K 

end i f
end if

300 continue
400 continue
*** check to see if search should continue

if(BORDCNT.eq.N) then 
return 

end if
* * * adjust search boundaries for next offset
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TOP ROW= mi nO(TOPROW+1,NGRIDY)
BOTROW=maxO(BOTROW-1,1)
LEFTCOL=maxO(LEFTCOL-1,1)
RIGHTCOL=minO(RIGHTCOL+1,NGRIDX)

500 continue
end

NOTE : The matrix PTSTAT is defined to be a BYTE
integer data type which is an 8 bit representation. This 
variable declaration is VAX dependent and is not standard 
to fortran. '
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SUBSECTION D.4 - CODE FOR ADJCONF
This code simply confirms if two triangles are 

adjacent to one another. The MLG indices corresponding to 
the triangle being tested are passed as arguments while 
the indicies of the general triangle are passed in a 
common block. The logical variable YORN is set to true if 
the two triangle are adjacent or set to false otherwise.

subroutine ADJCONF(i, j,k,YORN)
* This is a subroutine to determine if two triangles are
* adjacent. The MLG indices of the general triangle are
* passed using a common block while the indices of the
* triangle being tested are passed as aguments.

logical YORN 
integer i,j,k

* looping through vertices of the triangle to find the
* first pair of vertices that match

YORN=.false, 
do 1000 1=1,3

do 900 m=l,3
if (ALPHA (COL, ROW, k,m).eq.ALPHA( i,j,k,l)) then

* a pair of vertices were found so look for one more in
* the vertices that remain.

do 300 n=1+1,3
do 700 nl=l,3

if(ALPHA(COL,ROW,k ,nl)
: .eq. ALPHA(i,j,k,n)) then

YORN=.true. 1 YORN is true
return 1 if adjacent
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700
800

900
1000

end if
continue

continue
end if

continue
continue
return
end



T-3273 159

SUBSECTION D.5 - CODE FOR PNTSRCH
The following code finds all triangles surrounding a 

given point.The code is separated into 2 sections. Section 
1 processes information in the normal fashion while 
section 2 reprocesses hidden interior triangles and the 
points which are its vertices. The coding for section 2 
will not be given since it resembles the code of section 
1. The important issue is the code which determines all 
surrounding triangles.

subroutine PNTSRCH
* This subroutine determines all triangles which surround
* the points in the space. This subroutine is comprised of
* two parts. The first part processes all points in the
* space in the same manner. The second part processes all
* points that are contained in hidden interior triangles.
* A hidden interior triangle is a triangle which is
* adjacent to a corner triangle and which is classified as
* a border triangle when in fact it is an interior 
-* triangle with three adjacent triangles.

integer CURLIST (3,4), POINT, TRI CNT, ORIGID,CURTRI 
integer TRI ID,SUM,TOPROW,BOTROW,LEFTCOL, RIGHTCOL 
integer USEDLIST(50) 
logical NUMFLG,CORFLG

*** zeroing of point processed flag
do 100 i=l,NUMPTS 

PT(i,4)=0 
100 continue
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* SECTION 1
*** start of search loop

NUMCOR=0 
C0RFLG=.true. 
NUMFLG=.true. 
TRICNT=0

icalculate # adj tri's 
iand corner tri's in this 
isection

* looping through the MLG indices
do 2200 k=l,NGRIDZ

do 2100 i=l,NGRIDX
do 2000 j=l,NGRIDY

TRICNT=TRICNT+1 
i f (TRI CNT. 1 e.NUMTRI ) then

ORIGID= int(ALPHA(i, j,k ,NUMPAR))
do 1900 1=1,3
POINT = int(ALPHA(i,j,k ,1)) 
if (PT(POINT,4).eq.O ) then iPOINT not 
PT(P0INT,4)=1.0 iprocessed yet
NUMUSED=0

*** diff. process is to be done if POINT is a border
- *** point. Must make sure to enter a border point by a
*** border or corner triangle triangle.

if(PTSTAT(POINT,2).eg.1) then
SUM=0
do 400 mn=l, 3

if(SUM.It.2) then 
*** set initial expansion borders

TOPR0W= mi nO( j+1,NGRIDY)
B OT ROW= ma x 0(j-1,1) 
LEFTCOL= maxO(i-1,1) 
RIGHTCOL=minO(i+1,NGRIDX)
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*** searching the expansion for first border 
*** triangles

do 900 mm=l,
: maxO (NGRI DX-1, NGRI DY-1,NGRI DZ-1)

do 800 COL=LEFTCOL,RIGHTCOL
do 700 RO W= B OT ROW, T OP ROW

BOUND=ALPHA ( COL, ROW, k , NUMPAR)
if((ROW.ne.j.or.COL.ne.i).and.

: BOUND, le.NUMTRI ) then
do 600 m=l, 3

if(TRI(ALPHA(COL,ROW,k,
: NUMPAR),m).eq.POINT)
: then

* sum up PTSTAT values for triangle vertices to determine
* triangle type

SUM=0
do 500 mn= 1, 3 

SUM=SUM+
: PTSTAT(ALPHA(COL,
: ROW,k,mn),2)

500 continue
i f(SUM.eq.2 ) then 

IFIND=COL 
JFIND=ROW 
KFIND=k
CURT RI = i nt(ALPHA(COL,

: ROW, k, NUMPAR))
goto 10 

end if i(border tri)
end if I (same POINT)

600 continue
end if 1(not ORIGID tri)
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700 continue 1(1oop on ROW)
800 continue !(loop on COL)
*** increase expansion if no border triangle found

TOPR0W=mi nO(TOPROW+1,NGRIDY) 
BOTROW=maxO(BOTROW-1,1)
LEFTCOL=max0(LEFTCOL-1,1)
RIGHTCOL=minO(RIGHTCOL+1,NGRIDX)

900 continue !(1oop on expansions)
else loriginating triangle is bord

IFIND= i 
JFIND= j 
KFIND=k 
CURTRI = ORIGID

end i f
else IPOINT is not border point

IFIND= i 
JFIND=j 
KFIND=k 
CURTRI=ORIGID

end if I(end POINT id. .bord,inter* )
* initialize the current triangle list
10 do 1100 11=1,3

do 1000 mm=1,4 
CURLIST(11,mm)=0 

1000 continue
1100 continue

* find all adjacent triangles to the current triangle
call FINDADJ (IFIND,JFIND,KFIND,

: NADJ,CURLIST, NUMFLG,CORFLG)
* illiminate any adjacent tri.'s that are in USEDLIST

do 1400 11=1,3
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1200
1300
1400
* find
* if no

- 1800

1900

2000
2100

do 1300 mm=l,NUMUSED 
if(CURLIST(11,1).eq.

USEDLIST(mm)) then 
do 1200 nn=l,4 

CURLIST(11,nn)=0 
continue 

end i f 
continue 

continue
triangle with side in "common" with CURTRI 
triangles are found then search is complete

do 1800 11=1,NADJ 
TRIID=CURLIST(11,1) 
if (TRI I D.ne.O ) then

if(TRI(TRIID, mm). eq.POINT ) then 
IFIND=CURLIST(11,2)
JFIND=CURLIST(11,3)
KFIND=CURLIST(11,4)
USEDLIST(NUMUSED+1)=CURTRI
CURTRI=TRIID
NUMUSED=NUMUSED+1
goto 10 

end if
end if

continue
end if !(end processing POINT) 
continue I (end pro. points in ORIGID tri) 

end if !(end processing tri's in MLG)
continue i(end j looping)

continue l(end i looping)
2200 continue !(end k looping)
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*=== SECTION 2 ===
* code not to be given 
*= = = = = = = =: = = =: = = = = = =

NOTE: Section 2 code resembles the code of the first 
section except for the fact that a different subset of the 
MLG triangles are being processed, the hidden interior 
triangles.



T-3273 165

APPENDIX E
In this appendix computer generated output for 4 

executions of MLG.for are given. They are divided into 4 
subsections and are as follows:

SUBSECTION DATA
E.l Random flow data
E.2 Parabolic flow data
E .3 CPU time data
E.4 CPU time data
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SUBSECTION E.l
Computer generated data for Parabolic Flow over 8 

timesteps is given on the following page. Data includes 
swap iteration counts for the sorting algorithm, maximum 
index offsets, mean index offsets and variances about 
these means.



T-3273 167

*> 1 lOTN © œ i c «new o m © m w © V o o©f*> fN o o o to© OOvna» o o m © © w o o OOer* o o m m •*© o o

r -1  ir>m O' OWCD m m w © v > © ODO WO o c
O'*» o o o o o w m o o

r> o o m o r-m o o OO
CDIf) O o •^N «*o OO

©  « m m mco o — m r*»mo o m o w o O © o oo'*) o o o o f-m mr- o om o w o o m o o o o o©m o o o o

m  i mm eec P»W® mmw o m o ©CD CD W o ow o o o ©w m w o oo o m o m w o o o o©w o o ##o o o

w  i m m © o o © m w w m w o m o o oo m m © o o o o in> o oo o m o w ® o o o o©m o o •^o ##o o o

m  i m m > o m © m w w m w o m o 0-4 m w o oO'*) o o o o w © o oo o o o o o
O'm o o #40 #40 o o

m  i m m O — l w « 4 m w m w o m o O-* ®#4 o oO'*» © o o o f-w wee o om » o o m o #*m o o o o
o o #40 >40 o o

i mm »  e > wmw o m o O O
om m r- o o o o o

w O o m o O O o oCD
O o •40 o o

o  i mm W OVN m-nm wmw o m o m o O'er o o
om m 4 m o o o ww © o o o

o  > o m o o o 0 4 o oX I mm • o  o
1 om  i 4  m o o •40 4 0 o o

o i m o i »
m—i i i ■

I i
i i H u u u u Il II II 11 II II u u u Il II Il II Il II• iI i

o i u u i
m— i I c » * *

m I i to to to
i i V  o

C W) i i u  a
-c e c x i I c z 4  © 4
4 4 0  0 i < 0)4U  4  W  4  —  > 1 « I m e 4 e 104(6 to-mto W i M  to
o  4-4 w  wm « i u v) a4 W O C 1 M 1 ®  c «> u  >. W 1 4  | a * u  e v © * e 0 X 0 o x © to = to e toe1 =  W  1 4 4  ® 16 16 16 4  16 4  161 -4® 1 w  a © 4  e 4  B 4 4  E m 4  E X <4 © 4  ©
e c-4-o o 1 0 4  | u  » u !6 16 (6 © 6 o  ■ e e4 • 0 « 4  -4 i a o i = to 4  4 e 4  e = 4  > C  4  >

Il Ifl II W  4-0 V) 1 C  1 4  » ©  ® 16 O 16 X ©16 X © o x 4 ® —  »
II —  II > C  01 r —  = 1 O I  1 © 4 4  4  ® 4 16 4  -6 4 16 fee 16 e 6 =1 4.-4 | 4  tn 4  16 £ 4  (0 E 4  ifl E = 4 = 4 = 4u  e  »  o- 2 f 4 4  I 10 U 4 U4 U4 e o ©
•1—< II 3 * 4 = *  — 1 0 4  1 V  16 a  a®  > *  = 4 *  = 4 *  = 4

4  0 0) ID 4  4-0 1 1 4 4 16 4  3 4  3 4  3
II C “ i  a x  4 4 e 4  O 4  C u o U © u o

■4U. C' 4 C-—U I C O # 0 4 50 tO 4 •c a  to v  a  to T  ato © a © C © a•o O H  » C-3 1 1 — r 4 T 416U 1 4Û.I < «*» 1 4 4 Ca— o  o 4 1 1 © o o — © 4 o — o © •O © 5  ©1 4 4  I S 3 e © B 3 V U u£ O O 1 16 ID I (C * 1 3  4  a 34 a 3  4 a 4  = ■me •X =3 O  w4 01 4  4 1 4 4  I * *  3 e « a * e * 6 © 6O  (64 c © 4 4 1 4 4  | ©  C  1 © ©  U > | 4 ©  4  | C — c —
= 4 C 4 w 4 4 e *  i e = o  i X 5 » 1 x a » i X = 3 1 6  4 © 4 ■c -.

Il T II « (6 0) O *6 C C 1 C =  1 3  3 1 3 3 O > 1 1 3 1 <63 1 *6 3 • © T © T © 6
H a. h x a .u a .- I —- 1 —  1 SEX 1 z  Z  4 4  1 X** *  1X X  4  1X © # M X » X  » X »



T-3273 168

SUBSECTION E.2
Computer generated data for Random flow over 8 

timesteps is given. Data includes swap iteration counts 
for the sorting algorithm, maximum index offsets, mean 
index offsets and variances about these means.
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SUBSECTION E .3 
Computer generated CPU data for Parabolic flow over 8
steps is given.
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SUBSECTION E.4
Computer generated CPU data for Random flow over 8 

timesteps is given.
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