• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2013 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2013 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Flexible automatically adaptive surface nuclear magnetic resonance modelling and inversion framework incorporating complex data and static dephasing dynamics, A

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Irons_mines_0052E_10310.pdf
    Size:
    8.732Mb
    Format:
    PDF
    Description:
    A flexible automatically adaptive ...
    Download
    Author
    Irons, Trevor P.
    Advisor
    Li, Yaoguo
    Date issued
    2013
    Keywords
    NMR
    electromagnetics
    hydrology
    hazard detection
    geotechnical engineering
    inverse theory
    Nuclear magnetic resonance
    Groundwater
    Inversion (Geophysics)
    Geotechnical engineering
    Mathematical models
    Electromagnetism
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/80052
    Abstract
    Surface nuclear magnetic resonance (sNMR) is the only geophysical technique that can directly and non-invasively detect the presence of subsurface liquid water. The method has established itself as valuable tool for hydrologists and groundwater managers owing to the fact that both porosity and hydraulic conductivity estimates can be made using this technique. Although sNMR has enormous potential, there are many challenges with the technique which hinder it's more widespread adoption. For these reasons sNMR has primarily been used as a 1D groundwater sounding tool, although there exist myriad other applications for a method directly sensitive to liquid water. Simultaneously inverting the entire complex dataset as well as the employment of arrays of separated transmitter and receiver coils and integration with other geophysical methods can help to overcome these limitations. This requires modelling algorithms that can accommodate a widely varying set of survey configurations and scenarios. I present the innovative use of sNMR applied to two geotechnical problems: volcanic landslide hazard characterization on Mt. Baker, Washington and the monitoring of internal erosion in earthen embankments. These applications necessitated the development of a general modelling framework capable of handling arbitrary positioned transmitter and receiver coils as well as 3D water distribution. The advantages of comprehensive (whole dataset) inversion of the entire sNMR record have been established for time-domain inversions. However, these inversions are memory intensive and struggle to fit the phase portion of the dataset-necessitating the regretful dismissal of this valuable information. I instead consider the sNMR inversion problem in the frequency-domain for the first time. There are several benefits: effectively lossless compression, and the ability to easily incorporate and solve for static dephasing dynamics caused by magnetic field inhomogeneities. This has allowed for the first practical sNMR inversion capable of fitting complex field data, resulting in improved imaging.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2013 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.