• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2013 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2013 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Influence of silicotungstic acid on activity and durability of cathode electrocatalysts for proton exchange membrane fuel cells

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Mason_mines_0052N_10261.pdf
    Size:
    3.113Mb
    Format:
    PDF
    Description:
    Influence of silicotungstic acid ...
    Download
    Author
    Mason, Kelly Sykes
    Advisor
    Herring, Andrew M.
    Date issued
    2013
    Keywords
    PEMFC
    heteropoly acid
    electrochemistry
    silicotungstic acid
    platinum
    fuel cell
    Proton exchange membrane fuel cells
    Fuel cells
    Electrolytic cells
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/79526
    Abstract
    Proton exchange membrane fuel cells are nearing commercialization, but they still suffer from high costs, largely due to high Pt loadings in the cathode, and low durability due to Pt dissolution and carbon corrosion. This work attempts to address both issues through the development and testing of a novel catalyst. Colloidal Pt prepared by an ethylene glycol reduction method was deposited onto Ketjen black carbon supports functionalized with (0, 3.2, 7.1, and 15.9wt%) 11-silicotungstic acid (Pt/SiW11-C). Electrochemical characterization of the catalysts was performed using rotating disk electrodes (RDE) in electrolytes of 0.1 M HClO4 and 0.5 M H2/SO4. XRD and TEM respectively showed smaller crystallite size and more uniform deposition of Pt nano-particles for Pt/SiW11-C catalysts. A maximum in the ORR mass activity of 373 mA/mgPt was observed for the 3.2wt% SiW11 catalyst, an 18% improvement over Pt/C. An increase in the electrochemical area (ECA) due to lower Pt particle size and more narrow size distribution is attributed to providing the mass activity enhancement. After 30,000 durability cycles in the potential range 0.6-1.0 V, Pt/SiW11-C showed less Pt particle growth (TEM), and a factor of 1.4 improvement in terms of mass activity retention. After 6,000 durability cycles in the potential range 1.0-1.6 V, Pt/SiW11-C showed a factor of 2 increase in mass activity retention compared to Pt/C. The improvement is attributed to a slower rate of carbon corrosion. The optimal 3.2wt% SiW11 catalyst and the baseline Pt/C catalyst were scaled up and constructed into membrane electrode assemblies (MEAs). Fuel cell testing of the MEAs in an H2/O2 environment at 100% RH and 80 degrees C showed a similar improvement in ORR mass activity for the Pt/SiW11-C catalyst relative to Pt/C. Recommended future work includes further fuel cell optimization, fuel cell durability testing, use of carbons with different geometries, use of alternate heteropoly acids, and extension to platinum alloys.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2013 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.