• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2013 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2013 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Characterization and modeling of high burn-up mixed oxide fuel

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Teague_mines_0052E_10214.pdf
    Size:
    6.661Mb
    Format:
    PDF
    Description:
    Characterization and modeling ...
    Download
    Author
    Teague, Melissa Christine
    Advisor
    King, Jeffrey C.
    Gorman, Brian P.
    Date issued
    2013
    Keywords
    thermal conductivity
    MOX
    high burn-up
    Nuclear fuels -- Thermal conductivity
    Nuclear fuel claddings
    Irradiation
    Sodium cooled reactors
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/78991
    Abstract
    Currently, fast reactor performance is largely constrained by the limitations of the materials involved in these reactors. The fuel is particularly limiting due to fission gas generation, changes in thermal conductivity, microstructure changes within the fuel, fuel swelling, and fuel-cladding chemical interaction (FCCI). Highly irradiated fuel is radially inhomogeneous in composition, microstructure, and temperature. In this work, high burn-up mixed oxide fuel with local burn-ups of 3.4-23.7% FIMA were destructively examined as part of a research project to understand the performance of oxide fuel at extreme burn-ups. Optical metallography, transmission electron microscopy and electron back-scatter diffraction were performed to further study the microstructure and chemical composition of the irradiated fuel. The optical micrographs were used to generate finite-element meshes in order to model the effective thermal conductivity of the irradiated fuel as a function of burn-up, radial position, and temperature. The fuel-to-cladding gap closed significantly in samples with burn-ups below 7-9% FIMA. Samples with burn-ups in excess of 7-9% FIMA had a reopening of the fuel-to-cladding gap and evidence of joint oxide-gain formation. Additionally, high burn-up structure was observed in the two highest burn-up samples (23.7 and 21.3% FIMA). The microstructural modeling of the effective thermal conductivity found close (10-20%) agreement between the calculated effective thermal conductivities and the semi-empirical based analytical models, validating the finite-element mesoscale approach to microstructural modeling of effective thermal conductivities in irradiated fuel.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2013 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.