• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2013 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2013 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Effect of microalloying on the strength of high carbon wire steels

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Miller_mines_0052N_10107.pdf
    Size:
    5.772Mb
    Format:
    PDF
    Description:
    Effect of microalloying on the ...
    Download
    Author
    Miller, Stephanie L.
    Advisor
    De Moor, Emmanuel
    Date issued
    2013
    Keywords
    strength
    metallurgy
    high carbon
    steel
    microalloying
    wire
    Microalloying
    Steel -- Metallurgy
    Metallography
    Steel, High strength
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/77776
    Abstract
    Microalloying additions of V, Nb, and N were investigated as means of increasing strength of eutectoid steels for wire applications. In order to examine the effects of microalloying additions during several stages of wire processing, continuous cooling experiments with and without deformation as well as patenting simulations were conducted using a Gleeble® 3500 thermomechanical simulator. Continuous cooling was performed from industrial austenitizing (1093 °C) and laying head (950 °C and 880 °C) temperatures, at rates ranging from 1 50 °C/s. Deformation was induced via hot torsion testing, which was followed by continuous cooling from 950 °C at rates of 5, 10, and 25 °C/s. Industrial wire patenting was simulated by austenitizing at 1093 °C or 950 °C for 30 sec, then rapid cooling to isothermal transformation temperatures of 575, 600, 625, and 650 °C for 15 sec before cooling to room temperature. Metallography, Vickers hardness, pearlite colony size and pearlite interlamellar spacing (ILS) measurements were used to examine the effects of these treatments. Continuous cooling transformation (CCT) curves were constructed for four steels: 1080, V, V+N, and V+Nb. In the V-microalloyed steel, additional N accelerated pearlite transformation and Nb delayed pearlite transformation. Observed N effects are in agreement with the theory of VN nucleating grain boundary ferrite and accelerating pearlite transformation, proposed by Han et al. [1995], and also consistent with observations by Brownrigg and Prior [2002]. Delay of transformation temperatures has been observed due to Nb effects [De Ardo, 2009]. A larger delay observed with higher austenitizing temperatures suggests that Nb precipitates may not be as effective at delaying transformation. V strengthening effects were observed in all microalloyed steels using a model that predicted hardness of eutectoid steels by incorporating colony size and ILS measurements, with maximum strengthening observed for the V+N steel. The V+Nb steel was found to have the greatest refinement of colony size and ILS, and subsequently higher hardness among the test alloys in both the undeformed and deformed conditions, consistent with the delay of pearlite transformation. In general, undeformed samples had much higher hardness values. Patenting simulations performed on microalloyed steels showed the potential for increased strength with V addition with a sufficiently high austenitizing temperature. All microalloyed steels showed higher hardness than 1080 when austenitized at 1093 °C, with V and V+Nb having the greatest strength increase. The effect was not observed with a 950 °C reheat potentially related to insufficient dissolution of precipitates.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2013 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.