• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2012 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2012 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Geomechanical characterization of the Montney shale, northwest Alberta and northeast British Columbia, Canada

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Davey_mines_0052N_10065.pdf
    Size:
    4.966Mb
    Format:
    PDF
    Description:
    Geomechanical characterization ...
    Download
    Author
    Davey, Heather
    Advisor
    Davis, Thomas L. (Thomas Leonard), 1947-
    Curtis, John B.
    Date issued
    2012
    Date submitted
    2012
    Keywords
    seismic time-lapse anisotropy
    natural fracturing
    Mohr-Coulomb failure
    mechanical stratigraphy
    hydraulic fracturing
    geomechanics
    Seismic prospecting -- Alberta
    Seismic prospecting -- British Columbia
    Geology, Structural -- Alberta
    Geology, Structural -- British Columbia
    Fracture mechanics
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/76848
    Abstract
    Unconventional reservoirs require hydraulic stimulation to be commercially productive. Recently, distinctions have been made between reservoir quality vs. completion quality (Cipolla et al. 2012), emphasizing the importance of both elements for production. There are many sources of variability in reservoir quality; in this thesis I examine several fundamental reservoir properties in detail and combine them in a new way: the Rock Quality Index (RQI). Through the definition of a geomechanical model and corresponding mechanical stratigraphy, those factors having a substantial effect on reservoir quality became apparent. Two fundamental categories; compositional variation and fabric variation, are used to characterize overall reservoir variation. Burial, compaction, hydrocarbon generation, diagenesis, and tectonics all affect the mechanical character and in-situ stress state of the reservoir. The Rock Quality Index (RQI) is an effort to understand how composition and fabric relate to stress anisotropy, fracturing, and rock properties, and ultimately aid in defining the best zones for exploitation. Therefore, this Rock Quality Index (RQI) is vital for the defining the second element of unconventional reservoir success; completion quality. Without a reservoir framework to drive the completion design, high completion quality will be harder to achieve. The original mechanical stratigraphy definition is in turn used as a framework for relating Rock Quality Index (RQI) variations to the factors which caused them. The comparison between Rock Quality Index (RQI) and mechanical stratigraphy shows that zones traditionally thought of as desirable for hydraulic completion (brittle) are also zones of high internal heterogeneity. Formation heterogeneity may be detrimental to hydraulic fracture growth. Using several other data types (multicomponent time-lapse seismic, microseismic, and reservoir engineering tests) in conjunction with the Rock Quality Index (RQI), it is observed that there is a strong formation influence on the progression of hydraulic fractures. The locations of interfaces between changes in rock properties and/or stress state are locations where the hydraulic fracture character will also change. It was found that energy is dissipated in heterogeneous/brittle zones, while hydraulic growth occurs in homogenous zones. However, at the intersection of a homogenous zone with a brittle zone, both hydraulic fracture growth and energy dissipation is possible. Here relatively higher production is observed. Stress shadowing amplifies the effects of energy dissipation in brittle zones. Understanding the geological factors that have the greatest influence on stimulation has proven to be a useful method of predicting productivity and efficiency in shale reservoirs. The results of this geomechanical study are calibrated with diagnostic fracture injection tests, microseismic, spinner gas data, and time-lapse multicomponent seismic to corroborate the predictions of reservoir performance in the Montney Shale.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2012 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.