• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2012 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2012 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Buried penny-shaped cracks

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Floyd_mines_0052N_10018.pdf
    Size:
    399.7Kb
    Format:
    PDF
    Description:
    Buried penny-shaped cracks
    Download
    Author
    Floyd, Christopher L.
    Advisor
    Martin, P. A.
    Date issued
    2012
    Date submitted
    2012
    Keywords
    reflection seismology
    velocity estimation
    least squares
    waveform inversion
    traveltime inversion
    Fracture mechanics
    Strains and stresses--Mathematical models
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/76638
    Abstract
    Penny-shaped cracks are commonly used mathematical models, generally used in the field of fracture mechanics. One specific application is the modeling of micro-structures, within elastic materials. From a purely mathematical perspective, a penny-shaped crack can be described as a flat, disk-shaped crack. In this work, we consider the buried penny-shaped crack problem, consisting of a single crack, buried below the surface of a half-space. Specifically, the flat surface of the crack is taken to be parallel to the boundary, and the radius of the crack is held constant. The primary point of interest in this problem is the depth dependence of the stress intensity factor, which characterizes the fracture conditions near the tip of the crack. Determining the stress intensity factor for this problem is reduced to solving a pair of dual integral equations, specifically looking at these equations evaluated at the upper bound of integration. These equations were amenable to numerical solution, where the distance between the crack and the boundary was allowed to become small. The values of these equations, at the upper bound of integration, both tend toward 0. Based on the numerical results, the stress intensity factors for this problem were dependent on the depth at which the penny-shaped crack is buried.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2012 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.