• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2012 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2012 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Wave propagation in complex media, scattering theory, and application to seismic imaging

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Fleury_mines_0052E_10002.pdf
    Size:
    19.00Mb
    Format:
    PDF
    Description:
    Wave propagation in complex ...
    Download
    Author
    Fleury, Clement
    Advisor
    Snieder, Roel, 1958-
    Date issued
    2012
    Date submitted
    2012
    Keywords
    multiples
    migration
    reverse-time
    scattering
    seismic
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/70693
    Abstract
    Migration is a seismic imaging method that consists of creating a representation of the Earth's subsurface structure from the recording of seismic waves. Migration is essentially equivalent to solving an inverse scattering problem in structurally complex media. Conventional migration algorithms rely on linearized inversion schemes and assume single-scattering dominance. The primary focus of this thesis is an alternative nonlinear scattering-based approach to seismic migration. The goal is to take advantage of multiple scattering in seismic imaging in order to produce better images in complex geological subsurface environments. The foundation of the method I proposed is the integral formulation of the inverse scattering problem based on the representation theorems and similar to the formulation used for retrieving Green's functions in seismic interferometry. The first part of this thesis presents representation theorems for general perturbed systems. Based on this study of the retrieval of scattered fields, I develop a new imaging condition for seismic migration. By taking into account the fundamental nonlinear relation between the seismic data and the model of the subsurface, this imaging condition takes advantage of multiply scattered waves, including multiple reflections, in the imaging process. Then, I design an imaging algorithm referred to as nonlinear reverse-time migration. This migration exploits multiply scattered waves, including internal multiples, and is of particular interest for advanced interpretation in complex subsurface environment. In the exploration industry, the development of new imaging methods coincides with innovations in data processing and acquisition. The last part of this thesis focuses on a reverse-time migration that makes optimal use of the novel multi-component marine seismic data which have recently been available for oshore exploration.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2012 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.