• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2012 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2012 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Comparison of Raman LIDAR signal estimation and smoothing methods and correlation between the Pierre Auger side scattering method for determining aerosol content in the troposphere, A

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Coco_mines_0052N_10009.pdf
    Size:
    17.31Mb
    Format:
    PDF
    Description:
    A Comparison of Raman LIDAR ...
    Download
    Author
    Coco, Michael B.
    Advisor
    Wakin, Michael B.
    Date issued
    2012
    Date submitted
    2012
    Keywords
    signal smoothing
    LIDAR, signal processing
    aerosol optical depth
    bi-static LIDAR
    density estimation
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/70691
    Abstract
    Raman backscatter LIDAR is the standard method in atmospheric physics for measuring atmospheric aerosol optical depth profiles. Cosmic ray observatories, including HiRes and Pierre Auger, measure the aerosol optical depth using an elastic side scattering technique. A first ever comparison between the two methods was carried out in southeastern Colorado at the Pierre Auger R\&D site. Between September 2010 and June 2011, over 300 hours of data was collected by the side scattering and Raman LIDAR system in parallel and over 900 hours of data was collected by the LIDAR alone. LIDAR backscattering signals become increasingly dominated by noise as height increases due to an ever decreasing photon return. Smoothing of the signals is required to obtain a usable aerosol optical depth profile. Free-degree density estimation and a customized kernel density estimation smoothing technique were applied to the Raman LIDAR data. It was found that both the free-degree density estimation and the kernel density estimation smoothing techniques work well for LIDAR signals. A strong linear correlation coefficient above 0.9 was calculated between the two techniques. These smoothing techniques were compared with the Savitzky-Golay smoothing technique currently used by a Raman LIDAR group in L'Aquila, Italy. Although the correlations between the density estimation techniques and Savitzky-Golay technique were still strong (above 0.8), there is a systematic difference in the aerosol optical depths observed of around 0.02. Since the two density smoothing techniques smooth the LIDAR signals well, this shift might be explained by differences in the two analyses. A similar systematic offset is seen when comparing the density smoothing methods to the side scattering data.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2012 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.