• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2014 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2014 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Upper and Lower Bakken shale production contribution to the Middle Bakken reservoir

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Kumar_mines_0052N_10354.pdf
    Size:
    4.904Mb
    Format:
    PDF
    Description:
    Upper and Lower Bakken shale ...
    Download
    Author
    Kumar, Sanyog
    Advisor
    Hoffman, B. Todd
    Date issued
    2014
    Date submitted
    2014
    Keywords
    Upper and Lower Shale
    shale oil
    desorption
    Bakken
    Shale oils -- Bakken Formation
    Shale gas -- Bakken Formation
    Oil reservoir engineering -- Mathematical models
    Petroleum -- Migration -- Bakken Formation
    Fluid dynamics
    Porosity
    Bakken Formation
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11124/361
    Abstract
    There is an uncertainty over the Upper and Lower (U&L) Bakken Shale production contribution to the Middle Bakken reservoir. For the Bakken system, a reliable degree of accuracy in the reservoir studies involving the fluid flow and recovery mechanism cannot be achieved without resolving this uncertainty. Performance anomalies in the gas-oil ratio (GOR) trends of the production history of the Middle Bakken wells in the Reunion Bay, Sanish, Parshall and the Elkhorn Ranch fields indicate the possibility of the anticipated contribution. Quantifying the U&L Shale contribution requires knowledge of the mechanism of fluid storage and flow in the liquid rich shale systems. For the U&L Shale, adsorption is considered as the primary mode of fluid storage, and the process of diffusion is considered crucial for the matrix-to-fracture fluid transfer. The governing mathematical equations for desorption and diffusion was adopted for shale gas systems. These equations are incorporated in Computer Modeling Group's (CMG[trademark]) compositional simulator GEM[trademark] to propose a reservoir simulation-based quantification scheme for the U&L Shale contribution. Through the sensitivity analyses, the effect of variation in the parameters of the U&L Shale, the Middle Bakken layer and the hydraulic fracture is investigated. Utilizing the surveyed numerical value-ranges of these parameters, the U&L Shale layers are found to contribute in the range of 12 to 52% of the cumulative production from a Middle Bakken well. Whereas, utilizing the mean numerical values of the parameters, the contribution is quantified as 40%. Relative sensitivity study suggested that the U&L Shale production contribution is the most sensitive to the U&L Shale matrix parameters, such as total organic carbon (TOC, wt.%) and molecular diffusion coefficients. The TOC controls the desorption-parameters; therefore, the findings suggest that the phenomena of desorption and diffusion are expected to play a crucial role in the anticipated production-contribution.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2014 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.