• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2014 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2014 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Hydrogen induced damage in pipeline steels

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Angus_mines_0052N_10392.pdf
    Size:
    6.106Mb
    Format:
    PDF
    Description:
    Hydrogen induced damage in ...
    Download
    Author
    Angus, Garrett R.
    Advisor
    Findley, Kip Owen
    Date issued
    2014
    Date submitted
    2014
    Keywords
    plate steel
    NACE Standard TM0284
    electrolytic charging
    hydrogen
    HIC
    Steel -- Testing
    Steel -- Microstructure
    Pipelines -- Cracking
    Hydrogen -- Analysis
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11124/339
    Abstract
    The hydrogen induced cracking (HIC) resistance of several grades of plate steels was investigated using electrolytic hydrogen charging. HIC generated by electrolytic charging was also compared to the industrial standard test for HIC, the NACE standard TM0284. The electrolytic charging (EC) apparatus was designed to optimize the reproducibility of the HIC results and the robustness of the components during long charging times. A characterization study on the EC apparatus was undertaken. Alterations to applied current density and charging time were conducted on a highly susceptible plate steel, 100XF, to assess HIC damage as a function of charging conditions. Intermediate current densities of 10 to 15 mA/cm2 produced the greatest extent of cracking without significant corrosion related surface damage. The hydrogen charging time did not greatly affect the extent and depth of cracking for test times between 24 to 48 hours. Thus, for subsequent experiments, the applied current density was set to 15 mA/cm2 and the charging time was set to 24 hours. Plate steel grades X52, X60, X70, and 100XF were prestrained in tension to various levels and then electrolytically charged with hydrogen or tested with the NACE standard TM0284 test (solution A) saturated with H2S(g) to induce HIC. Prestrain was introduced to assess its impact on HIC. Hydrogen damage was quantified with the crack ratios defined in the NACE Standard TM0284. The results from the EC and NACE methods were very comparable to one, with respect to the magnitude of cracking and the trends between alloy and pre-strain conditions observed. Both methods showed that HIC substantially increased for the high strength 100XF steel compared to the lower strength alloys. This is consistent with NACE recommendations for HIC resistance steels, which suggests that alloy strength should be less than 116 ksi (800 MPa) or 248 HV (22 HRC). The HIC results were largely independent of the pre-strain levels imposed within the statistical accuracy of the evaluation method employed. The total, irreversibly trapped, and diffusible hydrogen amounts were measured or estimated for each condition using a LECO interstitial analyzer and the American Welding Society method for measuring diffusible hydrogen concentrations. The total amount of diffusible hydrogen was highest for the 100XFalloy and lowest for the X52 alloy. The amount of trapped hydrogen was similar for all the alloys, implying that the number of irreversible trap sites were comparable. However, the diffusible hydrogen content was greatest for the 100XF alloy and lowest for the X52 alloy, which is believed to be related to the relatively high amount of grain boundary area and high dislocation density of the 100XF alloy. A qualitative analysis on the effect of microstructure and nonmetallic inclusions on HIC was performed and produced results that confirmed findings from literature. Cracking was observed around nonmetallic inclusions such as sulfides and oxides in the metal matrix. For materials in which both inclusion types were present, X60 and X70, HIC originated and was observed most often around sulfide type inclusions.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2014 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.