• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2015 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2015 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Exploring green catalysts for production of biofuels and value added chemicals for renewable and sustainable energy future

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Budhi_mines_0052E_10814.pdf
    Size:
    4.208Mb
    Format:
    PDF
    Download
    Author
    Budhi, Sridhar
    Advisor
    Trewyn, Brian
    Date issued
    2015
    Keywords
    heterogeneous catalysis
    nanomaterials
    biofuels
    renewable energy
    mesoporous
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/20160
    Abstract
    Porous silica have attracted significant attention in the past few decades due to their unique textural properties. They were extensively investigated for applications in catalysis, separation, environmental remediation and drug delivery. We have investigated the porous metal incorporated silica in the synthetic as well as catalytic perspectives. The synthesis of metal incorporated mesoporous silica via co-condensation such as SBA-15, KIT-5 are still challenging as it involves acidic synthetic route. Synthesis in high acidity conditions affects the incorporation of metal in silica due to high dissolution of metal precursors and breaking of metal oxygen and silica bond. The research presented here demonstrates an efficient way to incorporate metals by addition of diammonium hydrogen phosphate along with metal precursor during the synthesis. The incorporation efficiency has increased 2-3 times with this approach. Catalytic studies were performed to support our hypothesis. Such synthesized molybdenum incorporated mesoporous silica were investigated as catalyst for fast pyrolysis. When molybdenum incorporated in silica was used as catalyst for fast pyrolysis of pine, it selectively produced furans (furan, methylfuran and dimethylfuran). Furans are considered value-added chemicals and can be used as a blendstock for diesel/jet grade fuel. The catalyst was very stable to harsh pyrolysis conditions and had a longer life before deactivation when compared with traditional zeolites. Further, this catalyst did not produce aromatic hydrocarbons in significant yields unlike zeolites. The origin of the furans was determined to be biopolymer cellulose and the selectivity for furans are attributed to low catalyst acidity. The fffect of silica to alumina ratio (SAR) of β-zeolite was investigated ranging to elucidate the the relationship between the of number of acid sites on product speciation and catalyst deactivation on catalysts supplied by Johnson Matthey. The catalyst with low SAR (more acid sites) produced predominantly aromatic hydrocarbons and olefins with no detectable oxygen containing species. In contrary, the catalyst with high SAR (fewer acid sites) produced a suite of oxygenated products such as furans, phenols and cresols. The coke deposited on each catalyst and the yield of aromatic hydrocarbons were in direct proportion to the number of acid sites. When catalysts were active, the biomass selectivity towards hydrocarbons and amount of coke were constant regardless of SAR.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2015 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.