• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2015 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2015 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Correcting for spherical aberration in multiphoton microscopy using a two-dimensional spatial light modulator

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Wood_mines_0052N_10796.pdf
    Size:
    6.880Mb
    Format:
    PDF
    Download
    Author
    Wood, Cayla A.
    Advisor
    Squier, Jeff A.
    Date issued
    2015
    Keywords
    multiphoton microscopy
    spatial light modulator
    two-photon microscopy
    scattering media
    fiber laser
    theta microscopy
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/20144
    Abstract
    In the past few decades, there has been an explosion of construction techniques for microscopy systems. These systems can include various types of lasers, including solid state and more recently, fiber lasers. There are many advantages to a fiber laser, including portability, small size, ease of alignment, and low maintenance. In particular, this report details the construction of a 1 um, 150 fs, all-normal-dispersion (ANDi) fiber laser that is used for microscopic imaging. In conjunction with the fiber laser, I constructed a two-photon excitation fluorescence (TPEF) microscope that can be used for sub-1-m-resolution images of scattering media. The key driving specimen for this system is biological systems, but the laser-microscope system can be used to image any scattering media, including high-index materials used in solar cells (for example, CdTe, which has an index of 2.8 at 1150 nm [1]). After construction of the laser-microscope system, we developed a system using a two-dimensional spatial light modulator (SLM) to correct for spherical aberration that arises at the image plane. To do this, we created a phase mask that induced a variable quartic phase on the spatial profile of the excitation beam. The SLM system has been tested on a TPEF microscope using specimen scanning techniques. Additionally, I designed and constructed a theta microscope to try to improve axial resolution (~4 um from a Yb:KGW laser through a 0.65 NA objective) to match its lateral resolution (1 um) by interfering the foci from two different microscope objectives.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2015 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.