• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2015 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2015 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Propagating climate and vegetation change through the hydrologic cycle in a mountain headwaters catchment

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Pribulick_mines_0052N_10764.pdf
    Size:
    1.693Mb
    Format:
    PDF
    Download
    Author
    Pribulick, Christine E.
    Advisor
    Maxwell, Reed M.
    Carroll, Rosemary W. H.
    Date issued
    2015
    Keywords
    ecohydrology
    mountains
    vegetation change
    hydrology
    climate change
    ParFlow
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/20128
    Abstract
    Prediction of hydrologic response to global climate change is paramount for regions that rely upon snowpack for their dominant water supply. Temperature increases are anticipated to be greater at higher elevations perturbing headwaters systems that provide water to millions of downstream users. In this study, the relationships between climatic change and associated vegetation succession with the corresponding response in hydrologic processes of mountainous terrain are studied in the East River headwaters catchment near Crested Butte, CO. This catchment is emblematic of other headwater systems within the upper Colorado River basin. Therefore, perturbations seen at this study site are likely to occur across the region, altering the water quantity and quality of the Colorado River. Here, we study the effect of climate-induced changes on the hydrologic response of three different characteristic components of the catchment: a steep high-energy mountain system, a medium-grade lower-energy system and a low-grade low-energy meandering floodplain. To capture the surface and subsurface heterogeneity of this headwaters system the basin has been modeled at a 10-meter resolution using ParFlow, a parallel, integrated hydrologic model. This model assesses hydrologic scenarios based on worst-case Intergovernmental Panel on Climate Change (IPCC) climate projections and an estimated worst-case scenario vegetation change observed in a warming experiment conducted in the watershed. Changes in ground evaporation, evapotranspiration (ET) snow water equivalent (SWE), and discharge are analyzed as these catchment characteristics provide useful insight into hydrologic response. It was found that each component responded differently depending on its inherent orographic location and geologic features. It was also found that the inclusion of vegetation change enhanced the hydrologic changes from the vegetation or warming scenarios alone. Overall, the results show decreases in discharge, shifts in the timing of peak runoff, and prolonged periods of soil moisture declines, all of which can have negative implications for water quality, quantity and vegetative productivity.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2015 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.