• Login
    View Item 
    •   Home
    • Student Research & Publications
    • Undergraduate Research Symposia
    • 2023 Spring Undergraduate Research Symposium
    • View Item
    •   Home
    • Student Research & Publications
    • Undergraduate Research Symposia
    • 2023 Spring Undergraduate Research Symposium
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Development of calcium and oxygen nanosensors for in-vivo diagnostics

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Sydney_Isbell_poster_2023.pdf
    Size:
    884.3Kb
    Format:
    PDF
    Download
    Author
    Isbell, Sydney
    Advisor
    Cash, Kevin J.
    Mendonsa, Adrian
    Date
    2023-04
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/176976
    Abstract
    Diagnostic tests to determine analyte concentration can be repetitive and require extensive training for proper analysis. To address these limitations, we developed two ratiometric nanosensors (calcium (Ca2+) and oxygen (O2)) which could be implemented in-vivo to give insight into biological functions such as nerve signaling and cellular respiration. The Ca2+ nanosensors’ optical properties (fluorescence and absorbance) vary to reflect the surrounding Ca2+ concentration. These sensors are selective to Ca2+ over other biologically relevant cations (Mg2+, Na+, K+) and show a sensitivity to Ca2+ at concentrations as low as 100 µM. The O2 nanosensor is composed of two dyes encapsulated in a hydrophobic PVC matrix. The O2 sensitive dye, platinum octaethylporphyrin (PtOEP), shows a decrease in luminescence with increasing oxygen concentrations. Whereas, the reference dye, DiA, has no O2 sensitivity. These O2 sensors are reversible and have a detection range that spans from anoxic (0% O2) to atmospheric conditions (21% O2). While the Ca2+ and O2 sensors showed functionality in in-vitro studies, testing these sensors in-vivo will determine their effectiveness as a long-term diagnostic aid.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2023 Spring Undergraduate Research Symposium

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.