• Login
    View Item 
    •   Home
    • Student Research & Publications
    • Undergraduate Research Symposia
    • 2023 Spring Undergraduate Research Symposium
    • View Item
    •   Home
    • Student Research & Publications
    • Undergraduate Research Symposia
    • 2023 Spring Undergraduate Research Symposium
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Changes in extracellular matrix stiffness affect pancreatic islet function

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Amit_Sela_poster_2023.pdf
    Size:
    1.993Mb
    Format:
    PDF
    Download
    Author
    Sela, Amit
    Advisor
    Farnsworth, Nikki
    Johansen, Chelsea
    Date
    2023-04
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/176968; https://doi.org/10.25676/11124/176968
    Abstract
    In the pancreas, the islet is surrounded by a specialized protein scaffold known as the extracellular matrix (ECM) that regulates cell survival and insulin secretion. Little is known about how the properties of the pancreas microenvironment, like matrix stiffness, regulate islet function in health and disease. Previous studies have shown that tissue stiffness in muscle cells regulates phosphofructokinase (PFK) activity. The mechanisms underlying mechanotransduction regulation of insulin secretion have not been well studied in the β-cell and a connection between metabolism and mechanotransduction has never been studied in intact islets. We hypothesize that increasing matrix stiffness will increase islet glucose sensitivity by increasing PFK activity. Our lab has developed a 3D reverse thermal gel (RTG) system that allows us to mimic the islet microenvironment and to investigate how the environment affects islet function. To determine the effect of changes in ECM stiffness on islet function we encapsulated mouse islets in the RTG with increasing stiffness as determined by rheological analysis. Glucose-stimulated insulin secretion, PFK activity, and PFK expression was measured after 24 hours of culture. We found that increasing RTG wt% yielded increasing stiffness at 40°C. Insulin secretion increased as the matrix stiffness increased in basal and high glucose conditions. Insulin secretion at high glucose normalized to low glucose (stimulation index) decreases with matrix stiffness indicating dysfunction to insulin secretion. PFK activity increased in islets encapsulated in stiffer RTGs. Our results provide insight into how changes in ECM stiffness contribute to islet dysfunction.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2023 Spring Undergraduate Research Symposium

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.