• Login
    View Item 
    •   Home
    • Student Research & Publications
    • Graduate Student Association
    • 2023 Graduate Research And Discovery Symposium (GRADS) posters and presentations
    • View Item
    •   Home
    • Student Research & Publications
    • Graduate Student Association
    • 2023 Graduate Research And Discovery Symposium (GRADS) posters and presentations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Understanding charge carrier mobility in Hg₂GeTe₄

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    GRADS2023_Claire_Porter.pdf
    Size:
    2.109Mb
    Format:
    PDF
    Download
    Author
    Porter, Claire E.
    Qu, Jiaxing
    Ciesielski, Kamil
    Ertekin, Elif
    Toberer, Eric
    Date
    2023-04
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/176965; https://doi.org/10.25676/11124/176965
    Abstract
    High charge carrier mobility in semiconductor materials is desirable across a broad range of fields ranging from light-emitting devices to thermoelectrics. Electronic mobility is driven by both the intrinsic electronic band structure of the material as well as the energy dependent electron scattering mechanisms. Semiconductors with excellent mobility span a large chemical space: transparent conductor CdO, topological insulator HgTe, and Zintl compound KAlSb4. Therefore, engineering high mobility from chemistry alone is difficult if not impossible. Relating chemistry and synthetic processing to their impact on mobility is highly desirable, but experimentally difficult. Adding a fourth thermomagnetic measurement, the Nernst coefficient, to the traditional thermoelectric transport measurement suite (resistivity, Hall coefficient, Seebeck), allows the experimentalist to derive a carrier lifetime/scattering parameter as a function of temperature. We design a custom apparatus to measure the Nernst effect and perform initial model measurements to address the question of what scattering mechanisms limit the mobility of several potential thermoelectric materials. In our design, we test different sample and sample holder geometries to optimize reproducibility. For the model materials we measure the Nernst signal at low magnetic field (µB < 1) in addition to traditional Hall coefficient, Seebeck, and resistivity. We employ the method of four coefficients to determine four electronic parameters: µ, n, m*DOS, and λ (scattering factor). By utilizing the method of four coefficients, we can decouple effects from electronic band structure from energy-dependent scattering effects, and therefore design optimal thermoelectric materials and validate the scattering predictions from computational methods.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2023 Graduate Research And Discovery Symposium (GRADS) posters and presentations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.