• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2021 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2021 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Controls on debris flow avulsions: White Mountains of California and Nevada

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Herbert_mines_0052N_12163.pdf
    Size:
    1.077Mb
    Format:
    PDF
    Download
    Author
    Herbert, Lauren
    Advisor
    Santi, Paul M. (Paul Michael), 1964-
    Densmore, Alexander L.
    Date issued
    2021
    Keywords
    debris flow
    avulsion
    geohazard
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/176418
    Abstract
    Debris flows are high-velocity landslides generated by intense precipitation events that saturate a mountain slope, leading to the rapid movement of rock and soil entrained in a water-rich fluid within channels downstream toward valleys. The process by which debris flows shift from an active channel and branch out into new channels or areas is termed avulsion. Debris flow avulsion poses serious risks for structures and populations residing on debris-flow fans, yet avulsion mechanisms are relatively unknown and unaccounted for in hazard assessments, as compared to avulsions of rivers and streams, which are better understood. However, avulsion is a critical mechanism controlling the distribution of debris flow deposits. This study analyzes six debris-flow fans in the White Mountains of California and Nevada to identify relationships between channel and avulsion characteristics, constrain the controlling factors on avulsion, and assess the probability that avulsion will occur at specified locations. This study aims to develop a method to predict avulsion based on the factors that control avulsion on debris-flow fans, toward the goal of its incorporation into debris flow hazard assessment. The fans on the western flank of the White Mountains are an ideal study area for this work, as they have a long record of debris flow and avulsion events. A database of avulsion locations and their channel characteristics was compiled in the field. These were compared to the characteristics of other positions on the fan surface that show evidence of debris flows that did not avulse. The database (n=58) of avulsion and non-avulsion characteristics was analyzed through stepwise, binary logistic regression. Results indicate that two-thirds of avulsion likelihood can be attributed to the percentage of boulders at the site, slope angle, channel width, and the ratio between flow thickness and average slope at the avulsion location. The accuracy of this model can be improved with the consideration of the presence of a coarse channel plug, which increases the likelihood of avulsion. Application of this model is demonstrated by runout simulations with forced avulsions from modeled channel plugs. The results of this project improve our ability to predict and model debris flow avulsion so that it may be readily incorporated into geohazard assessments in the future.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2021 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.