• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2020 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2020 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Linking morphology to electronic properties in small-molecular organic semiconductors

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Jaskot_mines_0052E_12085.pdf
    Size:
    12.19Mb
    Format:
    PDF
    Download
    Author
    Jaskot, Matthew B.
    Advisor
    Zimmerman, Jeramy D.
    Date issued
    2020
    Keywords
    concentration quenching
    morphology
    OPV
    dopant aggregation
    atom probe tomography
    OLED
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/176334
    Abstract
    In organic electronics, morphology inevitably affects important device properties. The understanding of these relationships and ultimately control of morphology in small-molecular organic materials is necessary for their further development. Understanding the influence of morphology on device properties is critical not only to improving device efficiency, but also to extending usable device lifetimes by careful design to reduce material degradation. Difficulty in imaging these organic materials due to their sensitivity to damage from ion, electron and X-Ray irradiation, as well as their lack of elemental contrast between molecular species has so far limited the study of their morphology. Atom probe tomography (APT) is used as a tool to provide chemically-sensitive three-dimensional tomographs of organic materials which can be used to study morphological phenomena in these systems. In this work, several results are presented which demonstrate the importance of morphology on device properties in organic semiconductor materials. First, the presence of a chemical product confined to the donor-acceptor interface in tetracene/C60 organic photovoltaics (OPVs) is identified using APT and Fourier-transform infrared spectroscopy (FTIR), and it is shown to increase device open-circuit voltage with increasing concentration. Next, APT and high-angle annular dark-field scanning electron microscopy (HAADF-STEM) are used to characterize organic light-emitting diode (OLED) emissive layer (EML) films, showing that the emissive dopant aggregates in codeposited host/dopant films, influencing several important device properties, specifically the hole mobility and rates of triplet-polaron quenching (TPQ) and triplet-triplet annihilation (TTA). Two strategies are then used to kinetically limit aggregation of the dopant and as a consequence, change electronic properties: reduction of the substrate temperature during film growth, and the addition of a wide-gap co-host molecule.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2020 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.