• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2020 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2020 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Universal observable chemical bond analysis: gradient bundle decomposition of the electron charge density

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Wilson_mines_0052E_12077.pdf
    Size:
    35.72Mb
    Format:
    PDF
    Download
    Thumbnail
    Name:
    supplemental.zip
    Size:
    259.3Mb
    Format:
    Unknown
    Download
    Author
    Wilson, Timothy R.
    Advisor
    Eberhart, Mark E.
    Date issued
    2020
    Keywords
    condensed charge density
    metallic bonding
    charge density analysis
    qtaim
    gradient bundle
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/176327
    Abstract
    Our curiosity-driven desire to "see" chemical bonds dates back at least one-hundred years, perhaps to antiquity.Sweeping improvements in the accuracy of measured and predicted electron charge densities, alongside our largely bondcentric understanding of molecules and materials, heighten this desire with means and significance. Energetic analysis of arbitrary regions of charge density is problematic, however, because electronic kinetic energy is ambiguous over such regions. If the flux of the charge density gradient is zero across the boundary of a region, then the ambiguity vanishes and such a region is found to possess a well-defined kinetic energy. Such regions are called gradient bundles. Here we present gradient bundle decomposition, a method for the infinitesimal partitioning of a three-dimensional charge density that results in a two-dimensional projected space in which kinetic—and thus total—energy is everywhere well-defined; a space called the condensed charge density (P). Bond "silhouettes" in P can be reverse-projected to reveal precise three-dimensional bonding regions we call bond bundles, and P enables direct inspection of the energy distribution within a bond. We show that delocalized metallic bonds and organic covalent bonds alike can be objectively analyzed, the formation of bonds observed, and that the crystallographic structure of simple metals can be rationalized in terms of bond bundle structure.We demonstrate that gradient bundle decomposition also reveals the charge density's intrinsic ridge structure indicative of regions of energetic—hence chemical—significance. Bond bundle analysis also effortlessly resolves many concerns regarding the chemical significance of bond critical points and bond paths in The Quantum Theory of Atoms in Molecules. Our method also reproduces the expected results of organic chemistry, enabling the recontextualization of existing bond models from a charge density perspective. Gradient bundles had been successfully demonstrated previously as a proof of concept in systems with linear symmetry. The complexity of a generalized gradient bundle decomposition—to systems of any symmetry—necessitated a programmatic approach. Here we also outline the resulting novel algorithms.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2020 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.