• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2020 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2020 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Multiscale modeling of the lumbar spine to investigate tissue-level load transfer during activities of daily living

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Honegger_mines_0052E_12070.pdf
    Size:
    7.371Mb
    Format:
    PDF
    Download
    Thumbnail
    Name:
    supplemental.zip
    Size:
    155.9Kb
    Format:
    Unknown
    Download
    Author
    Honegger, Jasmin D.
    Advisor
    Petrella, Anthony J.
    Date issued
    2020
    Keywords
    finite element analysis
    multiscale model
    lumbar spine
    computational biomechanics
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/176312
    Abstract
    The prevalence of low back pain (LBP) in certain subpopulations who experience more extreme repetitive spine kinematics is often attributed to biomechanical factors. Repetitive loading of the spine during lumbar movements produces damage in innervated elements known to be sources of pain, with examples including: vertebral body fractures, intervertebral disc tears, endplate lesions, and abnormal disc stress. Thus, understanding how lumbar spine kinematics influence load transfer within the tissues during daily activities can provide insight into determining how population-specific biomechanical LBP develops. Methods used to directly measure lumbar spinal loads in vivo and in vitro can be highly invasive, are not always measured in living humans, and are often not measured during daily activities. Computational modeling techniques provide a solution in silico for estimating lumbar spinal loads that are difficult or impossible to measure. While common types of biomechanical computational models (i.e., musculoskeletal and finite element (FE) models) have many benefits, they are limited when employed separately. Multiscale modeling involves combining two or more computational models into a single framework to leverage their capabilities and enable estimation of tissue loads driven by physiological kinematics and loading. This research sought to address the need for a computational model of the lumbar spine to estimate tissue-level load transfer driven by in vivo kinematics for people who are prone to developing biomechanical LBP. In this body of work, a multiscale model of the lumbar spine (musculoskeletal + FE) was developed, validated, and applied clinically. The model was validated against in vitro torque-rotation and force-displacement responses, as well as in vivo intradiscal pressure. The model was applied to people with and without a transtibial amputation (TTA) to assess differences in tissue load distribution during daily activities between groups. Lumbar spine tissue loads were also analyzed for a participant with a TTA and LBP who underwent movement retraining rehabilitation to investigate if the multiscale model can help to corroborate clinical decision making. A design of experiments was performed to determine normal variation in the model and it’s relation to clinical relevance, as well as technical modeling implications for predicting tissue loads from physiological kinematics and kinetics. The overarching goal of this research was to lay the groundwork for developing a computational model that can be adapted for use with different populations, pathologies, geometries, and activities and can be used in parallel with treatment protocols towards improved patient-specific care of biomechanical LBP.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2020 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.