• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2019 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2019 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Robot learning for loop closure detection and SLAM

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Nahman_mines_0052N_11863.pdf
    Size:
    1021.Kb
    Format:
    PDF
    Download
    Author
    Nahman, Zachary S.
    Advisor
    Zhang, Hao
    Date issued
    2019
    Keywords
    loop closure detection
    point clouds
    SLAM
    mapping
    computer vision
    robotics
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/173999
    Abstract
    Robotics and autonomy continues to be a key research and development focus around the world. Robots are increasingly prevalent in everyday life. From manufacturing, home cleaning, to self-driving vehicles, robots are an ever-present reality with demonstrated ca- pability to increase quality of life for humans. As more and more robots exist surrounding humans, it becomes increasingly critical that robots can accurately sense and reason about the environment. The functionality of a robot building a map of its environment and lo- cating itself constantly within the map is known as Simultaneous Localization and Mapping (SLAM). SLAM is a difficult problem, and can be especially challenging when environmental appearance changers occur or when a GPS signal is not available. However, it’s within these challenging environments where the use of robots is critical. Consider a partially collapsed underground mine environment. If the environment is potentially dangerous, it doesn’t make sense to risk human life to enter the mine to perform search and rescue. If robots can be enabled to operate in challenging environments such as collapsed mines, human life can be saved. This Master’s thesis addresses the problem of increasing the effectiveness of SLAM in these challenging environments. First, I describe a data structure capable of capturing environmental metadata for semantic description overlay to augment mapping capability. Secondly, I introduce a novel loop closure detection technique that utilizes robot learning to understand complex environments. These efforts combined contribute to increasing the effectiveness of SLAM in GPS-denied environments or environments with varying lighting conditions.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2019 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.