• Login
    View Item 
    •   Home
    • Conferences, Meetings & Events
    • Seventh International Conference on Debris-Flow Hazards Mitigation - Proceedings
    • View Item
    •   Home
    • Conferences, Meetings & Events
    • Seventh International Conference on Debris-Flow Hazards Mitigation - Proceedings
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    How does particle-size segregation affect the fluidity of multi-granular debris flows?

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    01-03_Hotta.pdf
    Size:
    539.1Kb
    Format:
    PDF
    Download
    Author
    Hotta, Norifumi
    Iwata, Tomoyuki
    Suzuki, Takuro
    Date issued
    2019
    Keywords
    flume test
    multi-granular debris flow
    numerical simulation
    particle-size segregation
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/173242; http://dx.doi.org/10.25676/11124/173242
    Abstract
    It is essential to consider the fluidity of a debris-flow front when calculating its impact. Here, we flume-tested monogranular and bigranular debris flows, and compared the results to those of numerical simulations. We used sand particles with diameters of 0.29 and 0.14 cm at two mixing ratios, of 50% and 50% (5:5), and 30% and 70% (3:7), respectively. Particle segregation was recorded using a high-speed video camera. We evaluated the fronts of debris flows at 0.5-s intervals. We then numerically simulated one- dimensional debris flows under the same conditions, and we used the mean particle diameter when simulating mixed-diameter flows. For monogranular debris flows, the experimental and simulated results were in good agreement in terms of flow depth, front velocity, and flux, but the bigranular debris flows were not well-simulated; the simulated flow depth was less than that found experimentally, and the front velocity and flux were greater. The differences may be attributable to the fact that the dominant shear stress was caused by the concentration of smaller sediment particles in the lower flow layers; such inverse gradations were detected in the debris flow bodies. In this situation, most shear stress is supported by smaller particles in the lower layers; the debris-flow characteristics become similar to those of monogranular flows. Consequently, the calculated front velocities were underestimated; particle segregation at the front of bigranular debris flows did not affect fluidity either initially or over time.
    Rights
    Copyright of the original work is retained by the authors.
    Collections
    Seventh International Conference on Debris-Flow Hazards Mitigation - Proceedings

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.