• Login
    View Item 
    •   Home
    • Conferences, Meetings & Events
    • Seventh International Conference on Debris-Flow Hazards Mitigation - Proceedings
    • View Item
    •   Home
    • Conferences, Meetings & Events
    • Seventh International Conference on Debris-Flow Hazards Mitigation - Proceedings
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Constraining parameter uncertainty in modeling debris-flow initiation during the September 2013 Colorado Front Range storm

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    03-03_Baum.pdf
    Size:
    1.526Mb
    Format:
    PDF
    Download
    Author
    Baum, Rex L.
    Scheevel, Caroline R.
    Jones, Eric S.
    Date issued
    2019
    Keywords
    debris flow
    rainfall-induced landslides
    numerical models
    parameter uncertainty
    Colorado Front Range
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/173212; http://dx.doi.org/10.25676/11124/173212
    Abstract
    The occurrence of debris flows during the September 2013 northern Colorado floods took the emergency management community by surprise. The September 2013 debris flows in the Colorado Front Range initiated from shallow landslides in colluvium. Most occurred on south- and east-facing slopes on the walls of steep canyons in crystalline rocks and on sedimentary hogbacks. Previous studies showed that most debris flows occurred in areas of high storm-total rainfall and that strength added by tree roots accounts for the low number of landslides in densely forested areas. Given the lack of rainfall thresholds for debris flow occurrence in northern Colorado, we want to parameterize a numerical model to assess potential for debris flows in advance of heavy rainfall. Natural Resources Conservation Service (NRCS) soil mapping of the area, supplemented by laboratory testing and field measurements, indicates that soil textures and hydraulic properties of landslide source materials vary considerably over the study area. As a step toward modeling storm response, available soil and geologic mapping have been interpreted to define zones of relatively homogeneous properties. A new, simplified modeling approach for evaluating model input parameters in the context of slope and depth of observed debris flow source areas and recorded debris-flow inducing rainfall helps narrow the range of possible parameters to those most likely to produce model results consistent with observed debris flow initiation. Initial results have narrowed the strength parameters to about one third of possible combinations of cohesion and internal friction angle and narrowed hydraulic conductivity to a range spanning slightly more than one order of magnitude.
    Rights
    Copyright of the original work is retained by the authors.
    Collections
    Seventh International Conference on Debris-Flow Hazards Mitigation - Proceedings

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.