• Login
    View Item 
    •   Home
    • Conferences, Meetings & Events
    • Seventh International Conference on Debris-Flow Hazards Mitigation - Proceedings
    • View Item
    •   Home
    • Conferences, Meetings & Events
    • Seventh International Conference on Debris-Flow Hazards Mitigation - Proceedings
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Long travel distance of landslide-induced debris flows

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    03-22_Nishiguchi.pdf
    Size:
    446.0Kb
    Format:
    PDF
    Download
    Author
    Nishiguchi, Yuki
    Uchida, Taro
    Date issued
    2019
    Keywords
    debris flow
    numerical simulation
    travel distance
    fine sediment
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/173193; http://dx.doi.org/10.25676/11124/173193
    Abstract
    Large-scale landslides often induce debris flows and cause serious damage to humans. These events typically have water contents in the landslide mass less than 60% and sediment concentrations more than 40%. In spite of high sediment concentrations, landslide-induced debris flows can runout long distances. For large-scale stony debris flows, many previous studies have suggested that coarse gravels behave as a solid phase, whereas fine particles with interstitial water can behave as a fluid phase. We hypothesized this fine sediment might be one of the key processes controlling the long travel distances of landslide-induced debris flows. Here we assumed that the maximum diameter of the fine sediment behave as a fluid phase should vary depending on the friction velocity of the debris flow and the settling velocity of sediments. We conducted detailed field surveys for four landslide-induced debris flows and applied our numerical simulation model to describe the travel distance of the debris flows. Our results show that, if we set the ratio of the friction velocity of debris flow to the settling velocity of sediments around 1 to 4, the simulated travel distance agreed well with our studied four debris flows. We also confirmed that, while the total volume or mean sediment diameter of debris flows varied between study cases, the variability of ratios was small. We believe that our new method and the information it provides, may be helpful for predicting the future risk from the landslide-induced debris flows.
    Rights
    Copyright of the original work is retained by the authors.
    Collections
    Seventh International Conference on Debris-Flow Hazards Mitigation - Proceedings

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.