Show simple item record

dc.contributor.authorUchida, Taro
dc.contributor.authorNishiguchi, Yuki
dc.contributor.authorMcArdell, Brian W.
dc.contributor.authorSatofuka, Yoshifumi
dc.date.accessioned2019-08-14T22:16:33Z
dc.date.accessioned2022-02-02T14:38:44Z
dc.date.available2019-08-14T22:16:33Z
dc.date.available2022-02-02T14:38:44Z
dc.date.issued2019
dc.identifier.urihttps://hdl.handle.net/11124/173185
dc.identifier.urihttp://dx.doi.org/10.25676/11124/173185
dc.description.abstractTo predict hazard-endangered areas and debris-flow velocity, a variety of physically-based numerical simulation models have been developed. In these models, the relatively large sediment particles such as boulders move as a laminar flow, but the interstitial fluid between sediments behaves like a turbulent flow. Moreover, several recent models assumed that fine sediments act as a fluid. This behavior of fine sediment is referred to as the “phase-shift” of fine sediment. However, because it is difficult to observe the phase-shift of fine sediment in the field, adequate data on the phase-shift of debris flow are still lacking. In the last two decades, intensive monitoring for debris flow has been conducted all over the world, and observations have dramatically increased. For example, in the Illgraben catchment, Switzerland, observations of bulk density, pore pressure, flow depth, front velocity, and temporal and spatial patterns of erosion due to debris flows are available. So, we used these data for model input conditions. We applied the numerical simulation model Kanako-LS to evaluate the phase-shift concept for describing a variety of debris flow properties and behaviors at the Illgraben, Switzerland. Here we successfully describe a variety of observed debris flow behaviors, such as erosion and deposition pattern and shape and velocity of debris-flow fronts. However, if we ignored effects of phase-shift, the deposition volume was overestimated and flow velocity was underestimated.
dc.format.mediumborn digital
dc.format.mediumproceedings (reports)
dc.languageEnglish
dc.language.isoeng
dc.publisherColorado School of Mines. Arthur Lakes Library
dc.relation.ispartofSeventh International Conference on Debris-Flow Hazards Mitigation - Proceedings
dc.relation.ispartofAssociation of Environmental and Engineering Geologists; special publication 28
dc.rightsCopyright of the original work is retained by the authors.
dc.sourceContained in: Proceedings of the Seventh International Conference on Debris-Flow Hazards Mitigation, Golden, Colorado, USA, June 10-13, 2019, https://hdl.handle.net/11124/173051
dc.subjectdebris-flow
dc.subjectnumerical simulation
dc.subjectinput condition
dc.subjecthazard map
dc.subjectAranayake disaster
dc.titleNumerical simulation for evaluating the phase-shift of fine sediment in stony debris flows
dc.typeText
dc.publisher.originalAssociation of Environmental and Engineering Geologists


Files in this item

Thumbnail
Name:
03-30_Uchida.pdf
Size:
1.053Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record