• Login
    View Item 
    •   Home
    • Conferences, Meetings & Events
    • Seventh International Conference on Debris-Flow Hazards Mitigation - Proceedings
    • View Item
    •   Home
    • Conferences, Meetings & Events
    • Seventh International Conference on Debris-Flow Hazards Mitigation - Proceedings
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Looking through the window of disturbance at post-wildfire debris flow hazards

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    04-05_McGuire.pdf
    Size:
    1.953Mb
    Format:
    PDF
    Download
    Author
    McGuire, Luke A.
    Rengers, Francis K.
    Kean, Jason W.
    Staley, Dennis M.
    Tang, Hui
    Youberg, Ann M.
    Date issued
    2019
    Keywords
    debris flow
    wildfire
    recovery
    threshold
    infiltration
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/173177; http://dx.doi.org/10.25676/11124/173177
    Abstract
    The extreme heat from wildfire alters soil properties and incinerates vegetation, leading to changes in infiltration capacity, ground cover, soil erodibility, and rainfall interception. These changes promote increases in runoff and sediment transport that increase the likelihood of runoff-generated debris flows. Over a period of several years, referred to as the window of disturbance, the landscape recovers and wildfire-induced changes become less accentuated. Debris flows are most common in the year immediately following wildfire, but changes in the likelihood and magnitude of debris flows throughout the window of disturbance are not well constrained. Assessing debris-flow hazards throughout the post-wildfire recovery period is complicated, in part, by the myriad of wildfire-induced changes and their nonlinear relationships with sediment transport and runoff generation processes. In this study, we combine measurements of soil hydraulic properties with vegetation survey data and numerical modeling to understand how debris-flow threats are likely to change in steep, burned basins during the first two years of recovery. We focus on documenting recovery following the 2016 Fish Fire in the San Gabriel Mountains, CA, USA and demonstrate how a numerical model can be used to predict temporal changes in debris-flow properties and initiation thresholds within that region. Substantial increases in sorptivity, which represents the capillarity contribution to infiltration, and reductions in the percentage of bare soil occurred during the first 18 months following the Fish Fire. Numerical modeling suggests that these changes lead to a roughly 40% increase in the 15-minute rainfall intensity-duration threshold associated with debris-flow initiation as well as more than a three-fold decrease in debris-flow volume from post-fire year 1 to post-fire year 2. These results provide valuable constraints on changes in debris-flow thresholds within the San Gabriel Mountains as well as a general framework for exploring the impact of changing vegetation and soil hydraulic properties on debris flow magnitude and susceptibility.
    Rights
    Copyright of the original work is retained by the authors.
    Collections
    Seventh International Conference on Debris-Flow Hazards Mitigation - Proceedings

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.