• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2018 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2018 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Modeling climate change impacts to Rocky Mountain headwater hydrology

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Foster_mines_0052E_11612.pdf
    Size:
    14.17Mb
    Format:
    PDF
    Download
    Author
    Foster, Lauren
    Advisor
    Maxwell, Reed M.
    Date issued
    2018
    Keywords
    Colorado River Basin
    modeling
    scaling
    headwater
    climate change
    resolution
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/172568
    Abstract
    Rocky Mountain headwater catchments provide 85% of Colorado River streamflow and also feed the large Arkansas and Platte River basins. The continued growth of cities from California to Arkansas depends on reliable export from these topographically complex basins. Despite consensus that high-elevation headwaters are more sensitive to climate warming, most models used to predict climate impacts to downstream basins are known to perform poorly in these regions. Here we use an integrated model to better understand the main hydrological drivers of hydrology that are affected by increases in temperature in mountain regions- shifts from snow to rain and increases in energy, finding that energy budget changes dominate impacts to streamflow export. We present a new method to develop scale-effective parameterizations of hydraulic conductivity in topographically complex regions for use in integrated modeling applications that are limited by computational demand. Finally, we compare climate impact predictions across modeling resolutions to understand the limitations of coarse-resolution, simplified models to predict streamflow export from Rocky Mountain headwaters. Our results highlight the importance of idealized model experiments and model development to understand headwater hydrology in a future climate. Furthermore, they suggest that the models used currently may underestimate climate-induced reductions to streamflow generated in the Rocky Mountains.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2018 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.