• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2018 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2018 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Dark-bright solitons in Bose-Einstein condensates: dynamics, scattering, and oscillation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Alotaibi_mines_0052E_11551.pdf
    Size:
    8.148Mb
    Format:
    PDF
    Download
    Author
    Alotaibi, Majed O. D.
    Advisor
    Carr, Lincoln D.
    Date issued
    2018
    Keywords
    nonlinear dynamics
    Bose–Einstein condensate
    soliton
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/172410
    Abstract
    In this thesis, we have studied the behavior of two-component dark-bright solitons in multicomponent Bose-Einstein condensates (BECs) analytically and numerically in different situations. We utilized various analytical methods including the variational method and perturbation theory. By imprinting a linear phase on the bright component only, we were able to impart a velocity relative to the dark component and thereby we obtain an internal oscillation between the two components. We find that there are two modes of the oscillation of the dark-bright soliton. The first one is the famous Goldstone mode. This mode represents a moving dark-bright soliton without internal oscillation and is related to the continuous translational symmetry of the underlying equations of motion in the uniform potential. The second mode is the oscillation of the two components relative to each other. We compared the results obtained from the variational method with numerical simulations and found that the oscillation frequency range is 90 to 405 Hz and therefore observable in multicomponent Bose-Einstein condensate experiments. Also, we studied the binding energy and found a critical value for the breakup of the dark-bright soliton. Building on these results, we have studied another situation where we have the dark-bright soliton oscillate in a harmonic potential. We found for weak trapping the internal modes are nearly independent of center of mass motion of the dark-bright soliton. In contrast, in tighter traps the internal modes couple strongly to the center of mass motion, showing that for dark-bright solitons in a harmonic potential the center of mass and relative degrees of freedom are not independent. We found this result is robust against noise in the initial condition and should, therefore, be experimentally observable. In addition, we have studied the interaction between a moving dark-bright soliton in a uniform background with internal oscillation and a fixed impurity, modeled by a delta function potential. The interaction excites different modes in the system. Our analytical model capture two of these modes: the relative oscillation between the two components, as well as the in-sync oscillation of the widths. The numerical simulations allow further internal modes like out-of-sync oscillations of the soliton widths and even shape deformations of various kinds. We identify regions in parameter space for the transmission, reflection and inelastic scattering of the dark-bright soliton by the potential barrier. We have studied the velocity of dark-bright solitons described with an ansatz that uses one center of mass variable to represent the position of the two components. We found for a dark-bright soliton the maximum velocity is limited by the relative number of atoms in the bright component as compared to the size of the hole or density notch created by the dark component. Above this critical velocity the dark-bright soliton develops internal oscillations, and eventually unbinds and breaks apart.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2018 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.