• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2018 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2018 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Hydrogeochemical model development and advanced numerical simulation of alpine hillslope geochemical response to temperature-induced hydrologic changes

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Beisman_mines_0052E_11457.pdf
    Size:
    36.60Mb
    Format:
    PDF
    Download
    Author
    Beisman, James Joseph
    Advisor
    Maxwell, Reed M.
    Navarre-Sitchler, Alexis K.
    Date issued
    2018
    Keywords
    reactive transport
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/172221
    Abstract
    Subsurface hydrogeochemical systems are complex components of the terrestrial environment, playing host to a multitude of interacting processes. Reactive transport modeling provides a method to numerically integrate our mechanistic, process-based understanding of the phenomena that dictate terrestrial hydrogeochemistry, and can help to further refine and test our understanding of these systems. Here, the development of a new hydrogeochemical reactive transport model, ParCrunchFlow, is detailed. This model provides a continuum-scale approximation of subsurface geochemical reactions in porous media under transient, surface-subsurface flow conditions. An integrated land-surface model allows the representation of snow accumulation/melt and evapotranspiration, driven by realistic meteorological forcing data. A novel representation of atmosphere-subsurface diffusion is described, and is used to simulate atmospheric oxygen diffusion into the vadose zone. The code runs in parallel, and is highly scalable, allowing the representation of field-scale systems at high resolutions. Several higher-order positivity-preserving advection schemes are described, and the effects of scheme accuracy on mixing-induced kinetic and equilibrium reactions are explored. The response of an alpine hillslope containing pyrite to a two degree Celsius temperature increase is examined. The temperature increase causes hillslope discharge to decrease and water table elevation to decline, exposing more of the reactive subsurface to atmospheric oxygen and increasing pyrite oxidation rates. Concentration-discharge plots, commonly used in field studies to analyze geochemical controls, are generated from model outputs and are a useful tool with which to interpret model behavior. The results suggest that recently observed increasing concentrations of pyrite oxidation proxies in alpine catchments, thought to be caused by increasing temperatures, may be more attributable to the effects of reduced dilution than to increasing reaction rates, though both appear to play a role.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2018 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.