• Login
    View Item 
    •   Home
    • Theses & Dissertations
    • 2018 - Mines Theses & Dissertations
    • View Item
    •   Home
    • Theses & Dissertations
    • 2018 - Mines Theses & Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Mines RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    Login

    Mines Links

    Arthur Lakes LibraryColorado School of Mines

    Statistics

    Display Statistics

    Structured low-rank matrix recovery via optimization methods

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Yang_mines_0052E_11442.pdf
    Size:
    1.002Mb
    Format:
    PDF
    Download
    Author
    Yang, Dehui
    Advisor
    Wakin, Michael B.
    Date issued
    2018
    Keywords
    matrix completion
    models
    super-resolution
    modal analysis
    low-rank
    optimization
    
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/11124/172154
    Abstract
    From single-molecule microscopy in biology, to collaborative filtering in recommendation systems, to quantum state tomography in physics, many scientific discoveries involve solving ill-posed inverse problems, where the number of parameters to be estimated far exceeds the number of available measurements. To make these daunting problems solvable, low-dimensional geometric structures are often exploited, and regularizations that promote underlying structures are used for various inference tasks. To date, one of the most effective and plausible low-dimensional models for matrix data is the low-rank structure, which assumes that columns of the data matrix are correlated and lie in a low-dimensional subspace. This helps make certain matrix inverse problems well-posed. However, in some cases, standard low-rank structure is not powerful enough for modeling the underlying data generating process, and additional modeling efforts are desired. This is the main focus of this research. Motivated by applications from different disciplines in engineering and science, in this dissertation, we consider the recovery of three instances of structured matrices from limited measurement data, where additional structures naturally occur in the data matrices beyond simple low-rankness. The structured matrices that we consider include i) low-rank and spectrally sparse matrices in super-resolution imaging; ii) low-rank skew-symmetric matrices in pairwise comparisons; iii) and low-rank positive semidefinite matrices in physical and data sciences. Using optimization as a tool, we develop new regularizers and computationally efficient algorithmic frameworks to account for structured low-rankness in solving these ill-posed inverse problems. For some of the problems considered in this dissertation, theoretical analysis is also carried out for the proposed optimization programs. We show that, under mild conditions, the structured low-rank matrices can be recovered reliably from a minimal number of random measurements.
    Rights
    Copyright of the original work is retained by the author.
    Collections
    2018 - Mines Theses & Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.